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Abstract
Purpose of the Review  Preserved ejection fraction heart failure and obesity frequently coexist. Whether obesity plays a 
consistent role in the pathogenesis of preserved ejection fraction heart failure is unclear. Accumulation of visceral adiposity 
underlies the pathogenic aftermaths of obesity. However, visceral adiposity imaging is assessed by computed tomography 
or magnetic resonance and thus not routinely available. In contrast, epicardial adiposity thickness is assessed by echocardi-
ography and thus routinely available. We review the rationale for assessing epicardial adiposity thickness in patients with 
preserved ejection fraction heart failure and elevated body mass index.
Recent Findings  Body mass index correlates poorly with visceral, and epicardial adiposity. Visceral and epicardial adiposity 
enlarges as preserved ejection fraction heart failure progresses. Epicardial adiposity may hasten the progression of coronary 
artery disease and impairs left ventricular sub-endocardial perfusion and diastolic function.
Summary  Epicardial adiposity thickness may help monitor the therapeutic response in patients with preserved ejection 
failure heart failure and elevated body mass index.
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Introduction

Besides prevention of water and salt retention, the pharmaco-
logic treatment of preserved ejection heart failure (HFpEF) 
focuses on common metabolic and cardiovascular comor-
bidities such as hypertension (HT), type 2 diabetes (T2D), 
and arterial stiffening [1]. However, obesity and associated 

conditions play an increasing role in the development and 
progression of HFpEF [2]. Obesity contributes to the devel-
opment and progression of HFpEF through accumulation 
of visceral and epicardial adipose tissue (VAT, EAT) that 
promotes low-grade systemic inflammation and adipokine 
dysregulation [3, 4]. Thus, imaging VAT or EAT may be 
helpful when assessing the response to therapy in patients 
with HFpEF and obesity.

Magnetic resonance (MR) and computed tomography 
(CT) imaging allow direct and accurate measurement of 
VAT and EAT mass [5, 6]. As both imaging modalities are 
expensive, with CT exposing subjects to ionizing radia-
tion and MRI being unpractical in severe obesity, VAT and 
EAT volumes are not readily obtained in clinical practice. 
Although two-dimensional (2D) echocardiography is an 
unreliable imaging modality for measurement of EAT vol-
ume, it reliably determines EAT thickness, a useful estimate 
of EAT in clinical settings [7, 8].

We review the development, characteristics, and clinical 
implications of VAT and EAT in the syndrome of HFpEF 
and advocate routine determination of EAT thickness in the 
management of patients with HFpEF.
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Visceral Adipose Tissue

The amount of VAT is typically measured as the area of 
omental and mesenteric adipose tissue (AT) on a single 
abdominal cross-sectional slice by MR or CT at 5–6 cm 
above the L4-L5 disc [9]. Alternatively, the amount of VAT 
may be measured in 3 abdominal cross-sectional slices at 
L2-L3, L3-L4, and L4-L5 intervertebral spaces and average 
values derived from the 3 slices [10].

In response to excess intake of nutrients, lipids are 
stored as triglycerides (TGs) in the subcutaneous (SC) adi-
pose tissue (SAT) surrounding the flanks, hips, buttocks, 
and thighs to mold the “pear shape” pattern of obesity [3, 
11, 12]. When nutrient intake continues to exceed energy 
expenditure, the SC adipocytes become tenfold larger than 
in the basal state and SAT undergoes considerable accu-
mulation [13]. When SAT reaches its maximum capacity 
for TG storage, visceral adipocytes start accumulating TG 
in the omental and mesenteric adipose depots followed by 
non-neuronal organs (liver, skin, vasculature, kidney, ova-
ries, adrenal glands, skeletal muscle, and heart) [13–16]. 
Regional specific differences among AT depots exist in 
pre-adipocyte proliferation, apoptosis, and differentiation 
capacity [11].

Visceral adiposity increases the risk of cardiovascular 
disease independent of total body adiposity [17]. Adi-
pocyte lineages in the VAT and EAT originate from the 
visceral mesothelium that lines the internal organs [16]. 
Accumulation of VAT reflects the inability of SAT to 
act as a metabolic sink and to protect organs from toxic 
metabolites such as fatty acyl-coAs, diacylglycerides, and 
ceramides [3, 18, 19]. However, in turn, VAT accumula-
tion fails to prevent storage of lipids in the liver, heart, 
pancreas, and skeletal muscle although it may delay it 
[20]. As obesity steadily progresses, reduced functional 
activity lowers energy expenditure thereby widening the 
caloric intake-energy expenditure gap and heightening 
the lipid storage burden [21]. Further, visceral adipocytes 
have a restrained capacity for lipid storage owing to a 
limited increase in size and a potential for hyperplasia 
[13]. Although visceral adipocytes do not enlarge as much 
as SC adipocytes, VAT accumulation triggers a stronger 
inflammatory compared to SAT and results in extensive 
visceral adipocyte necrosis and fibrosis [15, 16]. Specific 
adaptive AT responses to accumulation are important 
determinants of AT health and systemic metabolic home-
ostasis. Obesity-induced alterations in AT metabolism, 
extracellular matrix formation, immune system function, 
and inflammation regulate metabolic function in several 
organs. Differences in these factors likely contribute to 
heterogeneity in metabolic health in obesity [15].

Epicardial Adipose Tissue

Lying between the myocardium and visceral pericardium, 
EAT covers most of the right ventricle (RV) and part the 
left ventricle (LV) with an EAT-myocardium ratio of 0.48 
for the RV and 0.15 for the LV [22] (Fig. 1). Epicardial 
AT surrounds large coronary arteries, and their branches 
as EAT occupies atrial-ventricular and interventricular 
grooves [23]. The thickness of healthy EAT ranges from 
5 to 7 mm over the RV free wall and from 10 to 14 mm 
in atrial-ventricular and interventricular grooves [24]. The 
amount of EAT correlates weakly with body mass index 
(BMI) [25]. Although age, waist circumference, ethnicity, 
and myocardial hypertrophy are independent determinants 
of EAT, one unfrequently adjusts EAT thickness [26]. Both 
EAT and VAT originate from the splanchnopleuric meso-
derm with EAT being vascularized by the coronary artery 
network [27].

The contiguity of adipocytes and stromal vascular 
fraction (resident inflammatory cells plus lymphocytes 
[CD3+], macrophages [CD68+], and mast cells) to coro-
nary arteries underlies the vascular effects of EAT [28, 
29••, 30]. Accumulation of EAT in the left atrioventricu-
lar groove has a strong association with coronary ather-
omatous plaques while excessive VAT contributes to the 
development of the metabolic syndrome [31]. Further, 
accumulation of EAT and VAT was associated with coro-
nary atheromatous plaques in 174 patients with suspected 
coronary artery disease (CAD) with only EAT predict-
ing the presence of coronary calcifications [32]. In 45  
patients with CAD, EAT volume indexed to body surface 
area was greater around functionally significant coronary 
stenosis (mean fractional flow reserve [FFR] of 0.74) than 
around non-significant stenosis (mean FFR of 0.89) 0.34 
vs 0.27 ml/m2, p = 0.045 [33]. Yu et al. corroborated the 
association between EAT volume and hemodynamically 
significant CAD in 164 patients [34].

Local expression of chemokine monocyte chemotac-
tic protein [MCP]-1, interleukin [IL]-1β, IL-6, and tumor 
necrosis factor [TNF]-α RNA and protein is greater in EAT 
than in SAT from patients with critical CAD [28]. Height-
ened EAT inflammation may foster the development of 
coronary artery lesions. Alternatively, atherosclerosis-
induced inflammation may propagate to contiguous AT 
[35, 36]. Nevertheless, the plasma concentration of circu-
lating inflammatory cytokines does not reflect the degree 
of EAT inflammation [28]. Secretion of adiponectin, an 
anti-inflammatory adipokine, is 40% lower in patients with 
than in patients without CAD [17]. Dysregulated levels of 
novel adipokines and pro-inflammatory cells in EAT com-
pared to VAT underlie the strong contribution of EAT to 
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the pathogenesis of CAD [37]. Catecholamine-stimulated 
synthesis and release is greater in EAT than in other AT 
depots [17]. Last, protein content is greater and glucose 
oxidation capacity is lower in EAT than in VAT [17].

Epicardial AT expression of TNF-α is greater in 
patients with than in patients without non-calcified coro-
nary plaques and is independent from coronary calcium 
score and clinical status [38]. Enhanced AT expression of 
TNF-α and increased vascular expression of endogenous 
endothelin (ET)-1 and ET receptor A (ETA) contribute 
to imbalance of the endothelin [ET]-1/nitric oxide [NO] 
system by impairing tonic NO release [39]. Adiponectin 
gene expression and thus concentration decreases signifi-
cantly in epicardial adipocytes as coronary artery ath-
erosclerosis progresses [40]. Epicardial AT expansion is 
inversely related to perfusion of LV sub-endocardial layers 
and LV global longitudinal strain in patients with CAD; 

sub-endocardial layer perfusion and LV strain are directly 
related [41]. Analysis of macrophage polarization markers 
reveals increased low-grade inflammation in EAT biopsies 
from patients with CAD [42]. Epicardial AT inflammation 
and neo-angiogenesis correlate with the presence of non-
calcified plaques and coronary calcifications in patients 
with and without obstructive CAD [38]. The contribution 
of EAT to the progression of coronary atherosclerosis is 
well recognized [43, 44]. However, the usefulness of EAT 
attenuation for risk stratification and prediction of major 
acute cardiac events remains controversial in patients with 
CAD [45–47].

In patients with non-atherosclerotic vascular disease, 
AT surrounding arteries may release mediators that reg-
ulate vascular smooth muscle cell proliferation, matrix 
degradation, and neo-revascularization [48]. Release of 
cytokines, free fatty acids, exosomes carrying protein, 
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Fig. 1   Parasternal long axis window from transthoracic echocardiogram, depicting a layer of epicardial fat between the myocardium and epicardium
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lipids, ribonucleic acids (RNAs), and miRNAs from EAT 
to vascular smooth muscle and endothelial cells through 
the coronary arterial wall vasa vasorum may underlie local 
inflammation and coronary microvascular dysfunction 
[29••]. The interaction between perivascular adipose tissue 
(PVAT) and obesity sheds light on the impact of EAT on 
the coronary vasculature. In lean subjects, PVAT attenuates 
the vascular responsiveness to phenylephrine, angiotensin 
II, and ET-1 by releasing adipocyte- or perivascular-derived 
relaxing factors [49]. In patients with obesity, PVAT does 
not exert the anti-contractile effect to phenylephrine, angio-
tensin II, and ET-1 that PVAT exerts in lean patients [50]. 
The obesity triad of hypoxia, local inflammation, and oxi-
dative stress upregulates pro-inflammatory cytokine expres-
sion in PVAT and downregulates that of adiponectin and 
anti-inflammatory cytokines thereby counteracting the anti-
contractile effect of PVAT in lean subjects [49]. Associated 
with myocardial hypertrophy and capillary rarefaction, obe-
sity causes local hypoxia that leads to fibrosis and necrosis 
of cardiomyocytes.

The volume of EAT by CT correlates inversely with 
myocardial blood f low reserve (MFR) estimated by 
rubidium-82 (82Rb) positron emission tomography in 
patients with normal myocardial perfusion imaging and 
no coronary artery calcifications [51]. Patients with 
increased EAT volume and no obstructive CAD display 
reduced global LV longitudinal strain (GLS) and normal 
global LV circumferential and radial strain [52]. Selec-
tive LV sub-endocardial layer dysfunction, as evidenced 
by a decrease in LV GLS, argues against myocardial fat 
infiltration as the cause of LV GLS decrease. Increased 
EAT volume may reduce MFR, thereby decreasing sub-
endocardial layer perfusion and LV GLS [53]. Hence, 
impaired LV sub-endocardial perfusion mediates LV 
diastolic dysfunction in women with obesity, HFpEF, 
and no CAD [54]. Independent of general measures of 
adiposity, increased EAT thickness correlated with coro-
nary microvascular function in 399 elderly patients [55]. 
Myocardial and hepatic TG contents were measured by 
proton magnetic resonance spectroscopy (1H-MRS), and 
LV function VAT volume and EAT area were measured 
by MR imaging in 75 non-diabetic subjects with hepatic 
steatosis [56]. Hepatic TG content was low in 26 sub-
jects, moderate in 24, and high in the remaining 25 sub-
jects. Subjects with high and moderate hepatic TG con-
tent had 2–threefold higher myocardial TG content than 
those with low TG hepatic content. Hepatic TG content 
and VAT were inversely related to LV diastolic function. 
In contrast, myocardial TG content was unrelated to LV 
diastolic function. Thus, myocardial lipotoxicity may not 
contribute to LV diastolic dysfunction in patients with 
increased VAT and EAT.

Epicardial Adipose Tissue and Preserved 
Ejection Fraction Heart Failure

The thickness of EAT over the RV in parasternal long- and 
short-axis echocardiographic views indexed to body surface 
area predicted incident HFpEF over a mean follow-up of  
4.3 years in 379 patients with CAD and no overt HF [57]. The 
predictive value of EAT was independent of age, BMI, and 
sex. However, patients, who developed HFpEF, had presum-
ably latent HFpEF as they were receiving more loop diuretics 
and renin–angiotensin–aldosterone inhibitors at enrollment 
in the study than patients who did not develop HFpEF were 
receiving [57]. Patients with HFpEF, elevated BMI, and 
increased EAT thickness display higher LV eccentricity index 
and lower peak functional capacity than their counterparts 
with normal EAT thickness [58]. Similarly, HFpEF patients 
with increased EAT thickness and BMI > 30 kg/m2 have a 
lower peak oxygen uptake after adjustment for pulmonary 
vascular resistance and BMI than patients with BMI < 30 kg/
m2 and normal EAT thickness [59]. Increased EAT thickness 
closely correlates with arterial stiffness in HFpEF patients 
[60]. The mechanisms that link EAT to increased arterial 
stiffness remain poorly understood. The volume of EAT by 
MRI predicted a composite clinical outcome of all-cause 
mortality and first HF hospitalizations over a median follow 
up of 2 years in 105 patients with mid-range and preserved 
ejection heart failure whose BMI averaged 30 kg/m2 [8]. The 
predictive value of EAT was independent of BMI, age, sex, 
HF severity, and several comorbidities. Systemic HT was 
the most prevalent comorbidity; it affected 80% of patients 
whose mean systolic blood pressure was 140 mmHg at base-
line despite treatment. As expected, 52% of patients with high 
EAT volume had CAD compared to 23% in patients with 
low EAT volume. Last, VAT was not measured and thus not 
entered as covariate in the multivariable Cox proportional 
hazard regression models.

Epicardial Versus Visceral Adipose Tissue 
in Preserved Ejection Fraction Heart Failure

The majority of cardiometabolic studies that assess EAT vol-
ume/thickness reports a consistent relationship between EAT 
and clinical outcomes [61–64]. However, cardiometabolic 
studies that conjointly assess the amount of VAT and cardiac 
AT assert that VAT mass is the overwhelming pathogenic 
factor in obesity except for an association between ectopic 
cardiac AT and coronary artery calcification or atrial fibril-
lation [18, 19, 26, 65].

The relative impact of AT distribution (epicardial ver-
sus visceral) on LV diastolic function may depend on the 
amount of VAT [66••]. Accumulation of EAT contributes to 



Current Hypertension Reports	

LV diastolic dysfunction in patients with low VAT mass and 
does not contribute to LV diastolic dysfunction in patients 
with high VAT mass [66••]. Both VAT and EAT contribute 
to LV diastolic dysfunction in patients with recent myocar-
dial infarction (MI) [67]. However, the association between 
VAT and LV diastolic dysfunction is much stronger than the 
association between total adiposity and LV diastolic dys-
function in patients with recent MI [67]. Last, only VAT 
accumulation correlates with sub-clinical LV diastolic dys-
function in patients with end-stage renal disease on perito-
neal dialysis [68].

Epicardial Adipose Tissue Thickness 
as an Endpoint in Clinical Trials

A composite of cardiovascular mortality and HF hospitali-
zation is the prevailing primary endpoint in HF therapeutic 
trials. However, the incidence of cardiovascular mortality is 
relatively low in patients with HFpEF. Cardiovascular mor-
tality was 8.9% over 35 months in the placebo arm of the 
sacubitril/valsartan HFpEF trial [69]. Non-cardiac comor-
bidities are highly prevalent in patients with HFpEF [70, 
71]. Patients with HFpEF are as likely to be hospitalized 
for decompensated HFpEF as they are for worsening of 
non-cardiac comorbidities [72]. The incidence of HF hos-
pitalizations was only 14.6% over 39 months in the placebo 
arm of the spironolactone HFpEF trial [73]. Further, HFpEF 
patients with high BMI are at increased risk of non-HF hos-
pitalizations due to obesity-related comorbidities like celluli-
tis, deep vein thrombosis, gastrointestinal-esophageal reflux 
disease, or respiratory illness [74].

A randomized, placebo-controlled trial recently reported 
that 52 weeks with 2.4 mg of semaglutide, a glucagon-
like peptide 1 receptor agonist (GLP1-RA), significantly 
improved HF-related symptoms and physical limitations in 
patients with HFpEF and a median BMI of 37.2 kg/m2 [75]. 
Kansas City Cardiomyopathy Clinical Questionnaire clini-
cal summary score (KCCQ-CSS) and 6-min walk distance 
increased as C-reactive protein (CRP) level decreased in 
patients randomized to semaglutide. Whether the improve-
ment in KCCQ-CSS and 6-min walk distance resulted 
from improvement(s) in obesity-related cardiac/peripheral 
disturbances or from a -13.3% loss body weight is unclear 
[75]. Semaglutide reduced CRP levels by 44, 39, and 48% 
in the Semaglutide Treatment Effect in People with Obe-
sity (STEP) 1, 2 and 3 trials, and caloric reduction-induced 
weight loss increased peak oxygen uptake by 1.8 ml/min/kg 
in patients with HFpEF [76, 77]. Inclusion of epicardial adi-
posity as an endpoint in obesity therapeutic trials may help 
uncover how anti-obesity medication or procedures benefit 
elevated BMI patients with HFpEF besides a straight weight 
loss [22, 78–80].

In summary, visceral adipose tissue plays a larger role in 
the development and progression of LV diastolic dysfunction 
than epicardial adipose tissue although the latter may have a 
local impact on the coronary circulation and thereby on LV 
diastolic function. However, assessment of visceral adipose 
tissue mass requires CT or MR and thus is not routinely 
available in patients with HFpEF. In contrast, 2D echocar-
diography, which provides a reliable estimate of epicardial 
adipose tissue thickness, is routinely available in patients 
with HFpEF. Differentiating a healthy from an unhealthy 
metabolic status is challenging in patients with HFpEF and 
obesity as HT, T2D, and dyslipidemia are shared comorbidi-
ties [81]. Increased epicardial adipose tissue thickness points 
to a pathogenic role of obesity in patients with HFpEF and 
elevated BMI. Increased epicardial adipose tissue thickness 
signals the need to add anti-obesity medications or proce-
dures to standard HFpEF therapy.
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