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Abstract
Purpose of the Review To review what intestinal permeability is and how it is measured, and to summarise the current 
evidence linking altered intestinal permeability with the development of hypertension.
Recent Findings Increased gastrointestinal permeability, directly measured in vivo, has been demonstrated in experimental 
and genetic animal models of hypertension. This is consistent with the passage of microbial substances to the systemic 
circulation and the activation of inflammatory pathways. Evidence for increased gut permeability in human hypertension 
has been reliant of a handful of blood biomarkers, with no studies directly measuring gut permeability in hypertensive 
cohorts. There is emerging literature that some of these putative biomarkers may not accurately reflect permeability of the 
gastrointestinal tract.
Summary Data from animal models of hypertension support they have increased gut permeability; however, there is a 
dearth of conclusive evidence in humans. Future studies are needed that directly measure intestinal permeability in people 
with hypertension.

Keywords Intestinal permeability · Colonic permeability · Hypertension · Tight junction proteins · Gut · Microbiome

Introduction

In the last decade, it has emerged that intestinal permeability 
may be a risk factor for cardiometabolic diseases, contribut-
ing to inflammatory sequalae and subsequent disease pro-
gression [1]. The intestinal wall is lined by a monolayer of 
epithelial cells that have a crucial role in separating the gut 
microbiome from the host. When the gut epithelial barrier 
is disrupted, lipopolysaccharide (LPS) and other detrimental 

microbial products enter the host's circulation, leading to the 
activation of systemic inflammation [2]. Higher inflamma-
tory state is believed to be involved in the development and 
maintenance of hypertension [3], but many of the mecha-
nisms that start and then maintain this elevated inflamma-
tory state are yet to be determined. Increased permeability 
of the gut barrier has been observed to occur with a variety 
of physiological stressors including heat stress [4, 5], exer-
cise stress [6], psychological stress [7], excessive dietary  
fat intake [8], lack of fibre [9], and sleep deprivation  
[10] – many of these are also risk factors for hypertension 
[11, 12]. Here, we review what intestinal permeability is and 
how it is measured, and the current evidence that links it to 
the development of experimental and clinical hypertension.

The Gut Epithelium Barrier

The human gastrointestinal tract has a surface area of around 
 32m2 [13], equivalent to a typical studio apartment. This 
surface is lined with a single layer of epithelial cells, kept 
in close proximity by tight junction proteins, adherens junc-
tion proteins, and desmosomes [14]. Moreover, goblet cells, 
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specialised cells intercalated with epithelial cells, synthesise 
and secret the mucin glycoprotein MUC2 as the outermost 
layer of the intestinal barrier in contact with the gut micro-
biota [15]. Mucins are the major component of mucus and 
form a protective layer to the epithelial cells [15]. They serve 
as a localised niche for some commensal gut microbiota that 
specialise in binding to and degrading mucin glycans [15]. In 
healthy conditions, there is a tight balance between the pro-
duction of and degradation of mucins; however, in unhealthy 
conditions (e.g., absence of dietary fibres), some of these 
bacteria can have a high turnover of glycan degradation, 
degrading the mucus layer and contributing to the break-
down of the epithelial layer in the process [9]. Together, 
the epithelial cells, intercellular proteins, and mucins form 
a layer that plays important physical and functional roles in 
separating the luminal microbiome from the immune cells 
that inhabit the lamina propria [16]. The intestinal epithe-
lium barrier provides a defence against the entry of harmful 
substances, such as pathogens and toxins, whilst simultane-
ously permitting sufficient absorption of nutrients, electro-
lytes, and water from the gastrointestinal lumen [14]. While 
the full impacts of a disrupted barrier are still being eluci-
dated, when it is disrupted, immune response pathways are 
activated in intestinal tissue [9]. Moreover, this could lead 
to the passage of microbial molecules, such as the bacte-
rial surface LPS, from the intestinal lumen to the systemic 
circulation, where it could trigger a series of inflammatory 
responses that contribute to the low-grade chronic inflam-
mation observed in hypertension. While measurement of 
LPS in healthy individuals is difficult due to its low levels 
and issues with contaminated lab equipment, inhibition of 
LPS-receptor, the toll-like receptor 4 (TLR4), reduces blood 
pressure (BP) and inflammatory markers (e.g., IL6, mac-
rophage infiltration to the kidneys) in experimental models 

of hypertension [17, 18]. It is also possible to hypothesise 
that an impaired gut epithelial barrier will impact the regula-
tion of sodium and water absorption, which could also have 
an effect on BP.

Permeability of the Gut Barrier

Luminal contents can cross the gastrointestinal epithelium 
via either transcellular or paracellular mechanisms, depend-
ing on molecular size, charge, and hydrophobicity. Mole-
cules may cross transcellularly in a number of mechanisms: 
1) passive transport, as is the case for small compounds that 
may diffuse across the epithelial cell membrane; 2) active 
transport utilising substrate specific cell surface receptors 
(e.g., as is the case for monosaccharides and amino acids); 
and 3) endocytosis, whereby larger peptides and proteins are 
absorbed via vesicles (Fig. 1). Transcellular endocytosis also 
appears to be a mechanism by which bacterial components, 
such as LPS, bacterial extracellular vesicles or even whole 
bacteria, may cross the gastrointestinal barrier [19••, 20]. 
In addition to the transcellullar mechanisms described here, 
molecules may pass via the paracellular route, discussed 
in further detail below (Fig. 1). The paracellular and the 
transcellular endocytosis pathways are the most relevant for 
intestinal permeability, with most research to date focused 
on the paracellular pathway [21].

Tight junction proteins, adherens junction proteins, and 
desmosomes facilitate close intercellular contact among the 
epithelial cells of the intestinal tract. Luminal contents can 
pass across the epithelial barrier via transcellular passive, 
active or endocytosis mechanisms, or via paracellular path-
way. Intestinal permeability refers to movement of molecules 
via the transcellular endocytosis or paracellular pathways.

Fig. 1  Overview of intestinal transport mechanisms and epithelial barrier permeability
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The Paracellular Pathway

Cell-to-cell contact between the epithelial cells of the gas-
trointestinal tract is maintained by tight junction proteins 
(e.g., occludin, zonula occludens-1, and claudin-2), adher-
ens junction proteins (e.g., E-cadherin), and desmosomes. 
Paracellular permeability is regulated by the tight junction 
proteins, which determine the size and charge of molecules 
that are able to pass between the epithelial cells [22]. The 
intracellular peripheral membrane proteins include the 
zonula occludens (ZO) family, ZO-1 (also known as tight 
junction protein-1 [TJP1]), ZO-2, and ZO-3 as well as cin-
gulin, whilst the transmembrane proteins include occludin, 
tricellulin, and members of the claudin family. There are a 
total of 27 claudins in mammals, although not all claudins 
have relevance for the intestinal barrier [19••]. These tight 
junction proteins permit the paracellular movement of mol-
ecules via two different pathways, which have been named 
the pore or leak pathway.

The pore pathway is defined by claudin proteins which 
form a charge and size specific channel in the tight junc-
tion [23], permitting molecules up to < 8 Å in size to pass 
between epithelial cells [24]. Thus, a sodium ion, which 
is positively charged with a size ~ 1 Å, may pass freely 
through the pore pathway, whilst a glucose molecule (size 
9 Å) would be unable. Claudin-2 (CLDN2) and claudin-15 
(CLDN15) are the main pore forming claudins expressed 
in the gastrointestinal tract and both of these claudins form 
cation specific pores [25, 26], permitting the paracellular 
transport of sodium ions. The cytokines IL-1β, IL-6, IL-13 
and IL-22 have been demonstrated to alter intestinal tran-
scription of CLDN2 [27–30], although the impact this has 
on subsequent pore pathway permeability has not been fully 
elucidated. A possibility is that sodium activation of the 
immune system and associated produced of these cytokines 
leads to higher expression of CLDN2, which is associated 
with higher inflammation in an experimental model of 
colitis [31]. Moreover, lack of CLDN15 in mice decreased 
sodium permeability [32]. Considering the intestine is where 
most of dietary sodium is absorbed, it is plausible to hypoth-
esise that blocking intestinal CLDN2 and CLDN15 may lead 
to lower sodium uptake and, thus, BP. While no variants in/
near these genes have been associated with hypertension in 
genome-wide association studies, it is possible that these are 
associated with salt-sensitive hypertension.

The leak pathway is considerably larger, allowing mol-
ecules up to 100 Å in size through, with no restrictions on 
molecular charge [24]. Whilst the specific molecular struc-
ture of this pathway is less understood than the pore pathway, 
it is thought to be regulated by occludin, tricellulin, ZO-1, 
and perijunctional actomyosin [19••, 33], although there is 
evidence that alterations in tricellulin expression may affect 
permeability of this pathway [34]. Myosin light chain kinase 

splice variant 1 (MLCK1) has been shown to trigger endo-
cytosis of occludin, leading to increased permeability. The 
expression and activity of MLCK1 can be increased by a 
number of cytokines including TNF-α [35–37] and IL-1β 
[38], providing evidence for the role of the immune system 
signalling in affecting paracellular permeability.

In addition to the leak and pore pathways, there is also 
the unrestricted (or apoptotic) pathway, where severe dam-
age to the gut mucosa results in death of epithelial cells 
and permits unrestricted paracellular transport of large mol-
ecules and bacteria. This epithelial damage and subsequent 
unrestricted paracellular permeability has been observed in 
graft vs host disease and gastrointestinal conditions such as 
Crohn's disease and ulcerative colitis [39], and may play a 
role after acute cardiovascular events, such as after a stroke, 
where damage to intestinal epithelial cells is severe [40].

Measuring Intestinal Permeability

Direct measurement of intestinal permeability involves the 
assessment of a molecule or group of molecules that moves 
from one side of the intestinal epithelium to the other side. 
Conversely, indirect measurements investigate biomarkers 
that are present in collected samples, most commonly blood, 
that may be utilised for assessment of intestinal permeability.

Ex vivo Measurement

The Ussing chamber technique is a sophisticated method 
which involves isolating a segment of the gut and mounting 
it between two halves of a chamber, with each half filled 
with a physiological solution. The chamber is designed to 
separate the luminal side from the basolateral side of the 
epithelium and, to assess permeability, molecules are placed 
in the luminal chamber, and the flux of these markers to the 
basolateral side is measured as an indicator of permeability 
of the epithelium [41]. The size of the molecules selected  
may permit understanding of the different routes of transport,  
with molecules such as inulin, polyethylene glycols  
(PEGs) and Fluorescein Isothiocyanate-Dextran (FITC-
Dextran) being utilised for assessment of the paracellular 
route, whilst larger molecules such as horseradish peroxidase 
can be utilised for assessment of the transcellular route [21]. 
The Ussing chamber technique is often utilised in animal 
studies where intestinal tissues may be obtained following 
sacrifice of the animals [41, 42] and in human studies of 
intestinal diseases where endoscopic biopsy samples may 
be obtained [43]. However, the procurement of endoscopic 
biopsy samples may prove difficult outside the context of 
intestinal diseases where endoscopy may be indicated for 
assessment of disease progression.
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In vivo Measurements

Assessment of paracellular permeability is conducted in vivo 
by assessment of the plasma or urine of orally digested probes. 
There are many different substances which may be utilised 
depending on the experimental question being posed, includ-
ing FITC-Dextran, PEGs, Chromium-51-labeled ethylenedi-
aminetetraacetic acid (51CrEDTA), lactulose, mannitol, sucra-
lose and sucrose [21]. The key features for probes is that they 
must be an adequate size to assess the route of permeability 
being assessed and freely filtered into urine where they can be 
measured. The FITC-Dextran permeability test, first described 
by Tagesson et al. in 1978 [44], is commonly utilized in murine 
studies due to its relative ease. In this assay, animals are orally 
gavaged with a solution containing FITC-Dextran (4-kDa), 
blood is collected and fluorescence measured using a typical 
laboratory plate reader with fluorescence detection [45]. If a 
timepoint for blood collection of 1 h post ingestion is selected, 
the FITC-Dextran assay will represent small intestinal perme-
ability, whilst longer timepoints (4–6 h) will represent whole 
gut permeability. Animals are dosed according to body weight 
(usually at 400–600 mg/kg body weight [46–48]), though an 
argument has recently been made for dosing to be conducted 
according to lean body mass, at least in obese animal models 
[49]. Whilst this technique can be applied to humans, in prac-
tice it is not used, likely related to the costs associated with 
the dosages required. PEG and 51CrEDTA are both resistant to 
microbial fermentation in the colon, and, thus, can be utilised 
for assessment of whole gut permeability [50]. Measurement 
of intestinal permeability using 51CrEDTA has been utilised in 
rodent [51] and human studies [52–54], however does require 
the participant to be exposed to a small amount of radiation 
[55]. Recently, a new protocol using non-radioactive 52Cr-
EDTA has been proposed [56].

PEGs span a range of molecular sizes and are assessed 
in urine by high-pressure liquid chromatography [57]. The 
assessment of intestinal permeability using PEGs has been 
shown on have a high agreement with the dual sugar (lactu-
lose/rhamnose) test [58], which is the most popular method-
ology for assessment of intestinal permeability in humans.

Dual and Multisugar Tests

The most popular in vivo direct measurement of intestinal 
permeability has been the dual sugar test. In this test, a bolus 
of monosaccharide (mannitol or L-rhamnose) and disac-
charide (lactulose) is consumed orally. In the intestine, the 
smaller monosaccharides pass through the paracellular pore 
pathway which permits molecules < 8 Å in size, which the 
disaccharide cannot pass through [24]. If there is disruption 
of the tight junction proteins, then these larger molecules 
can pass through the leak pathway, and the ratio in urine 

or blood between lactulose and mannitol or L-rhamnose, 
is used to represent permeability. Urine collected up to 2 h 
post ingestion is considered to represent exclusively small 
intestinal permeability [57, 59], although some studies use 
up to 5–6 h post ingestion to assess small intestinal permea-
bility [60, 61•]. Recently it was suggested that serial plasma 
measurements (i.e. hourly) may provide greater sensitivity 
to transient intestinal permeability changes compared with 
urine collections [5]. Whilst mannitol has traditionally been 
utilised as the monosaccharide in the dual sugar test, man-
nitol is present in the regular diet and may, thus, contaminant 
the results [62]. 13C mannitol and L-rhamnose are alterna- 
tive monosaccharides that avoid this dietary contamina- 
tion issue [63]. While useful for measuring small intestinal 
permeability, lactulose, mannitol and L-rhamnose are all 
fermented by the gut microbiota when they reach the colon 
and are thus unreliable for the assessment of specifically 
colonic permeability.

The small intestine and large intestine (especially the 
colon) are now recognised to be vastly different anatomi-
cally, in terms of physiological functions, pH, and num-
ber of bacteria [64]. The permeability difference between 
these regions is under-appreciated, with the dual sugar tests 
only assessing small intestinal permeability. A multisugar 
test has been developed to assess both small intestine and 
colonic permeability [65, 66]. In this case, monosaccharides 
(L-rhamnose and erythritol) and disaccharides (lactulose and 
sucralose) are consumed orally. Permeability in the small 
intestine is assessed with L-rhamnose and lactulose as per 
the dual sugar test, whilst in the colon this can be assessed 
with the non-fermented erythritol and sucralose. Commonly 
a time period of up to 5 h post-ingestion is considered to 
represent the small intestine, whilst between 5 to 24 h repre-
sents the colon [60, 67]. However, some studies have utilised 
between 8 and 24 h to represent the colon [68, 69], because 
there is a large intra-individual variation in small intesti-
nal transit time (from 50–460 min) [70]. Given this wide 
variation, for studies that want to exclusively assess small 
intestinal, and not colonic, permeability, it may be prudent 
to focus on the urine collection of up to 2 h post-ingestion.

Blood Biomarkers of Intestinal Permeability

Whilst the above methods represent direct measurement 
of molecules that are passing from the luminal side of the 
gastrointestinal epithelium to the basolateral side for meas-
urement in blood or urine, there is also interest in finding 
suitable biomarkers for intestinal permeability and many 
have been proposed. The presence in the blood of LPS, 
from Gram negative bacteria, has long been considered a 
clear indicator of intestinal barrier dysfunction [71]. How-
ever, there are mounting concerns that the assay used for 
LPS is not accurate at measuring LPS at lower levels seen 
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in non-septicaemia [72]. Liposaccharide binding protein 
(LBP) is an endogenous protein produced by the body in 
response to the presence of LPS, and has been suggested 
as a more reliable marker [73]. Indeed, a recent study in 
an obese cohort assessed the correlation between the dual 
sugar test with six biomarkers (faecal albumin, calprotectin, 
and zonulin, and plasma intestinal fatty acid binding pro-
tein [I-FAPB], LBP and zonulin) [61•]. LBP was the only 
plasma marker consistently correlated with in vivo perme-
ability measurement in both participants with healthy and 
higher body weight, showing a variation according to the 
group studied, from r = 0.423 in those with a healthy body 
weight up to r = 0.813 in the cohort with obesity [61•]. This 
shows that LBP may not be a reliable marker for all healthy 
and disease states.

Disconcertedly, this study found no correlation with two 
other commonly used gut permeability plasma biomarkers, 
I-FAPB or zonulin [61•]. I-FAPB is a protein present in dif-
ferentiated enterocytes, and damage to the epithelial layer 
results in this protein being released from cells – hence, it is 
considered an indicator of epithelial damage [74]. Increased 
I-FAPB has been observed in severe intestinal conditions 
such as necrotizing enterocolitis [75] and intestinal ischemia 
[76]. With regards to zonulin, there is mounting evidence 
that commercially available zonulin ELISA kits are not 
actually measuring zonulin, but rather other related proteins 
with unknown function [77, 78]. A recent paper compared 
zonulin levels with colonic paracellular permeability using 
Ussing chambers in IBS patients and found no correlation 
[79]. It has been recommended that studies that assess gut 
permeability using zonulin measured by these ELISA assays 
be interpreted with caution.

D-lactate is a byproduct of bacterial carbohydrate fermen-
tation and is minimally produced by human metabolism, 
with serum levels representing translocation from the gut 
lumen and thus gut permeability. Serum D-Lactate levels 
are elevated in Crohn’s disease [80], critically ill patients 
with gastrointestinal failure [81]. Serum and urinary levels 
of D-lactate are elevated in diabetes [82], suggesting this 
marker may be appropriate outside the context of gastroin-
testinal conditions. Not all bacteria produce D-lactate, with 
Lactobacilli being the primary D-lactate producers in the 
human gastrointestinal tract [83]. There is a dearth of evi-
dence as to whether the composition of the gut microbiota 
and relative abundance of D-Lactate producers affects the 
reliability of D-Lactate as a marker of gut permeability. 
Diamine oxidase (DAO) is an enzyme involved in histamine 
metabolism that is produced by the intestinal mucosa, as 
well as the kidneys and placenta [84]. Serum DAO levels 
have been proposed to be a marker of intestinal barrier integ-
rity [85] and is elevated in Crohn’s disease [80]. However, 
DAO levels are affected by factors such as diet [86], alco-
hol consumption [87], sex [88], menstrual cycle [89] and 

pregnancy status [90] which challenge it’s reliability as a 
biomarker [91]. In summary, more sensitive and accurate 
markers for intestinal permeability are needed.

Gut Permeability and Hypertension

There is some evidence for alterations in intestinal perme-
ability in hypertension that has been demonstrated in experi-
mental models of hypertension, as well as studies comparing 
hypertensive and normotensive individuals. As discussed in 
the previous section, there are different methodologies avail-
able for the assessment of intestinal permeability, each with 
their own benefits and flaws. Overall, the evidence to date, 
particularly from animal studies (summarised in Table 1), 
supports the presence of intestinal barrier dysfunction in 
hypertension. Whether increased gut permeability per se has 
a causative role in the pathogenesis of hypertension or is a 
consequence of the disease process remains to be elucidated.

Evidence from Experimental Animal Models 
of Hypertension

The first published study to investigate gut permeability 
in animal models of hypertension was Santisteban et al. 
(2017), who observed increased gut permeability (assessed 
by the FITC-Dextran assay) in 20 week old, but not 4 week 
old, spontaneously hypertensive rats (SHR) relative to 
age-matched Wistar Kyoto (WKY) rats [92]. This sug-
gests that hypertension may be established prior to the 
increase in intestinal permeability; however, further experi-
ments to pinpoint when this happens exactly are needed 
to confirm this hypothesis. Shortly after, Jaworska et al. 
(2017) observed increased gut permeability in a unique 
assay which assessed the rise in portal vein trimethylamine 
(TMA, a metabolite produced by the gut microbiota) con-
centrations following intracolonic TMA infusion in 24–26-
week old SHRs relative to age-matched WKY rats [93]. 
Both studies observed these findings were ameliorated with 
angiotensin converting enzyme (ACE) inhibition. A more 
recent study in 5-week-old SHRs utilised Ussing cham-
bers for assessing colonic permeability [94]. They noted an 
increase in paracellular, but not transcellular, permeability 
[94], which supports alterations in tight junction proteins. 
Indeed, the levels of several tight junction proteins, meas-
ured by Western blots, including occludin and ZO-1 were 
decreased in hypertensive models in some studies [92, 
94], but not others, where differences in colonic occludin 
or ZO-1 between hypertensive and normotensive animals 
was not detected when these were assessed by immuno-
fluorescence [93]. Moreover, several studies in the SHR 
model observed decreased intestinal blood flow [92, 93] 
and increased intestinal fibrosis [92, 95].



 Current Hypertension Reports

Several studies have also utilised angiotensin II infusion 
to induce hypertension to assess the effects of hypertension 
on gut permeability. Rodents infused with angiotensin II 
had greater gut permeability as assessed by FITC-Dextran 
[92, 48] and decreased intestinal gene expression of tight 
junction proteins including ZO-1, particularly on a low 
fibre diet [48, 96], which was accompanied by increased 

intestinal expression of the inflammatory cytokines TNF-α 
and IL-6 [96]. Similarly, a study that utilised the DOCA-
salt model of hypertension observed increased plasma 
LPS and decreased colonic gene expression of occludin 
and ZO-1 [97]. Thus, evidence from experimental animal 
models has generally supported the presence of increased 
paracellular permeability in hypertensive models.

Table 1  Summary of Gut Permeability Measures in Animal Models of Hypertension

Legend: Ang II = Angiotensin II, IF = Immunofluorescence, IL-6 = Interleukin 6, LPS = Lipopolysaccharide, SHR = Spontaneously Hyperten-
sive Rats, TMA = Trimethylamine, TNF-α = Tumour Necrosis Factor Alpha, WB = Western Blot, WKY = Wistar-Kyoto (rats), ZO-1 = Zonula 
occludens-1. ND = No Difference, ↑ = Increased ↓ = decreased (in hypertension relative to control)

Study Ref Animal Model of 
Hypertension

Comparison Animal 
Model

Measure of gut 
permeability

Other relevant 
measurements

SHR rat:
Santisteban et al. 2017 [92] Pre-hypertensive 4-week-

old SHRs
4-week-old WKY rats ND: FITC-Dextran

Protein expression (WB)
SI: ↓ ZO-1, claudin-4, 

cingulin. ND: occludin
Colon: ↓ occludin, ZO-1, 

claudin-4, cingulin
Santisteban et al. 2017 [92] 20-week-old SHRs 20-week-old WKY rats ↑ FITC-Dextran

Protein expression (WB)
SI: ↓ occludin, ZO-1, clau-

din-4. ND: cingulin
Colon:↓ occludin, ZO-1, 

cingulin. ND: Claudin-4

↓ goblet cells in small 
intestine

↑ Fibrotic area in small 
intestine

↓ intestinal blood perfusion

Jaworska et al. 2017 [93] 24–26-week-old SHRs 24–26 week old WKY rats ↑ portal vein TMA follow-
ing intracolonic TMA 
infusion

Protein expression (IF): 
ND: colonic occludin or 
ZO-1

↓ intestinal blood flow

Wang et al. 2021 [94] Pre-hypertensive 5-week-
old SHRs

5-week-old WKY rats Colon Ussing Chamber
↑ paracellular permeabil-

ity, ND: transcellular 
permeability

Protein expression (WB)
Colon: ↓ claudin5, occlu-

din, ZO-1
Ang II infusion model:
Santisteban et al. 2017 [92] 8-week-old Sprague Daw-

ley Rats infused with 
Ang II

8-week-old Sprague Daw-
ley Rats infused with 
saline

↑ FITC-Dextran
Protein expression (WB)
SI: ↓ occludin, ZO-1, cin-

gulin. ND: claudin-4
Colon: ↓ occludin, ZO-1, 

cingulin, claudin-4
Kim et al. 2018 [48] C57BL/6 mice infused 

with Ang II (4-weeks)
C57BL/6 mouse infused 

with saline
↑ FITC-Dextran
Gene expression:↓ occlu-

din, ZO-1. ND: claudin-4
Kaye et al. 2020 [96] C57BL/6 J mice infused 

with Ang II (4-weeks)
C57BL/6 J mouse infused 

with saline
Gene expression: ↓ ZO-1 ↑ TNF-α and IL-6 intestinal 

gene expression
DOCA salt model:
Robles-Vera 2020 [97] Male Wistar rats DOCA-

salt induced hypertension
Male Wistar rats ↑ plasma LPS

Gene expression: ↓ occlu-
din and ZO-1

Gene expression: ↓ mucin-2 
and mucin-3
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Evidence from Human and Non‑Human Primates

Kim et al. [48] examined biomarkers of intestinal perme-
ability in a high BP group with a reference group (n = 35) 
(Table 2). Participants were grouped according to office 
SBP, irrespective of antihypertensive medication; as such 
only one-third of the reference group were normotensive, 
with the remainder having treated hypertension. Similarly, 
the high BP group contained participants with untreated 
hypertension, poorly-controlled hypertension, and resist-
ant hypertension. This study found the high BP group 
had increased plasma levels of I-FAPB, zonulin, and LPS 
[48]. Similarly, a cross-sectional study in young adults 
(18–25 years old, n = 96) found those with hypertension 
had higher serum zonulin levels than normotensive par-
ticipants [98]. Li et al. conducted a retrospective analysis  
of 357 gastroenterology inpatient records who had had 
measurements of serum DAO, LPS, and D-lactate and com-
pared hypertensive to normotensive inpatients, regardless 
of antihypertensive medication status [99]. This study used 
cutoffs of ≥ 15, ≥ 20, and ≥ 10 U/L to define elevated levels 
of DAO, LPS, and D-lactate, respectively, and reported that 
a greater percentage of hypertensive patients met the criteria 
for elevated LPS and DAO, but not D-lactate, compared to 
normotensive patients.

Tomsett et  al. compared women who proceeded to 
develop hypertension during pregnancy, including pre-
eclampsia and gestational hypertension, with those that 
remained normotensive throughout pregnancy (n = 55) 
[100]. There was no difference in serum zonulin levels at 
16-weeks of gestation, though at 28-weeks of gestation 
those who would become hypertensive had higher levels 
compared with normotensive women [100]. Similarly, a 
small study comparing 13 women with pre-eclampsia with 
13 age-matched normotensive pregnant women showed that 
the women with pre-eclampsia had elevated LBP levels dur-
ing hospital admission for parturition [101]. Paradoxically, a 
recent cross-sectional case control study comparing women 
with pre-eclampsia to healthy pregnant women at an obstet-
ric visit during the third trimester observed that plasma LBP 
and zonulin levels were decreased in the women with pre-
eclampsia compared with healthy controls (n = 44) [102]. 
There is conflicting evidence regarding intestinal perme-
ability changes during pregnancy and hypertension.

One other interesting and relevant study to this dis-
cussion was undertaken in non-human primates. Vemuri 
et al. conducted a cross-sectional study in 153 vervet 
monkeys, and observed that LBP levels were correlated 
with both systolic and diastolic BP readings [103•]. In 
a second study by this group, 16 adult rhesus monkeys 
were assessed for hypertensive status using cutoffs for 
systolic and diastolic BP of 120  mm Hg and 80  mm 
Hg, respectively, a protocol that is suitable for use in 

non-human primates [104]. Hypertensive rhesus mon-
keys had higher LBP levels than normotensive rhesus 
monkeys at baseline, with LBP levels progressively ele-
vating in the hypertensive group over the course of the 
study [103•]. This study was the first longitudinal assess-
ment of a marker of intestinal permeability in non-human 
primates or humans and provides the first evidence that 
intestinal permeability does increase over time in the 
context of hypertension.

Intestinal Permeability and Hypertension: The 
Chicken and Egg Question

A key question that remains is if hypertension leads to 
increased internal permeability, or if intestinal permeability, 
caused by other factors such as low fibre intake, gut dysbio-
sis, medication or comorbidities such as obesity, activates 
inflammatory processes that contribute to the development 
of hypertension. In the latter option, as BP increases, it could 
then damage the intestinal epithelium and further exacer-
bate permeability, and thus, BP. If intestinal permeability 
is indeed present in hypertension and involved in its patho-
physiological mechanisms, another important question is if 
BP and its associated end-organ damage could be lowered by 
a reduction in intestinal permeability. For example, studies 
in mice using gut microbial metabolites that restore intes-
tinal barrier function and reduce inflammatory cytokines 
also resulted in lower BP [96]. Whether this also happens in 
hypertensive patients is yet to be determined. A key limita-
tion in the field is that only blood and faecal samples are 
available, and, as discussed above, the current biomarkers 
for intestinal permeability are not reliable enough to answer 
this question.

Conclusion

Evidence from animal models has clearly demonstrated that 
there is increased gut permeability, assessed by direct meas-
urement, in experimental models of hypertension. Evidence 
within human hypertension is limited, with several indirect 
biomarkers that are purported to be indicators of gut perme-
ability increased in participants with hypertension. However, 
the reliability of these biomarkers is questionable. Whether 
hypertension leads to increased gut permeability, or vice-
versa, has not been clearly established. It is possible that 
there is a bidirectional link between the two rather than a 
causal one-way relationship. A greater understanding of the 
role of gut permeability in the pathogenesis of hyperten-
sion may benefit targeted treatments to prevent and delay 
the scourge of elevated BP.
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