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Introduction
Shiga toxin–producing Escherichia coli (STEC), also known
as verotoxin-producing E. coli and enterohemorrhagic E.
coli (EHEC), are the cause of a significant emerging infec-
tious disease. They were first described in 1983 after two
outbreaks of hemorrhagic colitis in which a previously
unrecognized pathogen, E. coli O157:H7, was linked to
human illness. They were subsequently shown to make
potent toxins called Shiga toxins, of which there are two
main types: Shiga toxin 1 and Shiga toxin 2. In 1985, Kar-
mali and coworkers showed an association between a vari-
ety of STEC serotypes, including O157:H7, and the
hemolytic-uremic syndrome (HUS). STEC are a global
problem, and more than 60 serotypes have been associated
with human disease. O157:H7 is the serotype most often
identified in humans in the United States, but other sero-
types are more common in other countries.

This brief review summarizes important developments
in the past 2 or 3 years that have advanced our understand-
ing of STEC; the epidemiology and pathogenesis of STEC
infection; and newer techniques in the diagnosis, treat-
ment, and prevention of STEC disease. Several recent

reviews offer the reader an overview of the clinical and
microbiologic aspects of STEC and HUS. Two excellent
reviews that discuss this subject in great detail are that by
Paton and Paton [1••], which focuses on STEC infection
specifically, and that by Nataro and Kaper [2••], which
reviews the broader topic of diarrheagenic E. coli. These
reviews elaborate on the role of plasmids in disease, the
effect of toxins and other virulence factors, and the devel-
opment of the intimate attachment lesions found in both
EHEC and enteropathogenic E. coli (EPEC). In 1997, the
Third International Symposium on Shiga Toxin–Producing
E. coli was held in Baltimore, Maryland. Many of the pre-
senters at that meeting have prepared papers on various
aspects of STEC-related disease, and these papers have been
compiled into an outstanding book edited by Kaper and
O'Brien [3••]. This book is the most definitive source of
current information on STEC.

Epidemiology
In the United States, implementation of the FoodNet sur-
veillance system by the Centers for Disease Control and
Prevention (CDC) has significantly enhanced our ability
to determine the annual number of cases of infection by
various foodborne pathogens, including E. coli O157:H7.
Surveillance data from the CDC for the 1998 calendar year
showed an increase in the number of confirmed outbreaks
of E. coli O157:H7 infection, from an average of 31 per
year between 1994 and 1997 to 42 in 1998. Outbreaks
were seen in 25 states, for a total of 777 ill persons. Of
these persons, 20% were hospitalized, 4% developed
HUS, and 0.4% (three persons) died. Although contami-
nated ground beef still accounted for most outbreaks (this
was confirmed in five outbreaks and suspected in six; one
contact with cattle was noted; and five outbreaks were
associated with dairy products), this report illustrates two
recent developments in epidemiology. The first is the rec-
ognition of new and different vehicles for transmission:
More and more outbreaks have been linked with foods
other than ground beef and with water. The second is the
widespread use of pulsed-field gel electrophoresis (PFGE).

In 1998, the CDC reported coleslaw to be the con-
firmed vehicle in two outbreaks and the suspected vehicle
in one, and lettuce or salad was implicated in two out-
breaks. Water was the source of infection in four outbreaks,
including a large community outbreak in Wyoming due to
contaminated drinking water and an outbreak from a
water park in Georgia that led to one death. Person-to-per-
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son contact was suspected or confirmed in seven outbreaks
(day care centers were involved in six of the seven), and the
source of transmission was unknown in 10 outbreaks. The
importance of water as a source of E. coli O157:H7 infec-
tion is supported by a study showing that although this
pathogen is not highly competitive in an aquatic environ-
ment, it can survive in a viable state for prolonged periods
(weeks to months), even at cold temperatures [4]. Other
reports of outbreaks of E. coli O157:H7 infection have
implicated unpasteurized commercial apple juice and let-
tuce. Cattle are a well-recognized source of STEC, but other
ruminants have been implicated. Sheep were found to be
vehicles of pathogenic E. coli, with horizontal spread docu-
mented within flocks and long-term survival of E. coli
O157:H7 noted in manure [5]. Interesting, but perhaps
not surprising, is a report from Japan that showed trans-
mission of E. coli O157:H7 by the common house fly [6].

Although in its infancy, the field of molecular epidemi-
ology has greatly advanced our ability to identify out-
breaks. Of particular interest is PFGE, which has facilitated
the detection of epidemics by relating strains from differ-
ent states and by demonstrating the clonality of small clus-
ters of cases. The results of active PFGE surveillance by the
Minnesota Department of Health in 1994 and 1995 were
recently published [7•]. During the 2-year period, 344
cases were reported to the State Health Department and
317 were subtyped by PFGE; 143 distinct patterns were
revealed. Ten outbreaks were recognized by this method;
four were identified solely on the basis of PFGE. The clonal
relationship among 54 EHEC isolates from Chile, sero-
types O157, O111, and O26, was also characterized by
PFGE [8]. Several clones were identified, including 12 dis-
tinct genetic profiles among the O157 isolates, indicating
great diversity in the genotypes causing HUS. Analysis of
virulence genes showed that 100% of the Chilean O157
isolates associated with HUS compared with 61.5% of iso-
lates from asymptomatic carriers contained the eae locus.

Randomly amplified polymorphic DNA polymerase
chain reaction (PCR) fingerprinting is another molecular
tool that is being used more often [9]. By using specifically
designed probes, both clonal relationships and the pres-
ence of virulence genes can be determined. Grif et al. [10]
compared five methods for subtyping E. coli O157:H7
strains and concluded that PFGE, randomly amplified
polymorphic DNA PCR, and phage typing were all valu-
able tools for epidemiologic surveillance. However, dis-
crepancies among the various techniques suggest that
isolates should not be classified by using a single method.

One facet of STEC that make them a particularly wor-
risome foodborne pathogen is their ability to survive the
acidic milieu of various foods and the human stomach.
This ability is attributed to the presumed acid-tolerance
response, which allows the pathogens to resist extremely
acidic conditions (pH, 2.0) when initially incubated at a
more moderate pH. The ability to survive this food pres-
ervation technique has obvious implications. Brudzinski

and Harrison [11] investigated the rate at which E. coli
O157:H7 and E. coli non-O157:H7 become acid tolerant.
They noted a wide range in tolerance among the various
strains but showed (compared with controls) almost
1000-fold greater survival for O157:H7 isolates at a lower
pH if the organisms were first allowed to gradually adapt
to acid stress. These findings are supported by data in cat-
tle showing a significantly lower pH concomitant with
significantly more acid-resistant E. coli, including E. coli
O157:H7, in the rumen and colonic digesta of animals
fed a diet composed of a grain mixture (90% corn and
soybean meal) compared with a diet composed entirely
of hay [12•]. In contrast, a study found that sheep fed a
diet of hay shed more E. coli and shed it for longer peri-
ods than did sheep fed a diet of corn and alfalfa [5]. The
phenomenon of dry-resistant E. coli O157:H7—organ-
isms able to survive on the surfaces of inert materials—
was postulated on the basis of the high secondary trans-
mission rate noted in a 1996 epidemic in Osaka, Japan
[13]. Nonoutbreak strains showed markedly greater log
reductions in growth secondary to dry stress compared
with outbreak strains; one outbreak strain survived for 35
days under test conditions.

The low infective dose of E. coli O157:H7 (estimated to
be as low as 10 cfu); the persistent virulence of these bacte-
ria, even in the stressed state; and the ability of these bacte-
ria to successfully adapt to stress underscore the
importance of detection of these pathogens against a back-
ground of competing healthy bacteria. Selective culture on
sorbitol-MacConkey agar (SMAC), which takes advantage
of the serotype's inability to ferment sorbitol, does not
support the growth of stressed organisms well. To address
this problem, McCarthy et al. [14] developed an improved
culture method designed to minimize the inhibitory effect
of the selective agent in SMAC. Plating cells on a mem-
brane-coated tryptone soy agar plate provides a resuscita-
tion period. Subsequent transfer to SMAC compared with
SMAC alone resulted in a marked increase in growth of
acid-stressed E. coli O157:H7.

Much of our current understanding of the epidemiology
of E. coli O157:H7 is derived from outbreak data. However,
surveillance studies from the United States, Canada, and
Europe reveal that most cases of E. coli O157:H7 infection
are sporadic. Slutsker et al. [15•] published the first nation-
wide case–control investigation describing the epidemiology
of E. coli O157:H7 infection. This prospective, multicenter
study included 10 US hospitals during a 2-year period
between 1990 and 1992. All submitted fecal specimens from
inpatients and outpatients were cultured for E. coli O157:H7
and assessed for the presence of stx1 and stx2 genes. During
the study period, E. coli O157:H7 was identified in 0.39% of
the more than 30,000 specimens examined (118 persons);
seven patients developed HUS, and one died.

On univariate analysis, significant risk factors included
consumption of hamburger or hot dogs, eating in a fast
food restaurant, drinking well water or swimming in a
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pond, and having a household member with diarrhea.
Only consumption of undercooked hamburger remained a
significant risk factor on multivariate logistic analysis. Two
features significantly associated with the development of
HUS were identified: vomiting and use of antibiotics in
children younger than 13 years of age within 3 days of
onset of diarrhea. Of the six children who received antimi-
crobial agents within this period, five received an agent
containing sulfamethoxazole and all five developed HUS.
The effect of antimicrobial agents on the production of
Shiga toxin and subsequent HUS is discussed in more
detail below.

Surveillance data of outbreaks and sporadic cases of
HUS have shown the increasing importance of non-
O157:H7 serotypes worldwide. Current screening prac-
tices designed to identify O157:H7 do not select organ-
isms that ferment sorbitol (ie, most non-O157:H7
serotypes), and the presence of other serotypes is often
not sought, leading to underestimation of the potential
effect of these serotypes. In France, six non-O157:H7
STEC strains producing Shiga toxin 2 were identified in
1996 and 1997 from sporadic cases of adult HUS [16].
The presence of the enterohemolysin-encoding gene var-
ied, and the intimin-encoding gene was absent in all
cases. A larger study of non-O157:H7 STEC from Ger-
many in the same period confirmed the significance of
the non-O157:H7 serotypes in human disease [17].
Almost 78% of 89 non-O157:H7 STEC isolates could be
typed, revealing 15 different serotypes, and all produced
Shiga toxin 1 or Shiga toxin 2. Most isolates produced
enterohemolysins, but the presence of the intimin-
encoding eae gene was a discriminating feature. The eae+

genotype (seen in 61% of strains) was associated with
more severe disease, including HUS, and young age.
These studies illustrate two important aspects of STEC
disease: the prominent new role of non-O157:H7 sero-
types and the need to actively pursue the detection of
these serotypes. The global extent of pathogenic non-
O157 serotypes has been further shown by recent reports
from France [18], Australia [19], New Zealand [20], and
Germany [21]. It has been known for some time that
STEC infection of the urinary tract may lead to HUS.
Starr et al. [22•] wrote a review on this topic that illus-
trates the need to be cognizant of nonenteric sources of
STEC in patients with HUS.

Pathogenesis
The mechanisms of STEC disease can be broadly divided
into bacterial and host processes. Recent contributions to
our understanding of the pathogenesis of STEC disease
include studies on specific virulence factors, such as Shiga
toxin and lipopolysaccharides, and on the ability to form
attaching and effacing (A/E) lesions. The latter property
requires host-bacterium interactions, including use of the
host's signal transduction pathways.

Enterohemorrhagic and enteropathogenic E. coli share
the histologic phenotype referred to as the A/E lesion. The
ability to bind to the host intestinal epithelial cell mem-
brane with subsequent effacement of microvilli and host
cytoskeleton rearrangement permits the formation of micro-
colonies. Development of the A/E lesion requires numerous
genes, including (but not only) eae, which encodes the bac-
terial outer membrane adhesion protein intimin; tir, which
encodes the translocated intimin receptor; and a type III
secretion system that secretes the espA-, espB-, and espD-
encoded proteins EspA, EspB, and EspD. The A/E genes are
located on a 35-kb chromosomal pathogenicity island
termed the locus on enterocyte effacement. The importance of
an intimate association between host and bacterium is sup-
ported by a study that characterized clinical isolates from a
recent foodborne STEC outbreak. O serotypes associated
with human disease, including O157, showed significantly
greater adherence than did O serotypes isolated from food
but not associated with infection [23].

Several studies have contributed substantially to our
knowledge of the locus on enterocyte effacement. Abe et al.
[24] created mutations in the espA and espB genes in an
EPEC strain to evaluate A/E lesions in a rabbit model.
Using histologic examination, scanning and transmission
electron microscopy, and confocal laser scanning micros-
copy, these authors documented the extensive actin rear-
rangements in host epithelial cells beneath attached
bacteria. Their results were supported by a study by Ebel et
al. [25], who generated an EspA mutant for use in tissue
culture with HeLa cells. They confirmed the role of EspA in
inducing cytoskeletal changes and extended these findings
by showing that EspA was probably involved in mediating
initial binding to host epithelial cells. Kenny et al. [26•]
showed that EPEC secrete a protein called translocated
intimin receptor (Tir) that is inserted into the mammalian
cell membrane and acts as the receptor for intimin. This
property has also been found in certain STEC organisms,
and amino acid sequence heterogeneity in both intimin
and its receptor may contribute to the ability of STEC to
avoid host defenses [27]. Dean-Nystrom et al. [28] investi-
gated the role of eae in calves; those inoculated with an eae-

mutant E. coli O157:H7 strain showed no clinical or histo-
pathologic abnormalities compared with those infected
with an eae+ E. coli O157:H7 strain. In the eae+ animals, A/
E lesions containing O157:H7 organisms were present in
the ileum and colon. These data have important implica-
tions for vaccine strategies. Intimin vaccines may be useful
in decreasing colonization and enterocolitis in calves and,
thus, in reducing bacterial burden in humans. Unrelated to
the locus on enterocyte effacement, but possibly contribut-
ing to the pathogenesis of STEC O157:H7 disease, is a
secreted serine protease, EspP, that is encoded on the large
plasmid present in many O157:H7 strains. This purported
autotransporter cleaves pepsin and human coagulation fac-
tor V and therefore may affect the normal coagulation cas-
cade, increasing gastrointestinal hemorrhage [29].
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The role of bacteriophages in the pathogenesis of STEC
disease has also been the focus of recent research.
Lysogenic bacteriophages play a critical role in the dissemi-
nation of virulence genes to other E. coli as well as non-
Enterobacteriaceae species. Acheson et al. [30] were able to
demonstrate transduction of Shiga toxin 1–converting
phage from one E. coli strain to another within the murine
intestine. They had previously shown that induction of
toxin-encoded bacteriophages generates an increase in the
number of toxin gene copies. Production of infectious viri-
ons, therefore, is probably associated with a marked
increase in toxin production. This was confirmed by Mat-
sushiro et al. [31•], who found that norfloxacin induced
Shiga toxin bacteriophages and elevated toxin production
in vitro. Shiga toxin 2–converting bacteriophages have also
been shown to exist as free particles in raw sewage,
although the significance of this finding with regard to the
transduction of other bacteria is uncertain [32]. Data con-
tinue to emerge on the sequencing of STEC. Recently, the
sequences of the Shiga toxin 2 phage 933W [33] and the
large virulence plasmid [34], both from E. coli O157:H7,
were reported.

The role of the host immune system in the response to
Shiga toxin has also been the focus of much research. Shiga
toxins bind to specific glycolipid receptors; are internal-
ized; and are translocated in a retrograde manner to the
ribosome, where they inhibit protein synthesis. In addition
to exerting this direct cytotoxic effect, they also seem to be
able to stimulate pro- and anti-inflammatory cytokines
and induce apoptosis. Shiga toxin cytotoxicity has been
shown to be enhanced by tumor necrosis factor-a (TNF-a)
in purified human glomerular microvascular endothelial
cells [35] and human mesangial cells [36] from explanted
kidneys. Isogai et al. [37] evaluated the role of TNF-a in
EHEC infection in gnotobiotic mice. They detected TNF-a,
interleukin-1a, and interleukin-6 in the kidney (and TNF-a
in the brain) but not in serum after infection. Exogenous
TNF-a was associated with worse clinical and histologic
outcome, whereas a TNF-a inhibitor (a protease inhibitor)
ameliorated these effects. These authors note that a TNF-a
inhibitor combined with an inhibitor of Shiga toxin may
be effective in reducing the serious sequelae of HUS.

Recent work to elucidate the molecular mechanisms of
this relationship have determined that Shiga toxin 1
increases secretion of TNF-a through transcriptional activa-
tion. Sakiri et al. [38•] were able to show nuclear transloca-
tion of NF-kB and AP-1 in a human monocytic cell line,
THP-1. This effect seems to be a specific response to Shiga
toxin 1 because cyclohexamide, another protein synthesis
inhibitor, had no effect on TNF-a production [39]. In con-
trast, protein kinase C, and not NF-kB, seems to be
involved in the sensitization of human umbilical vein
endothelial cells to Shiga toxin [40]. Several studies have
measured cytokine levels in patients with E. coli O157:H7
HUS [41,42]. Although the varied clinical designs of these
studies prohibit exact comparisons, the studies found ele-

vated levels of circulating pro- and anti-inflammatory
cytokines in persons with HUS compared with patients
with less severe disease and healthy controls.

Thrombotic microangiopathy is pathognomonic of
STEC-associated HUS and thrombotic thrombocytopenic
purpura. Nitric oxide functions to mediate vascular tone
and platelet aggregation and, therefore, its possible role
in these disease processes has been explored. In a clinical
study, Herlitz et al. [43] found indirect evidence for the
activation of nitric oxide synthesis. In contrast, Bitzan et
al. [44] showed an increase in preproendothelin-1 mRNA
in response to Shiga toxin 1 or Shiga toxin 2 binding (an
apparent effect of stabilizing labile mRNA) with no effect
on nitric oxide synthase mRNA transcript levels. Addi-
tional research is needed to characterize these pathways
more completely.

Diagnosis
With the emergence of E. coli O157:H7 as an important
pathogen in sporadic and epidemic disease, much atten-
tion has been paid to the development of methods to bet-
ter identify this organism. Screening cultures take
advantage of the specific phenotypic characteristics of
O157:H7, but these methods are slow and fail to identify
non-O157:H7 serotypes (which are an increasing source of
epidemics in many parts of the world) and thereby under-
estimate the effect of these serotypes on human disease.
Polymerase chain reaction is a rapid, sensitive, and specific
method that is being used more often to determine the
presence of pathogens in humans, cattle, and food. In the
past several years, numerous groups have designed multi-
plex PCR protocols that use two or more primer pairs to
increase specificity for E. coli O157:H7 while maintaining
the ability to detect other E. coli serotypes.

Gannon et al. [45] designed a multiplex PCR directed
against EHEC and E. coli O157:H7 specifically. They
designed two PCR primer pairs complementary to flanking
regions of the fliC gene, which amplified fragments from
all E. coli O157:H7 specimens tested but not from 49 E. coli
strains of other H types. These oligonucleotide primers
were used in conjunction with primers directed against
stx1, stx2, and eaeA. Another method directed against E. coli
O157:H7 uses PCR subtyping that relies on the amplifica-
tion of variable sequences between repetitive sequences
[46]. Insertion sequence 3 is typically found in multiple
copies in most E. coli strains, and PCR conditions were
optimized to allow discrimination of E. coli O157:H7 on
the basis of DNA banding patterns. Although this PCR sub-
typing protocol was less sensitive than PFGE, its ease and
the reproducibility of its results make it a useful screening
tool for large numbers of samples.

Paton and Paton [47] developed two multiplex PCR
assays to improve detection of STEC in feces and foods.
The first uses four primer pairs for stx1, stx2, eaeA, and hlyA
(a plasmid-encoded enterohemolysin); the second uses
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two primer pairs specific for a portion of the rfb region (O
antigen) of E. coli O157 and O111, another well-recog-
nized cause of outbreak-associated bloody diarrhea and
HUS. Modifications in primer sequences allowed detec-
tion of stx2 variants, and the specificity of the O antigen
primer set allowed for detection of all O157 and O111
strains tested without cross-reaction with the clonally
related EPEC strain O55. Desmarchelier et al. [48] also
focused on the O antigen of E. coli and designed a primer
pair to amplify the rfbE O antigen synthesis gene. These
primers cannot distinguish between strains that do and
strains that do not produce Shiga toxin, but this could be
modified by use in a multiplex system. Desmarchelier et
al. further evaluated their primers in raw milk and found
that the limit of detection was less than 1 cfu of E. coli
O157:H7 per mL after enrichment.

Other diagnostic strategies have also been evaluated.
The Premier EHEC assay (Meridian Diagnostics, Cincin-
nati, OH), an enzyme-linked immunosorbent assay for the
detection of Shiga toxin 1 and Shiga toxin 2, was found to
have a sensitivity of 100% and a specificity of 99.7%. Cul-
ture on SMAC, in comparison, has a sensitivity of 60% and
a specificity of 100% [49]. It has a sensitivity similar to that
of cytotoxicity assays but is considerably faster and easier
to perform. Of note, 20% of childhood STEC infections in
this study were caused by non-O157:H7 serotypes. The
authors concluded that given the high risk for HUS in chil-
dren, the Premier EHEC assay or another toxin-detection
system should be considered part of standard enteric
pathogen evaluation in this population. Other methods
found to be rapid, sensitive, and specific— particularly at
low levels of bacteria—include filtration capture combined
with immunoelectrochemical detection [50]; Western blot
assay for anti–Shiga toxin 1 IgG antibodies using chemilu-
minescence [51]; and Verotox-F (Denka Seiken, Tokyo,
Japan), a system that uses anti–Shiga toxin 1 and 2 anti-
bodies and compares favorably with Vero cell cytotoxicity
assays [52]. Two techniques effective in detecting E. coli
O157:H7 in foods, even at low inocula, are the BAX for
Screening/E. coli O157:H7 (Qualicon, Wilmington, DE)
[53] and a hydrophobic grid membrane filter, which was
assessed in a multicenter study [54].

Treatment and Prevention
The standard of care for STEC infection in the United States
does not include the use of antimicrobial agents. This prac-
tice is supported by in vitro studies showing an increase in
Shiga toxin production from E. coli O157:H7 in the pres-
ence of subinhibitory concentrations of antibiotics. Shiga
toxin genes are bacteriophage encoded; antibiotics that
cause bacteriophage induction (eg, ciprofloxacin and tri-
methoprim-sulfamethoxazole) may increase Shiga toxin
expression. Matsushiro et al. [31•] demonstrated induction

of Shiga toxin phages and expression with norfloxacin.
Fosfomycin, an inhibitor of peptidoglycan synthesis, is
commonly used in Japan for diarrheal disease and STEC
infection. Yoh et al. [55] noted an increase in Shiga toxin 1
release from E. coli O157:H7 in vitro in response to fosfo-
mycin, but this toxin does not seem to cross an intestinal
monolayer system [56]. A thorough review of the antibi-
otic susceptibilities of the O157:H7 isolates from the 1996
Japanese outbreak [57] revealed more than 90% inhibition
of growth with fosfomycin at a dose of 0.5 mg/mL or less.
Fosfomycin is not licensed in the United States for the
treatment of diarrheal disease. Additional investigation is
needed before current recommendations are changed.

Without a well-accepted treatment, prevention remains
an important facet of STEC management. A substantial
amount of research has been dedicated to identifying and
eradicating STEC from beef during processing and in
reducing STEC carriage in cattle. Duncan et al. [58] investi-
gated the effect of dietary plant metabolites in the sheep
rumen, pig gut, and human gut and found that coumarin
esculin metabolized by colonic bacteria markedly reduced
growth of E. coli O157:H7. Using an gnotobiotic mouse
model, Isogai et al. [59] found that Japanese green tea
extract inhibited the growth of E. coli O157:H7 in the gut
and decreased the level of Shiga toxin in feces. A similar
effect was seen with probiotic bacteria given to cattle [60].

Food safety initiatives are another area of investigation.
Technologies currently available or on the horizon include
electron-beam and g-source irradiation and in-shell egg
pasteurization [61]. A vaccine against the O-specific
polysaccharide of lipopolysaccharide for O157 has success-
fully completed phase I trials in adults, and a phase II
study in children is scheduled [62]. The final strategy for
prevention rests in personal hygiene and measures for food
preparation. A detailed discussion of suggestions for
decreasing risk for foodborne illness, as well as informa-
tion on the timing and clinical manifestations of food-
borne diseases, can be found in Safe Eating  [63].
Handwashing remains the most effective way to reduce
person-to-person transmission of all enterically spread
microorganisms. It is particularly important because the
duration of fecal shedding of E. coli O157:H7 is longer
than previously thought. A recent review of day care out-
breaks shows prolonged shedding for as long as several
weeks, particularly in younger children [64].

In summary, STEC disease, particularly E. coli
O157:H7 infection, is an area of active investigation.
Many laboratories have contributed significantly to our
understanding of STEC, and this brief review of the
recent literature presents only some of the latest develop-
ments. The greatest need at this point is to understand
why only some exposed persons manifest disease and to
develop adequate treatments to prevent the life-threaten-
ing complications of STEC infection.
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