Skip to main content

Advertisement

Log in

Increased Risk of Preeclampsia with Assisted Reproductive Technologies

  • Preeclampsia (A Kattah, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We summarized recent available data to assess the association between assisted reproductive technology (ART) and risk for preeclampsia.

Recent Findings

The majority of clinical studies supporting the association of preeclampsia and ART are retrospective. Published data from both clinical and pre-clinical studies suggest specific ART procedures may contribute to the increased risk, including in vitro embryo handling and development, hormone stimulation, transfer cycle types, and use of donor oocytes/embryos. Potential mechanisms include epigenetic aberrations leading to abnormal placentation, absence of factors secreted by the corpus luteum, and immunologic responses to allogenic gametes.

Summary

There is an increased risk of preeclampsia following ART. Treatment plans that favor reduced preeclampsia risk should be considered for ART pregnancies. To make ART pregnancies safer, additional clinical and animal model studies are needed to elucidate the underpinnings of this risk association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Society of Reproductive Medicine and Society for Assisted Reproductive Technology. Egg Freezing cycles jumped 31% in 2021. ASRM/SART Press Release [Internet]. [cited 2023 Apr 9]. Available from: https://www.asrm.org/news-and-publications/news-and-research/press-releases-and-bulletins/egg-freezing-cycles-jumped-31-in-2021/.

  2. Niederberger C, Pellicer A, Cohen J, Gardner DK, Palermo GD, O’Neill CL, et al. Forty years of IVF. Fertil Steril. 2018;110:185-324.e5.

    Article  PubMed  Google Scholar 

  3. Jain M, Singh M. Assisted reproductive technology (ART) techniques. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Apr 9]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK576409/.

  4. • American College of Obstetricians and Gynecologists’ Committee on Obstetric Practice, Committee on Genetics, U.S. Food and Drug Administration. Committee Opinion No 671: Perinatal risks associated with assisted reproductive technology. Obstet Gynecol. 2016;128:e61–68. American College of Obstetricians and Gynecologists' guidelines on pregnancy risks associated with assisted reproductive technologies.

  5. •• American College of Obstetricians and Gynecologists. Gestational hypertension and preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol. 2020;135:e237–60. American College of Obstetricians and Gynecologists' guidelines on gestational hypertension and preeclampsia.

  6. Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226:S844–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huppertz B. IJMS Special Issue “Molecular and cellular mechanisms of preeclampsia”-Editorial. Int J Mol Sci. 2020;21:4801.

  8. Ghidini A, Gandhi M, McCoy J, Kuller JA. Society for Maternal-Fetal Medicine Consult Series #60: Management of pregnancies resulting from in vitro fertilization. Am J Obstet Gynecol. 2022;226:B2-12.

    Article  PubMed  Google Scholar 

  9. Mills G, Badeghiesh A, Suarthana E, Baghlaf H, Dahan MH. Polycystic ovary syndrome as an independent risk factor for gestational diabetes and hypertensive disorders of pregnancy: a population-based study on 9.1 million pregnancies. Hum Reprod. 2020;35:1666–74.

    Article  PubMed  Google Scholar 

  10. Joshi A, Aluko A, Styer AK, Young BC, Johnson KM, Hacker MR, et al. PCOS and the risk of pre-eclampsia. Reprod Biomed Online. 2022;45:961–9.

    Article  PubMed  Google Scholar 

  11. • Ganer Herman H, Volodarsky-Perel A, Ton Nu TN, Machado-Gedeon A, Cui Y, Shaul J, et al. Diminished ovarian reserve is a risk factor for preeclampsia and placental malperfusion lesions. Fertil Steril. 2023;S0015–0282(23):00067–75. This finding represents an important potential confounder of many ART and preeclampsia studies.

    Google Scholar 

  12. • Ganer Herman H, Mizrachi Y, Shevach Alon A, Farhadian Y, Gluck O, Bar J, et al. Obstetric and perinatal outcomes of in vitro fertilization and natural pregnancies in the same mother. Fertil Steril. 2021;115:940–6. A well designed study with outcomes paired in the same individual, that did not find increased risk of preeclampsia with an IVF pregnancy.

    Article  PubMed  Google Scholar 

  13. Chih HJ, Elias FTS, Gaudet L, Velez MP. Assisted reproductive technology and hypertensive disorders of pregnancy: systematic review and meta-analyses. BMC Pregnancy Childbirth. 2021;21:449.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Omani-Samani R, Alizadeh A, Almasi-Hashiani A, Mohammadi M, Maroufizadeh S, Navid B, et al. Risk of preeclampsia following assisted reproductive technology: systematic review and meta-analysis of 72 cohort studies. J Matern Fetal Neonatal Med. 2020;33:2826–40.

    Article  PubMed  Google Scholar 

  15. Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103:551.

    Article  PubMed  Google Scholar 

  16. • Lang M, Zhou M, Lei R, Li W. Comparison of pregnancy outcomes between IVF-ET pregnancies and spontaneous pregnancies in women of advanced maternal age. J Matern Fetal Neonatal Med. Taylor & Francis; 2023;36:2183761. A recent study that specifically examined fresh embryo transfers and spontaneous pregnancies and found an increased risk of gestational hypertension, but not preeclampsia.

  17. H. Petersen S, Westvik-Johari K, Spangmose AL, Pinborg A, Romundstad LB, Bergh C, et al. Risk of hypertensive disorders in pregnancy after fresh and frozen embryo transfer in assisted reproduction: a population-based cohort study with within-sibship analysis. Hypertension. American Heart Association; 2023;80:e6–16.

  18. Gui J, Ling Z, Hou X, Fan Y, Xie K, Shen R. In vitro fertilization is associated with the onset and progression of preeclampsia. Placenta. 2020;89:50–7.

    Article  PubMed  Google Scholar 

  19. Huang J, Yang X, Wu J, Kuang Y, Wang Y. Impact of day 7 blastocyst transfer on obstetric and perinatal outcome of singletons born after vitrified-warmed embryo transfer. Front Physiol. 2020;11:74.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62:1526–35.

    Article  CAS  PubMed  Google Scholar 

  21. Feuer S, Liu X, Donjacour A, Simbulan R, Maltepe E, Rinaudo P. Transcriptional signatures throughout development: the effects of mouse embryo manipulation in vitro. Reproduction. 2016;REP-16-0473.

  22. Belli M, Zhang L, Liu X, Donjacour A, Ruggeri E, Palmerini MG, et al. Oxygen concentration alters mitochondrial structure and function in in vitro fertilized preimplantation mouse embryos. Hum Reprod. 2020;35:1476.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ruggeri E, Lira-Albarrán S, Grow EJ, Liu X, Harner R, Maltepe E, et al. Sex-specific epigenetic profile of inner cell mass of mice conceived in vivo or by IVF. Mol Hum Reprod. 2020;26:866–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee SH, Liu X, Jimenez-Morales D, Rinaudo PF. Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production. Elife. 2022;11:e79153.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Senapati S, Wang F, Ord T, Coutifaris C, Feng R, Mainigi M. Superovulation alters the expression of endometrial genes critical to tissue remodeling and placentation. J Assist Reprod Genet. 2018;35:1799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Libby VR, Wilson R, Kresak A, Cameron C, Redline R, Mesiano S, et al. Superovulation with gonadotropin-releasing hormone agonist or chorionic gonadotropin for ovulation trigger differentially affects leukocyte populations in the peri-implantation mouse uterus. F S Sci. 2021;2:198–206.

    PubMed  Google Scholar 

  27. Mainigi MA, Olalere D, Burd I, Sapienza C, Bartolomei M, Coutifaris C. Peri-implantation hormonal milieu: elucidating mechanisms of abnormal placentation and fetal growth. Biol Reprod. 2014;90:26.

    Article  PubMed  Google Scholar 

  28. Weinerman R, Ord T, Bartolomei MS, Coutifaris C, Mainigi M. The superovulated environment, independent of embryo vitrification, results in low birthweight in a mouse model. Biol Reprod. 2017;97:133–42.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sullivan-Pyke C, Mani S, Rhon-Calderon EA, Ord T, Coutifaris C, Bartolomei MS, et al. Timing of exposure to gonadotropins has differential effects on the conceptus: evidence from a mouse model†. Biol Reprod. 2020;103:854–65.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Roeca C, Silva E, Barentsen C, Powell TL, Jansson T. Effects of vitrification and the superovulated environment on placental function and fetal growth in an IVF mouse model. Mol Hum Reprod. 2020;26:624–35.

    Article  CAS  PubMed  Google Scholar 

  31. • Segal TR, Amini P, Wang J, Peters G, Skomorovska-Prokvolit Y, Mainigi MA, et al. Superovulation with human chorionic gonadotropin (hCG) trigger and gonadotropin releasing hormone agonist (GnRHa) trigger differentially alter essential angiogenic factors in the endometrium in a mouse ART model†. Biol Reprod. 2020;102:1122–33. This study demonstrates that different medications utilized to induce oocyte maturation in IVF can alter uterine environment.

    Article  PubMed  Google Scholar 

  32. Roshong AJ, DeSantis CE, Yartel AK, Heitmann RJ, Kissin DM, Pier BD. Factors associated with large-for-gestational-age infants born after frozen embryo transfer cycles. F S Rep. 2022;3:332–41.

    PubMed  PubMed Central  Google Scholar 

  33. Wei D, Liu J-Y, Sun Y, Shi Y, Zhang B, Liu J-Q, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet. 2019;393:1310–8.

    Article  PubMed  Google Scholar 

  34. Ding Q, Wang Y, Suo L, Niu Y, Zhao D, Yu Y, et al. The gestational age-specific difference in birthweight between singletons born after fresh and frozen embryo transfer: a cohort study. Acta Obstet Gynecol Scand. 2023;102:323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Zaat T, Zagers M, Mol F, Goddijn M, van Wely M, Mastenbroek S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst Rev. 2021;2:CD011184. Cochran review that identified a higher risk of preeclampsia among frozen compared to fresh embryo transfers.

  36. Vrooman LA, Rhon-Calderon EA, Chao OY, Nguyen DK, Narapareddy L, Dahiya AK, et al. Assisted reproductive technologies induce temporally specific placental defects and the preeclampsia risk marker sFLT1 in mouse. Development. 2020;147:dev186551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rhon-Calderon EA, Vrooman LA, Riesche L, Bartolomei MS. The effects of assisted reproductive technologies on genomic imprinting in the placenta. Placenta. 2019;84:37–43.

    Article  PubMed  Google Scholar 

  38. Vrooman LA, Rhon-Calderon EA, Suri KV, Dahiya AK, Lan Y, Schultz RM, et al. Placental abnormalities are associated with specific windows of embryo culture in a mouse model. Front Cell Dev Biol. 2022;10:884088.

    Article  PubMed  PubMed Central  Google Scholar 

  39. • Mani S, Ghosh J, Rhon-Calderon EA, Lan Y, Ord T, Kalliora C, et al. Embryo cryopreservation leads to sex-specific DNA methylation perturbations in both human and mouse placentas. Hum Mol Genet. 2022;31:3855–72. Study of the epigenetic alterations in human placentas comparing frozen vs fresh embryo transfers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gonzalez TL, Schaub AM, Lee B, Cui J, Taylor KD, Dorfman AE, et al. Infertility and treatments used have minimal effects on first-trimester placental DNA methylation and gene expression. Fertil Steril. 2023;119:301–12.

    Article  CAS  PubMed  Google Scholar 

  41. Yeung EH, Mendola P, Sundaram R, Zeng X, Guan W, Tsai MY, et al. Conception by fertility treatment and offspring deoxyribonucleic acid methylation. Fertil Steril. 2021;116:493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Heertum K, Lam L, Richardson B, Cartwright MJ, Mesiano SA, Cameron MJ, et al. Blastocyst vitrification and trophectoderm biopsy cumulatively alter embryonic gene expression in a mouse model. Reprod Sci. 2021;28:2961–71.

    Article  PubMed  Google Scholar 

  43. Zhu Y, Cai Y, Zheng B, Ding M, Zhang Y, Zhou J. Alteration of LncRNA expression in mice placentae after frozen embryo transfer is associated with increased fetal weight. Reprod Biol. 2022;22:100646.

    Article  CAS  PubMed  Google Scholar 

  44. •• Pereira MM, Mainigi M, Strauss JF. Secretory products of the corpus luteum and preeclampsia. Hum Reprod Update. 2021;27:651–72. A review that compares recent studies on frozen vs fresh embryo transfers and programmed vs natural embryo transfer cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bortoletto P, Prabhu M, Baker VL. Association between programmed frozen embryo transfer and hypertensive disorders of pregnancy. Fertil Steril. 2022;118:839–48.

    Article  PubMed  Google Scholar 

  46. Sazonova A, Källen K, Thurin-Kjellberg A, Wennerholm U-B, Bergh C. Obstetric outcome in singletons after in vitro fertilization with cryopreserved/thawed embryos. Hum Reprod. 2012;27:1343–50.

    Article  PubMed  Google Scholar 

  47. Sites CK, Wilson D, Barsky M, Bernson D, Bernstein IM, Boulet S, et al. Embryo cryopreservation and preeclampsia risk. Fertil Steril. 2017;108:784–90.

    Article  PubMed  Google Scholar 

  48. Opdahl S, Henningsen AA, Tiitinen A, Bergh C, Pinborg A, Romundstad PR, et al. Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group. Hum Reprod. 2015;30:1724–31.

    Article  CAS  PubMed  Google Scholar 

  49. Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101:128–33.

    Article  PubMed  Google Scholar 

  50. Chen S, Sun F, Huang X, Wang X, Tang N, Zhu B, et al. Assisted reproduction causes placental maldevelopment and dysfunction linked to reduced fetal weight in mice. Sci Rep. 2015;5:10596.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barsky M, St. Marie P, Rahil T, Markenson GR, Sites CK. Are perinatal outcomes affected by blastocyst vitrification and warming? Am J Obstet Gynecol. 2016;215:603.e1–603.e5.

  52. Ginström Ernstad E, Wennerholm U-B, Khatibi A, Petzold M, Bergh C. Neonatal and maternal outcome after frozen embryo transfer: Increased risks in programmed cycles. Am J Obstet Gynecol. 2019;221:126.e1-126.e18.

    Article  PubMed  Google Scholar 

  53. Belva F, Bonduelle M, Roelants M, Verheyen G, Van Landuyt L. Neonatal health including congenital malformation risk of 1072 children born after vitrified embryo transfer. Hum Reprod. 2016;31:1610–20.

    Article  CAS  PubMed  Google Scholar 

  54. Jing S, Li XF, Zhang S, Gong F, Lu G, Lin G. Increased pregnancy complications following frozen-thawed embryo transfer during an artificial cycle. J Assist Reprod Genet. 2019;36:925–33.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang Z, Liu H, Song H, Li X, Jiang J, Sheng Y, et al. Increased risk of pre-eclampsia after frozen-thawed embryo transfer in programming cycles. Front Med [Internet]. 2020 [cited 2023 Apr 20];7. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2020.00104.

  56. von Versen-Höynck F, Narasimhan P, Selamet Tierney ES, Martinez N, Conrad KP, Baker VL, et al. Absent or excessive corpus luteum number is associated with altered maternal vascular health in early pregnancy. Hypertension. American Heart Association; 2019;73:680–90

  57. Saito K, Kuwahara A, Ishikawa T, Morisaki N, Miyado M, Miyado K, et al. Endometrial preparation methods for frozen-thawed embryo transfer are associated with altered risks of hypertensive disorders of pregnancy, placenta accreta, and gestational diabetes mellitus. Hum Reprod. 2019;34:1567–75.

    Article  PubMed  Google Scholar 

  58. Berntsen S, Larsen EC, la Cour FN, Pinborg A. Pregnancy outcomes following oocyte donation. Best Pract Res Clin Obstet Gynaecol. 2021;70:81–91.

    Article  PubMed  Google Scholar 

  59. Moreno-Sepulveda J, Checa MA. Risk of adverse perinatal outcomes after oocyte donation: a systematic review and meta-analysis. J Assist Reprod Genet. 2019;36:2017–37.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rodriguez-Wallberg KA, Berger A-S, Fagerberg A, Olofsson JI, Scherman-Pukk C, Lindqvist PG, et al. Increased incidence of obstetric and perinatal complications in pregnancies achieved using donor oocytes and single embryo transfer in young and healthy women. A prospective hospital-based matched cohort study. Gynecol Endocrinol. 2019;35:314–9.

    Article  PubMed  Google Scholar 

  61. • Peigné M, de Mouzon J, Khiel A, Fraissinet A, Maget V, Saïas-Magnan J, et al. Donated-embryo pregnancies are associated with increased risk of hypertensive disorders even for young recipients: a retrospective matched-cohort study. Fertil Steril. 2023;119:69–77. There is limited evidence on outcomes with the use of donor embryo, despite significant evidence existing regarding use of donor egg. This article contributes to this body of evidence.

    Article  PubMed  Google Scholar 

  62. Fauque P, Mondon F, Letourneur F, Ripoche M-A, Journot L, Barbaux S, et al. In vitro fertilization and embryo culture strongly impact the placental transcriptome in the mouse model. PLoS ONE. 2010;5:e9218.

    Article  PubMed  PubMed Central  Google Scholar 

  63. de Waal E, Vrooman LA, Fischer E, Ord T, Mainigi MA, Coutifaris C, et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet. 2015;24:6975–85.

    PubMed  PubMed Central  Google Scholar 

  64. Rahimi S, Martel J, Karahan G, Angle C, Behan NA, Chan D, et al. Moderate maternal folic acid supplementation ameliorates adverse embryonic and epigenetic outcomes associated with assisted reproduction in a mouse model. Hum Reprod. 2019;34:851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Collier AC, Miyagi SJ, Yamauchi Y, Ward MA. Assisted reproduction technologies impair placental steroid metabolism. J Steroid Biochem Mol Biol. 2009;116:21–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Raunig JM, Yamauchi Y, Ward MA, Collier AC. Placental inflammation and oxidative stress in the mouse model of assisted reproduction. Placenta. 2011;32:852–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennström M, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. Massachusetts Medical Society; 2016;374:13–22.

  68. Practice Committee of the American Society for Reproductive Medicine and the Practice Committee for the Society for Assisted Reproductive Technologies. Guidance on the limits to the number of embryos to transfer: a committee opinion. Fertil Steril. 2021;116:651–4.

    Article  Google Scholar 

  69. American College of Obstetricians and Gynecologists. Low-dose aspirin use during pregnancy. ACOG Committee Opinion No. 743. Obstet Gynecol 2018;132:e44-52.

  70. American Society for Reproductive Medicine and American College of Obstetricians and Gynecologists. Prepregnancy counseling. Committee Opinion No. 762. Fertil Steril. 2019;111:32–42.

  71. Tita AT, Szychowski JM, Boggess K, Dugoff L, Sibai B, Lawrence K, et al. Treatment for mild chronic hypertension during pregnancy. N Engl J Med. 2022;386:1781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. von Versen-Höynck F, Conrad KP, Baker VL. Which protocol for frozen-thawed embryo transfer is associated with the best outcomes for the mother and baby? Fertil Steril. Elsevier; 2021;115:886–7.

  73. von Versen-Höynck F, Griesinger G. Should any use of artificial cycle regimen for frozen-thawed embryo transfer in women capable of ovulation be abandoned: yes, but what’s next for FET cycle practice and research? Hum Reprod. 2022;37:1697–703.

    Article  Google Scholar 

  74. Busnelli A, Schirripa I, Fedele F, Bulfoni A, Levi-Setti PE. Obstetric and perinatal outcomes following programmed compared to natural frozen-thawed embryo transfer cycles: a systematic review and meta-analysis. Hum Reprod. 2022;37:1619–41.

    Article  CAS  PubMed  Google Scholar 

  75. George JS, Lee MS, Ashby RK, Goldman R, Ginsburg ES, Lanes A, et al. The impact of insurance mandates on donor oocyte utilization: an analysis of 39,338 donor oocyte cycles from the Society for Assisted Reproductive Technology registry. Am J Obstet Gynecol. 2022;227:877.e1-877.e11.

    Article  PubMed  Google Scholar 

  76. Truong T, Harvey AJ, Gardner DK. Antioxidant supplementation of mouse embryo culture or vitrification media support more in-vivo-like gene expression post-transfer. Reprod BioMed Online. Elsevier; 2022;44:393–410.

  77. Marín R, Chiarello DI, Abad C, Rojas D, Toledo F, Sobrevia L. Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165961.

    Article  PubMed  Google Scholar 

  78. Jelinic M, Marshall SA, Stewart D, Unemori E, Parry LJ, Leo CH. Peptide hormone relaxin: from bench to bedside. Am J Physiol Regul Integr Comp Physiol. 2018;314:R753–60.

    Article  CAS  PubMed  Google Scholar 

  79. Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal models of preeclampsia: causes, consequences, and interventions. Hypertension. 2020;75:1363–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Oregon Health and Science University Reproductive Endocrinology and Infertility Fellowship (M.S.K), Oregon Health and Science University/Oregon National Primate Center start-up funds (L.A.V), and the Medical Research Foundation of Oregon (L.A.V and S.B.G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Vrooman.

Ethics declarations

Conflict of Interest

Molly S. Kornfield, Susan B. Gurley, and Lisa A. Vrooman declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornfield, M.S., Gurley, S.B. & Vrooman, L.A. Increased Risk of Preeclampsia with Assisted Reproductive Technologies. Curr Hypertens Rep 25, 251–261 (2023). https://doi.org/10.1007/s11906-023-01250-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-023-01250-8

Keywords

Navigation