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Introduction
Sepsis is a severe clinical problem in the United States, as
more than 300,000 cases occur annually. Not only is sepsis
a serious cause of morbidity, it is also the third leading
cause of infectious deaths in this country, with a mortality
rate of 30% to 40% [1•] Gram-negative organisms are the
etiologic agents in approximately 40% of sepsis cases [2].
These organisms colonize the GI tract in high concentra-
tions and have certain virulence properties that facilitate
development of invasive disease [3•]. The emergence of
antibiotic-resistance determinants has made sepsis therapy
extremely challenging. This report discusses the myriad of
issues raised by the complex dynamics of the human
microbiologic ecosystem and its continued evolution.

Several important groups of gram-negative organisms
cause human disease, including the following: enteric
(Escherichia, Klebsiella, Serratia, Enterobacter, Citrobacter, and
Proteus), nonenteric (Pseudomonas, Aeromonas, Stenotroph-
omonas, and Acinetobacter), diarrheal (Salmonella, Shigella,
and Campylobacter), anaerobic (Bacteroides), and respira-
tory (Haemophillus, Legionella). Of these gram-negative
organisms, the enterics and the nonenterics typically cause
the greatest burden of serious nosocomial disease. These

groups of bacteria are found in different reservoirs; the
enterics in the GI tract and the nonenterics typically in
aqueous environments.

Epidemiology of Gram-negative Sepsis 
and Antibiotic Resistance
Enterococci have developed resistance to ampicillin,
aminoglycosides, and most recently, vancomycin. Global
dissemination of vancomycin-resistant enterococci (VRE)
has been rapid since it was first identified in 1986 in
France. In the United States, vancomycin resistance among
enterococci has expanded from 0.9% of all isolates in 1989
to 25% in 1998. Thus, VRE have generated much concern
about the development and dissemination of other anti-
microbial-resistance determinants [4•,5••]. Fortunately,
VRE is a relatively avirulent pathogen, typically causing
disease in the most seriously ill patients. This is not the
case for many gram-negative organisms, however.

The development of gram-negative sepsis is a function
of several important factors, including exposure to an
organism (either a virulent strain or exposure to a virulent
or nonvirulent strain after loss of a host defense mecha-
nism), specific host vulnerabilities, inoculum-related
factors, antibiotic susceptibilities, and the likely infected
body site. The typical first step in disease is the coloniza-
tion event, which requires adherence of the organism
either to a mucosal surface or to a foreign body, such as an
indwelling catheter or endotracheal tube. Significant
progress has been made, at the molecular level, to under-
stand the specificity (ie, tissue or foreign-body tropism) of
many of these interactions [3•].

The nature of the organisms that colonize patients
depends on several important factors, including a predispos-
ing medical condition, such as cystic fibrosis with
airway colonization by Pseudomonas and Burkholderia, or
bronchiectasis with colonization by Pseudomonas. Environ-
mental exposures, such as ingestion of contaminated food or
nosocomial contact, play a determining role, as do selective
environmental pressures, such as antibiotic use, in either
inpatient or outpatient (eg, for treatment of acne or prophy-
laxis against Pneumocystis carinii) scenarios [6]. Of these, noso-
comial acquisition is a major concern, as vulnerable sick
patients often spend significant time in the hospital.

The risk of being infected by a resistant organism is
clearly related to prior exposure to resistant bacteria. Thus,
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an understanding of the organism reservoir and the selec-
tive pressures in that environment is central to assessing
the risk of a patient becoming infected with an antibiotic-
resistant organism. For example, the risk of acquiring an
antibiotic-resistant Salmonella or Campylobacter strain has
little to do with hospitalization and more to do with
animal husbandry practices [7–9], whereas infection with
an antibiotic-resistant Klebsiella or Pseudomonas strain is
clearly related to the nosocomial environment [10••,11].

Within the context of the nosocomial environment,
understanding the putative reservoirs for certain organ-
isms facilitates an understanding of the types of infections
they cause; Pseudomonas has a predilection to cause
ventilator-associated pneumonia (VAP), in part because of
its ability to survive and multiply to high concentrations
in water, and accumulate in the respiratory tubing of the
ventilatory circuit.

Data from the National Nosocomial Infections Surveil-
lance (NNIS) [12] and the European Prevalence of Infec-
tion in Intensive Care (EPIC) study [13] indicate that more
than 80% of nosocomial infections are related to the
urinary tract (31%), lungs (31%), or bloodstream (19%).
Typically, these infections are associated with a breech in
the normal host defenses (eg, urinary catheter, endotra-
cheal tube, central venous catheter). Of these infections,
pneumonia and bloodstream infections (BSI) carry signifi-
cant morbidity. Table 1 demonstrates the distribution of
infecting organisms, as elucidated by the NNIS surveillance
system, according to type of intensive care unit (ICU),
medical (MICU) or cardiac care (CCU).

It is important to note that gram-negative organisms
are the dominant pathogens in pulmonary and urinary
tract infections (UTI), accounting for 40% to 50% of
isolates, with the most important microbial contributors
being Pseudomonas aeruginosa and Escherichia coli. Approxi-
mately 15% of nosocomial BSI are caused by gram-
negative organisms; E. coli, Enterobacter, Klebsiella, Serratia,
and Pseudomonas are the most prevalent [5••,14•,15•].
Given the increased use of broad-spectrum antimicrobials
in the nosocomial environment, it is not surprising that
the overall proportion of MICU gram-negative BSI has
decreased slightly over the past 10 years, from 23% in the
period 1986 through 1989 to 17% in the period 1992
through 1997, with a shift in the proportion of more viru-
lent pathogens, such as Enterobacter and Pseudomonas [16].

The risk of being colonized by an antibiotic-resistant
organism is related to the patient’s prior antimicrobial
exposure history. The Intensive Care Antimicrobial
Resistance Epidemiology phase-two (ICARE2) data revealed
a decrease in colonization rates among outpatients,
compared with inpatients and ICU patients, as shown in
Fig. 1 [10••]. ICARE2 is a laboratory-based surveillance
system using a subset of 41 hospitals participating in the
NNIS system, in part established because resistant organisms
were appearing in patients presenting from the community.
As expected, the authors found that overall antibiotic use in
the ICU, inpatient wards, and outpatient arena correlates
with the prevalence of microbial resistance (eg, high rate of
quinolone use and high prevalence of quinolone-resistant
organisms in the outpatient setting).

Table 1. Relative frequency of selected pathogens, by site of infection and type of intensive care unit, 1992–1997

Pathogen

Bloodstream infection
CCU               MICU

(n = 1159)       (n = 2971)

Pneumonia
CCU               MICU

(n = 1635)      (n =4389)

Urinary tract infection
CCU            MICU

(n = 2321)    (n = 4956)

Coagulase-negative 
staphylococci

37 36 2 1 3 2

Staphylococcus aureus 24 13 21 20 3 2
Enterococcus species 10 16 2 2 14 14
Escherichia coli 3 3 4 4 28 14
Enterobacter species 3 3 9 9 4 5
Candida albicans 2 6 6 5 10 21
Klebsiella pneumoniae 2 4 8 8 6 6
Serratia marcescens 2 1 4 4 1 0.7
Pseudomonas aeruginosa 2 3 14 21 7 10
Other Candida species 2 3 0.2 1 4 5
Candida glabrata 2 2 3 0.2 3 5
Acinetobacter species 1 2 3 6 0.2 1
Other fungi 1 0.8 2 1 5 8
Proteus mirabilis 0.6 0.5 2 2 4 2
Citrobacter species — 0.5 — 2 — 1
Streptococcus pneumoniae 0.4 — 2 — 0 —
Haemophilus influenzae 0.1 — 3 — 0 —
Other 7 6 16 14 8 3

CCU—cardiac care unit; MICU—medical intensive care unit.
Adapted from National Nosocomial Infections Surveillance System [5••], Richards et al. [14•], and Richards et al. [15•].
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As seen in Table 2, the NNIS data demonstrate a
substantial presence of resistant gram-negative organisms
in 1998 and indicate that the proportion of resistant
organisms had increased rapidly in 1998, compared with
the preceding 5 years [5••,14•,15•]. There are geographic
trends in the distribution of resistant organisms, with the
SENTRY study reporting 30.6% and 6.2% ceftazidime-
resistant Enterobacter species isolated in the United States
and Canada, respectively.

This type of geographic variability occurs not only
between countries but also between different regions of the
United States [17–19]. Of the ceftazidime-resistant Entero-
bacter cloacae isolates encountered in the Surveillance and
Control of Pathogens of Epidemiologic Importance
(SCOPE) program, 40% were in the Northeast, and only
12% were in the Northwest. Of the ceftazidime-resistant
Enterobacter aerogenes isolates encountered in the SCOPE
program, 48% were in the Southeast, whereas 13% were in
the Northwest [20••].

Considering that approximately 50% of ICU infections
are caused by aerobic gram-negative rods, the micro-
biology of nosocomial infection is shifting to organisms
that are more difficult to treat, and the selective antibiotic
pressure in our nosocomial environment is constant, it is

not surprising that strains of organisms such as Pseudomo-
nas, Acinetobacter, Serratia, and Stenotrophomonas have
emerged that are resistant to all clinically used antibiotics.

There are no convincing data suggesting that the
presence of antibiotic resistance determinants leads to
enhanced virulence; rather, they diminish our ability to
treat established infections. Given the constant antimicro-
bial pressure in the nosocomial environment, organisms
resistant to multiple antibiotics have been selected. Thus,
in patients infected with antibiotic resistant strains, we see
the sequelae of inadequately treated infection, either from
delay in the institution of adequate antibiotic therapy or
the inability to treat the infection. In many major medical
centers, multidrug-resistant gram-negative organisms have
appeared, and all too often have forced the closing of
heavily colonized intensive care and burn units.

Mechanisms of Antibiotic Resistance
Gram-negative bacteria exhibit several important mecha-
nisms of resistance to antimicrobial therapy, including
diminished antibiotic penetration, altered target, antibiotic
inactivation, and efflux mechanisms. The genes encoding
these phenotypes may be chromosomal or plasmid in

Figure 1. Comparison of antimicrobial 
resistance, by pathogen, for ICU patients, 
inpatients, and outpatients. CTZ-PA—
Pseudomonas aeruginosa resistant to 
ceftazidime; Pip-PA—Pseudomonas 
aeruginosa resistant to piperacillin; 
Quin-E coli = E. coli resistant to quinolones; 
Quin-PA—Pseudomonas aeruginosa resistant 
to quinolones; 3rd-E coli—Escherichia coli 
resistant to third-generation cephalosporins; 
3rd-Ent—Enterobacter resistant to third-
generation cephalosporins; 3rd-Kleb—
Klebsiella pneumoniae resistant to third-
generation cephalosporins;Adapted from 
Fridkin et al. [10••].

Table 2. Percent of  isolates resistant to common antibiotics and percent increase in resistance over 5 years

Organism
Antibiotic to which organism 
exhibits resistance

Number of isolates 
tested, 1998

Percentage 
resistance, 1998

Percentage increase in 
resistance, 1993–1998

Pseudomonas 
aeruginosa

Imipenem 1203 17.10% 32%

P. aeruginosa Ceftazidime 1931 21.00% 1%
P. aeruginosa Quinolones 1831 23.30% 89%
Enterobacter species Third-generation cephalosporins 1185 34.00% 5%
Klebsiella 

pneumoniae
Third-generation cephalosporins 748 10.70% 7%

Escherichia coli Third-generation cephalosporins 1005 3.20% 29%

Adapted from National Nosocomial Infections Surveillance System [5••].



412 Sepsis
origin, inducible or constitutive. With broad use of anti-
biotics, multiply resistant determinants have been co-
selected. A detailed review of antimicrobial resistance
mechanisms can be found elsewhere [21–23].

Two mechanisms of resistance emerged as clinically
important in the 1990s: chromosomally inducible AmpC
resistance and plasmid-borne, extended-spectrum b-lacta-
mase (ESBL) resistance [4•,24,25].

AmpC-type resistance is typically associated with the
hyperproduction of a chromosomally-mediated, broad-
spectrum b-lactamase, and is often found among isolates
of Enterobacter, Citrobacter, indole-positive Proteus, Provi-
dencia, and Serratia. Certain b-lactam antibiotics usually
induce this enzyme. Yu et al. [26] showed that clinical fail-
ure often occurs when serious Enterobacter infections are
treated with a cephalosporin, despite apparent in vitro
cephalosporin susceptibility. This clinical failure was
shown to be due to the induction of a chromosomal
AmpC resistance determinant. Thus, cephalosporins
should be used carefully in this setting.

A multitude of resistance plasmids have been identified
in gram-negative bacteria. These determinants confer resis-
tance to a large variety of antimicrobial agents. In the
1980s, Klebsiella pneumoniae strains resistant (by an ESBL)
to third-generation cephalosporins and aztreonam were
identified in Europe (1983) and the United States (1988).

Recently, several reports have raised serious concerns
about the efficacy of b-lactam, monobactam, and cepha-
losporin antibiotics in the treatment of infections caused
by ESBL-containing organisms. One case report demon-
strated that cefotaxime was ineffective therapy for a patient
with a serious Klebsiella pneumoniae infection that was cefo-
taxime-susceptible by in vitro criteria. This isolate was
noted to be ceftazidime-resistant and to have an ESBL [27].
Whether this and other clinical failures in the presence of
ESBLs are caused by an inoculum effect, b-lactamase
hyperproduction, porin channel changes [28], or other
mechanisms, these worrisome observations have led to a
change in the approach to the determination of in vitro
resistance and to the treatment of this type of infection.

It is difficult to know the true prevalence of ESBLs, as the
resistance to oxyimino–b-lactam antibiotics does not
routinely reach the resistance threshold in the microbiology
laboratory. This has lead to a reworking of the National
Committee for Clinical Laboratory Standards (NCCLS)
breakpoints. If an ESBL is present, then the efficacy of all
third-generation cephalosporins, monobactams, extended-
spectrum b-lactams, and b-lactam–b-lactamase inhibitor
combinations are suspect [29]. Imipenem, cefepime, and the
cephomycins (eg, cefotetan, cefoxitin) are effective agents, as
well as antibiotics of a different class.

Diagnostic Issues
One of the greatest exasperations a clinician caring for a
septic patient can experience is having to wait one to two

days for culture results to determine whether the patient is
infected, and then waiting longer to learn the identity and
the susceptibility profile of the infecting organism. With
improvements in culturing technology, we are now able to
receive positive blood cultures within hours, rather than
days. However, despite this shorter delay, the clinician is
still required to initiate empiric therapy in the face of the
likelihood of highly resistant flora.

With the molecular biological revolution, we have seen
the emergence of new tests, typically based on polymerase
chain reaction (PCR) technology, enabling the rapid identifi-
cation of specific pathogens using the patient’s blood or using
fluid from the site of the infection. Obviously, this technology
is prone to the same challenges of interpretation (eg, “Is this
colonization or disease?) that the clinician currently faces in
the ICU. To help with both diagnosis and prognosis, new
assays are focusing on the concentrations (or presence) of
mediators in the inflammatory cascade or on circulating
bacterial moieties, such as lipopolysaccharide [30,31•].

A broad array of pathogens can now be identified by
these techniques, including viruses (human immuno-
deficiency virus, cytomegalovirus), fungi (Candida,
Aspergillus), and bacteria (VRE, E. coli, Mycobacterium
tuberculosis, Bacteroides) [32–35]. The consequential ability
to provide pathogen-directed therapy at the bedside would
enable more focused (ie, narrow-spectrum) antimicrobial
use, thus diminishing the selective pressure that leads to
resistance selection in the first place.

The clinical significance of antimicrobial susceptibility
break points, as determined by the microbiology labora-
tory, has not been determined rigorously for most
infections, as emphasized in the ESBL experience noted
above. Given an improved understanding of the genetic
basis for resistance, new diagnostics for the determination
of resistance have emerged. Utilizing new technologies,
such as PCR, the presence of known resistance determi-
nants, such as the mecA gene in Staphylococcus (the majority
of methicillin resistance exhibited by Staphylococcus aureus
is due to the chromosomal presence of this gene), can be
rapidly determined [36].

Where there are multiple resistance determinants, such
as the vanA and vanB genes in enterococci, multiplex PCR
or chip technology can be developed to determine the
presence of and to distinguish between resistance determi-
nants [32]. As the number of resistance determinants
grows, the technology to determine the presence or
absence of a determinant becomes more complex.

Unfortunately, the variety of resistance mechanisms of
gram-negative bacteria are much more heterogeneous than
are the resistance mechanisms of gram-positive bacteria. As
resistance can be a function of changes in the capsule,
porin channels, or efflux pumps, the complexity of deter-
mining its presence may be more difficult for some types
of resistance than it is for others. Of course, these technolo-
gies are limited by what we know to look for. Thus, the
need for routine culturing remains.
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Therapeutic Strategies
Establishing the optimal therapy for a patient with sepsis
requires the clinician to synthesize a large amount of data,
including putative source, epidemiologic risk, predisposing
medical conditions, and local organism resistance patterns.
It is critical to determine the likely infecting source, which
may represent the reason for hospitalization or be the
result of a life-saving intervention, such as the insertion of
a central venous catheter or endotracheal tube. Identifying
the source greatly assists in the identification of the most
likely infecting pathogen(s).

The risk of colonization and subsequent infection by a
drug-resistant organism is clearly associated with the
patient’s exposure to it. Thus, understanding the reservoir
and subsequent mode of human acquisition of a given drug-
resistant pathogen helps understand the risk of acquiring it.

In the case of an infection that is predominantly trans-
mitted in the community (eg, pneumococcal pneumonia,
tuberculosis, gonorrhea), the risk of infection by a drug
resistant organism is a function of the burden of resistance
in the community in question.

However, most serious gram-negative infections
(ie, BSI, VAP, UTI) are acquired nosocomially, and reflect
the resistance pattern of the respective care environment.
Using data from the SENTRY program, Table 3 shows the
MIC50/90 and in vitro susceptibility of the four most
important nosocomial gram-negative organisms [20••].

These data, which represent the state of resistance in the
United States as a whole, are useful in understanding the
types of resistant organisms that any US health-care center is
at risk to acquire. It is critical to have an ongoing surveillance
program for antimicrobial resistance, as well as to under-
stand the resistance patterns in one’s local institution.

Community-acquired urosepsis is less likely to be due
to an antibiotic resistant organism than nosocomially-
acquired urosepsis is; thus, different antibiotic strategies
are required. The cornerstone of effective antimicrobial
therapy is minimizing the organism burden; draining all
infected collections is essential. Such intervention both
eliminates the infection and lessens the opportunity for
the emergence of resistance.

Treatment of serious gram-negative infections often
involves a “double-coverage” approach to antimicrobial
therapy, not only as empiric therapy when a resistant
organism is likely, but also to achieve broad empiric cover-
age, develop therapeutic synergy, and prevent the emergence
of resistance. In the acutely ill septic patient, broad coverage,
hedging against the resistant pathogen, is necessary.

Synergistic therapy is defined as combining two
therapeutic agents to enhance inhibition or, preferably,
killing. In the synergistic relationship, each antibiotic
enhances the efficacy of the other, so the activity level of
the combination is greater than the solo activity levels of
both agents, added together. A typical synergistic bacteri-
cidal therapy combines a cell-wall-active agent and a ribo-
somally-active agent.

Despite the in vitro demonstration of synergism
against a variety of organisms, clinically significant syner-
gistic therapy has been proven in only a handful of
settings, such as enterococcal endocarditis, Pseudomonas
infection in the neutropenic patient, and perhaps severe
Klebsiella infection.

Despite the argument that, statistically, combination
therapy should prevent the emergence of resistance, the
contrary result was reported in at least one study, of Entero-
bacter bacteremia. In six of 31 cases (19%), the infecting
organism developed resistance to third-generation
cephalosporins; four of the six patients were treated with a
cephalosporin-aminoglycoside combination [26].

Although only limited data support the benefit of syner-
gistic therapy, most infectious diseases experts favor treating
life-threatening gram-negative infections with a b-lactam–
aminoglycoside combination, given the suggestion of synergy
between these agents [37]. Clearly, using an aminoglycoside
in a hypotensive patient augments the risk of nephrotoxicity;
however, inadequate antimicrobial therapy generally subjects
the patient to a substantially greater clinical risk.

Given the concern about aminoglycoside nephrotoxic-
ity, many practitioners have utilized b-lactam–flouroqui-
nolone combinations as empiric therapy. But, as there is
little clinical data supporting the value of this combi-
nation, we do not favor it as empiric therapy in the
critically ill septic patient. Once the identity of the infect-
ing organism is known, the antibiotic therapy should be
appropriately tailored, with careful attention paid to
chromosomally latent but inducible resistance, as noted
above. In determining appropriate empiric therapy, it is
critical to consider the resistance patterns of the organisms
to which the patient was likely exposed.

New Targets and Approaches
Active assessment of adjuvant therapies for severe sepsis
continues. More than two dozen trials have investigated
agents that attack the immune dysregulation of sepsis—
including glucocorticoids, bradykinin antagonists, platelet-
activating factor antagonists, monoclonal antibodies against
tumor necrosis factor, soluble TNF receptors, prostaglandin
antagonists, and interleukin 1 receptor antagonists—and
have yielded no clear evidence of clinical benefit [1,38,
39,40•]. Monoclonal antibodies to endotoxin and other
pathologic moieties in sepsis have been equally disappoint-
ing in their lack of demonstrated therapeutic benefit. One of
the most promising new therapies for the treatment of sepsis
is recombinant activated protein C [41]. Recently, a phase III
study of this compound was stopped early, by the sponsor,
due to a recommendation (presumably relating to reduced
mortality) by the Data and Safety Monitoring Board. The
data from this study is likely to be presented shortly to the
Food and Drug Administration.

One of the difficulties associated with conducting this type
of study is that resistant organisms render empiric antibiotic
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therapy inadequate [2]. There are several targets under active
study, such as protein kinase inhibitors and anti-CD14 anti-
bodies. One area of study with potential future interest is “anti-
sense technology,” in which inactive complementary DNA
strains are designed to target resistance determinants, leading
to their inactivation.

Conclusion
In this report, we have reviewed the microscopic and
macroscopic aspects of antimicrobial resistance. The
emergence of antibiotic resistance is a dynamic evolution-
ary process continually adapting to the selective pressure of
our antibiotic therapies and health-care environments.
There are many innovations on the horizon for the diag-
nosis and treatment of the septic patient; however, the
choice of empiric therapy must always reflect the microbial
microcosm from which each patient presents.
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	(96.3%)
	0.12 / 2
	(89.1%)
	0.03 / 0.5
	(92.2%)

	<TABLE ROW>
	Levofloxacin
	£ 0.5 / £ 0.5
	(97.6%)
	£ 0.5 / £ 0.5
	(97.7%)
	£ 0.5 / 4
	(84.9%)
	£ 0.5 / 1
	(93.2%)

	<TABLE ROW>
	Sparfloxacin
	£ 0.25 / £ 0.25
	—
	£ 0.25 / £ 0.25
	—
	1 / > 2
	—
	£ 0.25 / 1
	—

	<TABLE ROW>
	Gatifloxacin
	£ 0.03 / 0.06
	—
	0.12/0.25
	—
	1 / > 4
	—
	0.06 / 0.5
	—

	<TABLE ROW>
	Tetracycline
	£ 4 / > 8
	(72.5%)
	£ 4 / 8
	(85.4%)
	> 8 / > 8
	(3.3%)
	£ 4 / 8
	(83.0%)

	<TABLE ROW>
	Trimeth-sulfameth‡
	£ 0.5 / > 1
	(74.3%)
	£ 0.5 / > 1
	(87.4%)
	> 1 / > 1
	(2.2%)
	£ 0.5 / 1
	(84.4%)


	<TABLE FOOTING>
	<TABLE ROW>
	*Minimal inhibitory concentration (MIC50/90). †Percentage in vitro susceptibility. ‡Trimethoprim-...
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