Skip to main content

Advertisement

Log in

Cardiovascular Dysfunction in Intrauterine Growth Restriction

  • Preeclampsia (VD Garovic, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We highlight important new findings on cardiovascular dysfunction in intrauterine growth restriction.

Recent Findings

Intrauterine growth restriction (IUGR) is a multifactorial condition which negatively impacts neonatal growth during pregnancy and is associated with health problems during the lifespan. It affects 5–15% of all pregnancies in the USA and Europe with varying percentages in developing countries. Epidemiological studies have reported that IUGR is associated with the pathogenesis of hypertension, activation of the renin-angiotensin system (RAS), disruption in placental-mTORC and TGFβ signaling cascades, and endothelial dysfunction in IUGR fetuses, children, adolescents, and adults resulting in the development of cardiovascular diseases (CVD). Experimental studies are needed to investigate therapeutic measures to treat increased blood pressure (BP) and long-term CVD problems in people affected by IUGR.

Summary

We outline the mechanisms mediating fetal programming of hypertension in developing CVD. We have reviewed findings from different experimental models focusing on recent studies that demonstrate CVD in IUGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

BP:

Blood pressure

CV:

Cardiovascular

CVDs:

Cardiovascular diseases

eNOS:

Endothelial nitric oxide synthase

LBW:

Low birth weight

IUGR:

Intrauterine growth restriction

mTOR:

Mammalian target of rapamycin

mTORC1:

Mammalian target of rapamycin complex 1

mTORC2:

Mammalian target of rapamycin complex 2

miR:

MicroRNA

NFκB:

Nuclear factor kappa beta

NOS:

Nitric oxide synthase

NOS3:

Nitric oxide synthase-3

RAAS:

Renin-angiotensin-aldosterone system

RAS:

Renin angiotensin system

RUPP:

Reduced uterine perfusion pressure

SNAT:

Na+-coupled neutral amino acid transporter

TGFβ:

Transforming growth factor β

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance •• Of major importance

  1. Alberry M, Soothill P. Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed. 2007;92(1):F62–7. https://doi.org/10.1136/adc.2005.082297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Damodaram M, Story L, Kulinskaya E, Rutherford M, Kumar S. Early adverse perinatal complications in preterm growth-restricted fetuses. Aust N Z J Obstet Gynaecol. 2011;51(3):204–9. https://doi.org/10.1111/j.1479-828X.2011.01299.x.

    Article  PubMed  Google Scholar 

  3. Gebb J, Dar P. Colour Doppler ultrasound of spiral artery blood flow in the prediction of pre-eclampsia and intrauterine growth restriction. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):355–66. https://doi.org/10.1016/j.bpobgyn.2011.01.008.

    Article  PubMed  Google Scholar 

  4. Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2016;10:67–83. https://doi.org/10.4137/CMPed.S40070.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Romo A, Carceller R, Tobajas J. Intrauterine growth retardation (IUGR): epidemiology and etiology. Pediatr Endocrinol Rev. 2009;6(Suppl 3):332–6.

    PubMed  Google Scholar 

  6. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301(6746):259–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. •• Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation. 2013;127(6):749–56. https://doi.org/10.1161/CIRCULATIONAHA.112.128413. This very useful review describes of global methodologies of mortality measurement for estimating deaths from cardiovascular disease.

  8. Say L, Chou D, Gemmill A, Tuncalp O, Moller AB, Daniels J, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323–33. https://doi.org/10.1016/S2214-109X(14)70227-X.

    Article  PubMed  Google Scholar 

  9. Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertension and kidney disease - the role of fetal programming. Hypertension. 2006;47(3):502–8. https://doi.org/10.1161/01.HYP.0000198544.09909.1a.

    Article  PubMed  CAS  Google Scholar 

  10. Staessen JA, Wang J, Bianchi G, Birkenhager WH. Essential hypertension. Lancet. 2003;361(9369):1629–41. https://doi.org/10.1016/S0140-6736(03)13302-8.

    Article  PubMed  Google Scholar 

  11. Hennig M, Fiedler S, Jux C, Thierfelder L, Drenckhahn JD. Prenatal mechanistic target of rapamycin complex 1 (m TORC1) inhibition by rapamycin treatment of pregnant mice causes intrauterine growth restriction and alters postnatal cardiac growth, morphology, and function. J Am Heart Assoc. 2017;6(8). https://doi.org/10.1161/JAHA.117.005506.

  12. Crispi F, Miranda J, Gratacos E. Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease. Am J Obstet Gynecol. 2018;218(2S):S869–79. https://doi.org/10.1016/j.ajog.2017.12.012.

    Article  PubMed  Google Scholar 

  13. Lisowska M, Pietrucha T, Sakowicz A. Preeclampsia and related cardiovascular risk: common genetic background. Curr Hypertens Rep. 2018;20(8):71. https://doi.org/10.1007/s11906-018-0869-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gaccioli F, Lager S. Placental nutrient transport and intrauterine growth restriction. Front Physiol. 2016;7:40. https://doi.org/10.3389/fphys.2016.00040.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S745–61. https://doi.org/10.1016/j.ajog.2017.11.577.

    Article  PubMed  CAS  Google Scholar 

  16. Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, et al. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab. 2013;98(1):105–13. https://doi.org/10.1210/jc.2012-2667.

    Article  PubMed  CAS  Google Scholar 

  17. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005;37(1):19–24. https://doi.org/10.1038/ng1494.

    Article  PubMed  CAS  Google Scholar 

  18. Economides DL, Nicolaides KH. Blood glucose and oxygen tension levels in small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989;160(2):385–9.

    Article  PubMed  CAS  Google Scholar 

  19. Dimasuay KG, Boeuf P, Powell TL, Jansson T. Placental responses to changes in the maternal environment determine fetal growth. Front Physiol. 2016;7:12. https://doi.org/10.3389/fphys.2016.00012.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sati L, Soygur B, Celik-Ozenci C. Expression of mammalian target of rapamycin and downstream targets in normal and gestational diabetic human term placenta. Reprod Sci. 2016;23(3):324–32. https://doi.org/10.1177/1933719115602765.

    Article  PubMed  CAS  Google Scholar 

  21. Desforges M, Lacey HA, Glazier JD, Greenwood SL, Mynett KJ, Speake PF, et al. SNAT4 isoform of system A amino acid transporter is expressed in human placenta. Am J Physiol Cell Physiol. 2006;290(1):C305–12. https://doi.org/10.1152/ajpcell.00258.2005.

    Article  PubMed  CAS  Google Scholar 

  22. Gupta MB, Jansson T. Novel roles of mTOR signaling in regulating fetal growth. Biol Reprod. 2018. https://doi.org/10.1093/biolre/ioy249.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem. 2003;278(32):29655–60. https://doi.org/10.1074/jbc.M212770200.

    Article  PubMed  CAS  Google Scholar 

  24. Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006;3(6):393–402. https://doi.org/10.1016/j.cmet.2006.05.003.

    Article  PubMed  CAS  Google Scholar 

  25. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84. https://doi.org/10.1016/j.cell.2006.01.016.

    Article  PubMed  CAS  Google Scholar 

  26. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873–86. https://doi.org/10.1016/j.cell.2009.03.046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Roos S, Lagerlof O, Wennergren M, Powell TL, Jansson T. Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling. Am J Physiol Cell Physiol. 2009;297(3):C723–31. https://doi.org/10.1152/ajpcell.00191.2009.

    Article  PubMed  CAS  Google Scholar 

  28. Spradley FT, Ge Y, Haynes BP, Granger JP, Anderson CD. Adrenergic receptor blockade attenuates placental ischemia-induced hypertension. Physiol Rep. 2018;6(17):e13814. https://doi.org/10.14814/phy2.13814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Spradley FT, Palei AC, Granger JP. Increased risk for the development of preeclampsia in obese pregnancies: weighing in on the mechanisms. Am J Physiol Regul Integr Comp Physiol. 2015;309(11):R1326–43. https://doi.org/10.1152/ajpregu.00178.2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chen Q, Stone P, Ching LM, Chamley L. A role for interleukin-6 in spreading endothelial cell activation after phagocytosis of necrotic trophoblastic material: implications for the pathogenesis of pre-eclampsia. J Pathol. 2009;217(1):122–30. https://doi.org/10.1002/path.2425.

    Article  PubMed  CAS  Google Scholar 

  31. Harradine KA, Akhurst RJ. Mutations of TGFbeta signaling molecules in human disease. Ann Med. 2006;38(6):403–14. https://doi.org/10.1080/07853890600919911.

    Article  PubMed  CAS  Google Scholar 

  32. Stojanovska V, Scherjon SA, Plosch T. Preeclampsia as modulator of offspring health. Biol Reprod. 2016;94(3). ARTN 53 https://doi.org/10.1095/biolreprod.115.135780.

  33. Palei AC, Spradley FT, Warrington JP, George EM, Granger JP. Pathophysiology of hypertension in pre-eclampsia: a lesson in integrative physiology. Acta Physiol (Oxf). 2013;208(3):224–33. https://doi.org/10.1111/apha.12106.

    Article  PubMed  CAS  Google Scholar 

  34. ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007;8(11):857–69. https://doi.org/10.1038/nrm2262.

    Article  PubMed  CAS  Google Scholar 

  35. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9. https://doi.org/10.1038/nm1429.

    Article  PubMed  CAS  Google Scholar 

  36. Chauvin S, Yinon Y, Xu J, Ermini L, Sallais J, Tagliaferro A, et al. Aberrant TGFbeta signalling contributes to dysregulation of sphingolipid metabolism in intrauterine growth restriction. J Clin Endocrinol Metab. 2015;100(7):E986–96. https://doi.org/10.1210/jc.2015-1288.

    Article  PubMed  Google Scholar 

  37. Londhe VA, Maisonet TM, Lopez B, Shin BC, Huynh J, Devaskar SU. Retinoic acid rescues alveolar hypoplasia in the calorie-restricted developing rat lung. Am J Respir Cell Mol Biol. 2013;48(2):179–87. https://doi.org/10.1165/rcmb.2012-0229OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sava RI, March KL, Pepine CJ. Hypertension in pregnancy: taking cues from pathophysiology for clinical practice. Clin Cardiol. 2018;41(2):220–7. https://doi.org/10.1002/clc.22892.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Intapad S, Warrington JP, Spradley FT, Palei AC, Drummond HA, Ryan MJ, et al. Reduced uterine perfusion pressure induces hypertension in the pregnant mouse. Am J Physiol Regul Integr Comp Physiol. 2014;307(11):R1353–7. https://doi.org/10.1152/ajpregu.00268.2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Swanson AM, David AL. Animal models of fetal growth restriction: considerations for translational medicine. Placenta. 2015;36(6):623–30. https://doi.org/10.1016/j.placenta.2015.03.003.

    Article  PubMed  CAS  Google Scholar 

  41. Herrera EA, Schneider D, Alegria R, Figueroa E, Villanueva C, Farias M, et al. Intrauterine growth restriction in guinea pig impairs umbilical and systemic vascular function. Placenta. 2015;36(4):485–6. https://doi.org/10.1016/j.placenta.2015.01.437.

    Article  Google Scholar 

  42. Lawrence DJ, Escott ME, Myers L, Intapad S, Lindsey SH, Bayer CL. Spectral photoacoustic imaging to estimate in vivo placental oxygenation during preeclampsia. Sci Rep. 2019;9(1):558. https://doi.org/10.1038/s41598-018-37310-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Herrera EA, Alegria R, Farias M, Diaz-Lopez F, Hernandez C, Uauy R, et al. Assessment of in vivo fetal growth and placental vascular function in a novel intrauterine growth restriction model of progressive uterine artery occlusion in guinea pigs. J Physiol. 2016;594(6):1553–61. https://doi.org/10.1113/JP271467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Salavati N, Smies M, Ganzevoort W, Charles AK, Erwich JJ, Plosch T, et al. The possible role of placental morphometry in the detection of fetal growth restriction. Front Physiol. 2018;9:1884. https://doi.org/10.3389/fphys.2018.01884.

    Article  PubMed  Google Scholar 

  45. Carter DR, Beaupre GS. Skeletal function and form: mechanobiology of skeletal development, aging, and regeneration. Cambridge University Press; 2007.

  46. Kim JS, Kim KK, Baek HJ, Park KS. Effect of confounding factors on blood pressure estimation using pulse arrival time. Physiol Meas. 2008;29(5):615–24. https://doi.org/10.1088/0967-3334/29/5/007.

    Article  PubMed  Google Scholar 

  47. Ranasinghe P, Cooray DN, Jayawardena R, Katulanda P. The influence of family history of hypertension on disease prevalence and associated metabolic risk factors among Sri Lankan adults. BMC Public Health. 2015;15:576. https://doi.org/10.1186/s12889-015-1927-7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Intapad S, Ojeda NB, Dasinger JH, Alexander BT. Sex differences in the developmental origins of cardiovascular disease. Physiology (Bethesda). 2014;29(2):122–32. https://doi.org/10.1152/physiol.00045.2013.

    Article  PubMed  CAS  Google Scholar 

  49. Wikstrom AK, Haglund B, Olovsson M, Lindeberg SN. The risk of maternal ischaemic heart disease after gestational hypertensive disease. Bjog-an Int J Obstetrics Gynaecol. 2005;112(11):1486–91. https://doi.org/10.1111/j.1471-0528.2005.00733.x.

    Article  Google Scholar 

  50. •• Intapad S, Dasinger JH, Johnson JM, Brown AD, Ojeda NB, Alexander BT. Male and female intrauterine growth-restricted offspring differ in blood pressure, renal function, and glucose homeostasis responses to a postnatal diet high in fat and sugar. Hypertension. 2019;HYPERTENSIONAHA-118. This study implicate male IUGR are resistant to impaired glucose homeostasis, whereas female IUGR are susceptible to metabolic dysfunction regardless of postnatal diet. Hence, moderation of fat and sugar intake may be warranted in those born low birth weight to ensure minimal risk for chronic disease.

  51. • Intapad S, Alexander BT. Pregnancy complications and later development of hypertension. Curr Cardiovasc Risk Rep. 2013;7(3):183–9. https://doi.org/10.1007/s12170-013-0303-3. The authors provide one of the most comprehensive and all-inclusive reviews on increased blood pressure in the mother following a complicated pregnancy and provide insight into the development of preventative measures that may improve the long-term cardiovascular health of women and their offspring.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ojeda NB, Grigore D, Robertson EB, Alexander BT. Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring. Hypertension. 2007;50(4):679–85. https://doi.org/10.1161/HYPERTENSIONAHA.107.091785.

    Article  PubMed  CAS  Google Scholar 

  53. Yang J, Shang J, Zhang S, Li H, Liu H. The role of the renin-angiotensin-aldosterone system in preeclampsia: genetic polymorphisms and microRNA. J Mol Endocrinol. 2013;50(2):R53-66. https://doi.org/10.1530/JME-12-0216.

    Article  PubMed  CAS  Google Scholar 

  54. Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical renin-angiotensin system in kidney physiology. Compr Physiol. 2014;4(3):1201–28. https://doi.org/10.1002/cphy.c130040.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Anton L, Brosnihan KB. Systemic and uteroplacental renin–angiotensin system in normal and pre-eclamptic pregnancies. Ther Adv Cardiovasc Dis. 2008;2(5):349–62. https://doi.org/10.1177/1753944708094529.

    Article  PubMed  Google Scholar 

  56. Shah DA, Khalil RA. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol. 2015;95(4):211–26. https://doi.org/10.1016/j.bcp.2015.04.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Davis GK, Newsome AD, Ojeda NB, Alexander BT. Effects of intrauterine growth restriction and female sex on future blood pressure and cardiovascular disease. Curr Hypertens Rep. 2017;19(2):13. https://doi.org/10.1007/s11906-017-0712-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Intapad S, Dasinger JH, Fahling JM, Backstrom MA, Alexander BT. Testosterone is protective against impaired glucose metabolism in male intrauterine growth-restricted offspring. PLoS ONE. 2017;12(11):e0187843. https://doi.org/10.1371/journal.pone.0187843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Alexander BT. Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension. 2003;41(3):457–62. https://doi.org/10.1161/01.HYP.0000053448.95913.3D.

    Article  PubMed  CAS  Google Scholar 

  60. Intapad S, Dasinger JH, Brown AD, Fahling JM, Esters J, Alexander BT. Glucose intolerance develops prior to increased adiposity and accelerated cessation of estrous cyclicity in female growth-restricted rats. Pediatr Res. 2016;79(6):962–70. https://doi.org/10.1038/pr.2016.14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Alexander BT. Fetal programming of hypertension. Am J Physiol Regul Integr Comp Physiol. 2006;290(1):R1–10. https://doi.org/10.1152/ajpregu.00417.2005.

    Article  PubMed  CAS  Google Scholar 

  62. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr. 2007;27:363–88. https://doi.org/10.1146/annurev.nutr.27.061406.093705.

    Article  PubMed  CAS  Google Scholar 

  63. Ness RB, Markovic N, Bass D, Harger G, Roberts JM. Family history of hypertension, heart disease, and stroke among women who develop hypertension in pregnancy. Obstet Gynecol. 2003;102(6):1366–71.

    PubMed  Google Scholar 

  64. •• Loset M, Johnson MP, Melton PE, Ang W, Huang RC, Mori TA, et al. Preeclampsia and cardiovascular disease share genetic risk factors on chromosome 2q22. Pregnancy Hypertens Int J Womens Cardiovasc Health. 2014;4(2):178–85. https://doi.org/10.1016/j.preghy.2014.03.005. Study investigated four different single nucleotide polymorphism (SNPs) risk variants Curr Hypertens Rep (2018) 20: 71 Page 7 of 8 71 on the following genes: lactase, low-density lipoprotein receptor-related protein 1B, rho family GTPase 3 and grancalcin. All of the tested SNPs were found to be associated with preeclampsia and known cardiovascular risk factors, suggesting that mentioned diseases have the same genetic background.

    Article  Google Scholar 

  65. Romundstad PR, Magnussen EB, Smith GD, Vatten LJ. Hypertension in pregnancy and later cardiovascular risk: common antecedents? Circulation. 2010;122(6):579–84. https://doi.org/10.1161/CIRCULATIONAHA.110.943407.

    Article  PubMed  Google Scholar 

  66. Johansson A, Curran JE, Johnson MP, Freed KA, Fenstad MH, Bjorge L, et al. Identification of ACOX2 as a shared genetic risk factor for preeclampsia and cardiovascular disease. Eur J Hum Genet. 2011;19(7):796–800. https://doi.org/10.1038/ejhg.2011.19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sima AV, Botez GM, Stancu CS, Manea A, Raicu M, Simionescu M. Effect of irreversibly glycated LDL in human vascular smooth muscle cells: lipid loading, oxidative and inflammatory stress. J Cell Mol Med. 2010;14(12):2790–802. https://doi.org/10.1111/j.1582-4934.2009.00933.x.

    Article  PubMed  CAS  Google Scholar 

  68. Groten T, Schleussner E, Lehmann T, Reister F, Holzer B, Danso KA, et al. eNOSI4 and EPHX1 polymorphisms affect maternal susceptibility to preeclampsia: analysis of five polymorphisms predisposing to cardiovascular disease in 279 Caucasian and 241 African women. Arch Gynecol Obstet. 2014;289(3):581–93. https://doi.org/10.1007/s00404-013-2991-9.

    Article  PubMed  CAS  Google Scholar 

  69. Laasanen MS, Toyras J, Hirvonen J, Saarakkala S, Korhonen RK, Nieminen MT, et al. Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration. Physiol Meas. 2002;23(3):491–503.

    Article  PubMed  CAS  Google Scholar 

  70. Rahimi Z, Aghaei A, Rahimi Z, Vaisi-Raygani A. Endothelial nitric oxide synthase (eNOS) 4a/b and G894T polymorphisms and susceptibility to preeclampsia. J Reprod Infertil. 2013;14(4):184–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104(3):342–5.

    Article  PubMed  CAS  Google Scholar 

  72. Dias S, Pheiffer C, Abrahams Y, Rheeder P, Adam S. Molecular biomarkers for gestational diabetes mellitus. Int J Mol Sci. 2018;19(10). https://doi.org/10.3390/ijms19102926.

  73. International HapMap C, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61. https://doi.org/10.1038/nature06258.

  74. Aye IL, Lager S, Ramirez VI, Gaccioli F, Dudley DJ, Jansson T, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod. 2014;90(6):129. https://doi.org/10.1095/biolreprod.113.116186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Johnson MP, Brennecke SP, East CE, Dyer TD, Roten LT, Proffitt JM, et al. Genetic dissection of the pre-eclampsia susceptibility locus on chromosome 2q22 reveals shared novel risk factors for cardiovascular disease. Mol Hum Reprod. 2013;19(7):423–37. https://doi.org/10.1093/molehr/gat011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chen LW, Egan L, Li ZW, Greten FR, Kagnoff MF, Karin M. The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat Med. 2003;9(5):575–81. https://doi.org/10.1038/nm849.

    Article  PubMed  CAS  Google Scholar 

  77. Vaughan JE, Walsh SW. Activation of NF-kappaB in placentas of women with preeclampsia. Hypertens Pregnancy. 2012;31(2):243–51. https://doi.org/10.3109/10641955.2011.642436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Gonzalez-Tendero A, Torre I, Garcia-Canadilla P, Crispi F, Garcia-Garcia F, Dopazo J, et al. Intrauterine growth restriction is associated with cardiac ultrastructural and gene expression changes related to the energetic metabolism in a rabbit model. Am J Physiol Heart Circ Physiol. 2013;305(12):H1752–60. https://doi.org/10.1152/ajpheart.00514.2013.

    Article  PubMed  CAS  Google Scholar 

  79. Guitart-Mampel M, Gonzalez-Tendero A, Ninerola S, Moren C, Catalan-Garcia M, Gonzalez-Casacuberta I, et al. Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction. Biochim Biophys Acta Gen Subj. 2018;1862(5):1157–67. https://doi.org/10.1016/j.bbagen.2018.02.006.

    Article  PubMed  CAS  Google Scholar 

  80. • Hromadnikova I, Kotlabova K, Hympanova L, Krofta L. Cardiovascular and cerebrovascular disease associated microRNAs are dysregulated in placental tissues affected with gestational hypertension, preeclampsia and intrauterine growth restriction. PLoS ONE. 2015;10(9):e0138383. https://doi.org/10.1371/journal.pone.0138383. This study tested 32 microRNA gene expression profiles and found that two of them, miR-100-5p and miR-125b-5p, are especially engaged in preeclampsia development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(2):178 e12–21. https://doi.org/10.1016/j.ajog.2010.09.004.

  82. Morsing E, Liuba P, Fellman V, Marsal K, Brodszki J. Cardiovascular function in children born very preterm after intrauterine growth restriction with severely abnormal umbilical artery blood flow. Eur J Prev Cardiol. 2014;21(10):1257–66. https://doi.org/10.1177/2047487313486044.

    Article  PubMed  Google Scholar 

  83. Tang XL, Li Q, Rokosh G, Sanganalmath SK, Chen N, Ou Q, et al. Long-term outcome of administration of c-kit(POS) cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Circ Res. 2016;118(7):1091–105. https://doi.org/10.1161/CIRCRESAHA.115.307647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lim K, Zimanyi MA, Black MJ. Effect of maternal protein restriction in rats on cardiac fibrosis and capillarization in adulthood. Pediatr Res. 2006;60(1):83–7. https://doi.org/10.1203/01.pdr.0000220361.08181.c3.

    Article  PubMed  Google Scholar 

  85. Perez-Cruz M, Crispi F, Fernandez MT, Parra JA, Valls A, Gomez Roig MD, et al. Cord blood biomarkers of cardiac dysfunction and damage in term growth-restricted fetuses classified by severity criteria. Fetal Diagn Ther. 2018;44(4):271–6. https://doi.org/10.1159/000484315.

    Article  PubMed  Google Scholar 

  86. Perez-Cruz M, Cruz-Lemini M, Fernandez MT, Parra JA, Bartrons J, Gomez-Roig MD, et al. Fetal cardiac function in late-onset intrauterine growth restriction vs small-for-gestational age, as defined by estimated fetal weight, cerebroplacental ratio and uterine artery Doppler. Ultrasound Obstet Gynecol. 2015;46(4):465–71. https://doi.org/10.1002/uog.14930.

    Article  PubMed  CAS  Google Scholar 

  87. Karamlou TB, Giraud GD, McKeogh DF, Jonker SS, Shen I, Ungerlieder RM, et al. Right ventricular remodeling in response to volume overload in fetal sheep. Am J Physiol Heart Circ Physiol. 2019. https://doi.org/10.1152/ajpheart.00439.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wang KC, Zhang L, McMillen IC, Botting KJ, Duffield JA, Zhang S, et al. Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb. J Physiol. 2011;589(Pt 19):4709–22. https://doi.org/10.1113/jphysiol.2011.211185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Camm EJ, Botting KJ, Sferruzzi-Perri AN. Near to one’s heart: the intimate relationship between the placenta and fetal heart. Front Physiol. 2018;9:629. https://doi.org/10.3389/fphys.2018.00629.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stacy V, De Matteo R, Brew N, Sozo F, Probyn ME, Harding R, et al. The influence of naturally occurring differences in birthweight on ventricular cardiomyocyte number in sheep. Anat Rec-Adv Integrative Anat Evol Biol. 2009;292(1):29–37. https://doi.org/10.1002/ar.20789.

    Article  PubMed  Google Scholar 

  91. Wang KC, Lim CH, McMillen IC, Duffield JA, Brooks DA, Morrison JL. Alteration of cardiac glucose metabolism in association to low birth weight: experimental evidence in lambs with left ventricular hypertrophy. Metabolism. 2013;62(11):1662–72. https://doi.org/10.1016/j.metabol.2013.06.013.

    Article  PubMed  CAS  Google Scholar 

  92. Briscoe TA, Rehn AE, Dieni S, Duncan JR, Wlodek ME, Owens JA, et al. Cardiovascular and renal disease in the adolescent guinea pig after chronic placental insufficiency. Am J Obstet Gynecol. 2004;191(3):847–55. https://doi.org/10.1016/j.ajog.2004.01.050.

    Article  PubMed  Google Scholar 

  93. Menendez-Castro C, Toka O, Fahlbusch F, Cordasic N, Wachtveitl R, Hilgers KF, et al. Impaired myocardial performance in a normotensive rat model of intrauterine growth restriction. Pediatr Res. 2014;75(6):697–706. https://doi.org/10.1038/pr.2014.27.

    Article  PubMed  CAS  Google Scholar 

  94. He Q, Liu X, Zhong Y, Xu SS, Zhang ZM, Tang LL, et al. Arginine bioavailability and endothelin-1 system in the regulation of vascular function of umbilical vein endothelial cells from intrauterine growth restricted newborns. Nutr Metab Cardiovasc Dis. 2018;28(12):1285–95. https://doi.org/10.1016/j.numecd.2018.09.002.

    Article  PubMed  CAS  Google Scholar 

  95. Monica FZ, Bian K, Murad F. The endothelium-dependent nitric oxide-cGMP pathway. Adv Pharmacol. 2016;77:1–27. https://doi.org/10.1016/bs.apha.2016.05.001.

    Article  PubMed  CAS  Google Scholar 

  96. Siragusa M, Fleming I. The eNOS signalosome and its link to endothelial dysfunction. Pflugers Archiv-Eur J Physiol. 2016;468(7):1125–37. https://doi.org/10.1007/s00424-016-1839-0.

    Article  CAS  Google Scholar 

  97. Xu XF, Lv Y, Gu WZ, Tang LL, Wei JK, Zhang LY, et al. Epigenetics of hypoxic pulmonary arterial hypertension following intrauterine growth retardation rat: epigenetics in PAH following IUGR. Respir Res. 2013;14:20. https://doi.org/10.1186/1465-9921-14-20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Thorin E, Huang PL, Fishman MC, Bevan JA. Nitric oxide inhibits alpha(2)-adrenoceptor-mediated endothelium-dependent vasodilation. Circ Res. 1998;82(12):1323–9. https://doi.org/10.1161/01.Res.82.12.1323.

    Article  PubMed  CAS  Google Scholar 

  99. Xuan C, Tian QW, Li H, Zhang BB, He GW, Lun LM. Levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, and risk of coronary artery disease: a meta-analysis based on 4713 participants. Eur J Prev Cardiol. 2016;23(5):502–10. https://doi.org/10.1177/2047487315586094.

    Article  PubMed  Google Scholar 

  100. Tintu A, Rouwet E, Verlohren S, Brinkmann J, Ahmad S, Crispi F, et al. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences. PLoS ONE. 2009;4(4):e5155. https://doi.org/10.1371/journal.pone.0005155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Crispi F, Figueras F, Cruz-Lemini M, Bartrons J, Bijnens B, Gratacos E. Cardiovascular programming in children born small for gestational age and relationship with prenatal signs of severity. Am J Obstetr Gynecol. 2012;207(2):121-e1. https://doi.org/10.1016/j.ajog.2012.05.011.

  102. Zanardo V, de Luca F, Trevisanuto D, Simbi A, Scambia G, Straface G. “Two-step” head-to-body delivery activates foetal gluconeogenesis. Acta Paediatr. 2013;102(7):e334–8. https://doi.org/10.1111/apa.12261.

    Article  PubMed  Google Scholar 

  103. Comas M, Crispi F, Cruz-Martinez R, Figueras F, Gratacos E. Tissue Doppler echocardiographic markers of cardiac dysfunction in small-for-gestational age fetuses. Am J Obstetr Gynecol. 2011;205(1):57-e1. https://doi.org/10.1016/j.ajog.2011.03.010.

  104. Cruz-Lemini M, Crispi F, Valenzuela-Alcaraz B, Figueras F, Gomez O, Sitges M, et al. A fetal cardiovascular score to predict infant hypertension and arterial remodeling in intrauterine growth restriction. Am J Obstet Gynecol. 2014;210(6):552 e1- e22. https://doi.org/10.1016/j.ajog.2013.12.031.

  105. Schlaudecker EP, Munoz FM, Bardaji A, Boghossian NS, Khalil A, Mousa H, et al. Small for gestational age: case definition & guidelines for data collection, analysis, and presentation of maternal immunisation safety data. Vaccine. 2017;35(48 Pt A):6518–28. https://doi.org/10.1016/j.vaccine.2017.01.040.

  106. Akazawa Y, Hachiya A, Yamazaki S, Kawasaki Y, Nakamura C, Takeuchi Y, et al. Cardiovascular remodeling and dysfunction across a range of growth restriction severity in small for gestational age infants - implications for fetal programming. Circ J. 2016;80(10):2212-+. https://doi.org/10.1253/circj.CJ-16-0352.

  107. Makikallio K, Vuolteenaho O, Jouppila P, Rasanen J. Ultrasonographic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency. Circulation. 2002;105(17):2058–63. https://doi.org/10.1161/01.Cir.0000015505.24187.Fa.

    Article  PubMed  Google Scholar 

  108. Sehgal A, Paul E, Menahem S. Functional echocardiography in staging for ductal disease severity: role in predicting outcomes. Eur J Pediatr. 2013;172(2):179–84. https://doi.org/10.1007/s00431-012-1851-0.

    Article  PubMed  Google Scholar 

  109. Fouzas S, Karatza AA, Davlouros PA, Chrysis D, Alexopoulos D, Mantagos S, et al. Heterogeneity of ventricular repolarization in newborns with intrauterine growth restriction. Early Hum Dev. 2014;90(12):857–62. https://doi.org/10.1016/j.earlhumdev.2014.09.009.

    Article  PubMed  Google Scholar 

  110. Skilton MR, Pahkala K, Viikari JS, Ronnemaa T, Simell O, Jula A, et al. The association of dietary alpha-linolenic acid with blood pressure and subclinical atherosclerosis in people born small for gestational age: the Special Turku Coronary Risk Factor Intervention Project study. J Pediatr. 2015;166(5):1252–7 e2. https://doi.org/10.1016/j.jpeds.2015.01.020.

  111. Miles KL, McDonnell BJ, Maki-Petaja KM, Yasmin, Cockcroft JR, Wilkinson IB, et al. The impact of birth weight on blood pressure and arterial stiffness in later life: the Enigma Study. J Hypertens. 2011;29(12):2324–31. https://doi.org/10.1097/HJH.0b013e32834d0ca1.

  112. Hietalampi H, Pahkala K, Jokinen E, Ronnemaa T, Viikari JSA, Niinikoski H, et al. Left ventricular mass and geometry in adolescence early childhood determinants. Hypertension. 2012;60(5):1266–72. https://doi.org/10.1161/Hypertensionaha.112.194290.

    Article  PubMed  CAS  Google Scholar 

  113. Nam HK, Cho WK, Kim JH, Rhie YJ, Chung S, Lee KH, et al. HbA1c Cutoff for prediabetes and diabetes based on oral glucose tolerance test in obese children and adolescents. J Korean Med Sci. 2018;33(12):e93. https://doi.org/10.3346/jkms.2018.33.e93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. West NA, Crume TL, Maligie MA, Dabelea D. Cardiovascular risk factors in children exposed to maternal diabetes in utero. Diabetologia. 2011;54(3):504–7. https://doi.org/10.1007/s00125-010-2008-1.

    Article  PubMed  CAS  Google Scholar 

  115. Dasinger JH, Alexander BT. Gender differences in developmental programming of cardiovascular diseases. Clin Sci (Lond). 2016;130(5):337–48. https://doi.org/10.1042/CS20150611.

    Article  PubMed  CAS  Google Scholar 

  116. Gaillard R, Steegers EA, Duijts L, Felix JF, Hofman A, Franco OH, et al. Childhood cardiometabolic outcomes of maternal obesity during pregnancy: the Generation R Study. Hypertension. 2014;63(4):683–91. https://doi.org/10.1161/HYPERTENSIONAHA.113.02671.

    Article  PubMed  CAS  Google Scholar 

  117. Intapad S. Reprogramming essential hypertension: the role of resveratrol. Hypertension. 2016;67(5):829–30. https://doi.org/10.1161/HYPERTENSIONAHA.116.06919.

    Article  PubMed  CAS  Google Scholar 

  118. Ojeda NB, Grigore D, Alexander BT. Intrauterine growth restriction: fetal programming of hypertension and kidney disease. Adv Chronic Kidney Dis. 2008;15(2):101–6. https://doi.org/10.1053/j.ackd.2008.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sholook MM, Gilbert JS, Sedeek MH, Huang M, Hester RL, Granger JP. Systemic hemodynamic and regional blood flow changes in response to chronic reductions in uterine perfusion pressure in pregnant rats. Am J Physiol-Heart and Circul Physiol. 2007;293(4):H2080–4. https://doi.org/10.1152/ajpheart.00667.2007.

    Article  CAS  Google Scholar 

  120. Walsh SK, English FA, Johns EJ, Kenny LC. Plasma-mediated vascular dysfunction in the reduced uterine perfusion pressure model of preeclampsia: a microvascular characterization. Hypertension. 2009;54(2):345–51. https://doi.org/10.1161/HYPERTENSIONAHA.109.132191.

    Article  PubMed  CAS  Google Scholar 

  121. Granger JP, LaMarca BB, Cockrell K, Sedeek M, Balzi C, Chandler D, et al. Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia. Methods Mol Med. 2006;122:383–92.

    PubMed  Google Scholar 

  122. Gilbert JS, Gilbert SA, Arany M, Granger JP. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression. Hypertension. 2009;53(2):399–403. https://doi.org/10.1161/HYPERTENSIONAHA.108.123513.

    Article  PubMed  CAS  Google Scholar 

  123. Grosser N, Abate A, Oberle S, Vreman HJ, Dennery PA, Becker JC, et al. Heme oxygenase-1 induction may explain the antioxidant profile of aspirin. Biochem Biophys Res Commun. 2003;308(4):956–60.

    Article  PubMed  CAS  Google Scholar 

  124. Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR. Biochim Biophys Acta Mol Basis Dis. 2019.

  125. Fischer M, Baessler A, Schunkert H. Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res. 2002;53(3):672–7.

    Article  PubMed  CAS  Google Scholar 

  126. Ojeda NB, Royals TP, Black JT, Dasinger JH, Johnson JM, Alexander BT. Enhanced sensitivity to acute angiotensin II is testosterone dependent in adult male growth-restricted offspring. Am J Physiol Regul Integr Comp Physiol. 2010;298(5):R1421–7. https://doi.org/10.1152/ajpregu.00096.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Grigore D, Ojeda NB, Robertson EB, Dawson AS, Huffman CA, Bourassa EA, et al. Placental insufficiency results in temporal alterations in the renin angiotensin system in male hypertensive growth restricted offspring. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R804–11. https://doi.org/10.1152/ajpregu.00725.2006.

    Article  PubMed  CAS  Google Scholar 

  128. Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet. 2002;360(9334):659–65. https://doi.org/10.1016/S0140-6736(02)09834-3.

    Article  PubMed  Google Scholar 

  129. Alexander BT, Dasinger JH, Intapad S. Fetal programming and cardiovascular pathology. Compr Physiol. 2015;5(2):997–1025. https://doi.org/10.1002/cphy.c140036.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Fortepiani LA, Zhang HM, Racusen L, Roberts LJ, Reckelhoff JF. Characterization of an animal model of postmenopausal hypertension in spontaneously hypertensive rats. Hypertension. 2003;41(3):640–5. https://doi.org/10.1161/01.Hyp.0000046924.94886.Ef.

    Article  PubMed  CAS  Google Scholar 

  131. Yanes LL, Romero DG, Iles JW, Iliescu R, Gomez-Sanchez C, Reckelhoff JF. Sexual dimorphism in the renin-angiotensin system in aging spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2006;291(2):R383–90. https://doi.org/10.1152/ajpregu.00510.2005.

    Article  PubMed  CAS  Google Scholar 

  132. Brooks HL, Pollow DP, Hoyer PB. The VCD mouse model of menopause and perimenopause for the study of sex differences in cardiovascular disease and the metabolic syndrome. Physiology (Bethesda). 2016;31(4):250–7. https://doi.org/10.1152/physiol.00057.2014.

    Article  PubMed  CAS  Google Scholar 

  133. Liu Y, Wang Z, Li J, Ban Y, Mao G, Zhang M, et al. Inhibition of 5-hydroxytryptamine receptor 2B reduced vascular restenosis and mitigated the beta-arrestin2-mammalian target of rapamycin/p70S6K pathway. J Am Heart Assoc. 2018;7(3). https://doi.org/10.1161/JAHA.117.006810.

  134. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159–68. https://doi.org/10.1016/j.molcel.2006.03.029.

    Article  PubMed  CAS  Google Scholar 

  135. Grandvuillemin I, Buffat C, Boubred F, Lamy E, Fromonot J, Charpiot P, et al. Arginase upregulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol. 2018;315(3):R509–20. https://doi.org/10.1152/ajpregu.00354.2017.

    Article  PubMed  CAS  Google Scholar 

  136. Yzydorczyk C, Armengaud JB, Peyter AC, Chehade H, Cachat F, Juvet C, et al. Endothelial dysfunction in individuals born after fetal growth restriction: cardiovascular and renal consequences and preventive approaches. J Dev Orig Health Dis. 2017;8(4):448–64. https://doi.org/10.1017/S2040174417000265.

    Article  PubMed  CAS  Google Scholar 

  137. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58. https://doi.org/10.1172/JCI17189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. McCarthy FP, Kingdom JC, Kenny LC, Walsh SK. Animal models of preeclampsia; uses and limitations. Placenta. 2011;32(6):413–9. https://doi.org/10.1016/j.placenta.2011.03.010.

    Article  PubMed  CAS  Google Scholar 

  139. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci. 2015;129(2):83–94. https://doi.org/10.1016/j.jphs.2015.09.002.

    Article  PubMed  CAS  Google Scholar 

  140. Payne JA, Alexander BT, Khalil RA. Reduced endothelial vascular relaxation in growth-restricted offspring of pregnant rats with reduced uterine perfusion. Hypertension. 2003;42(4):768–74. https://doi.org/10.1161/01.HYP.0000084990.88147.0C.

    Article  PubMed  CAS  Google Scholar 

  141. Sathishkumar K, Elkins R, Yallampalli U, Balakrishnan M, Yallampalli C. Fetal programming of adult hypertension in female rat offspring exposed to androgens in utero. Early Hum Dev. 2011;87(6):407–14. https://doi.org/10.1016/j.earlhumdev.2011.03.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Ahmad A, Dempsey SK, Daneva Z, Li N, Poklis JL, Li PL, et al. Modulation of mean arterial pressure and diuresis by renomedullary infusion of a selective inhibitor of fatty acid amide hydrolase. Am J Physiol Renal Physiol. 2018;315(4):F967–76. https://doi.org/10.1152/ajprenal.00090.2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Martin H, Hu J, Gennser G, Norman M. Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation. 2000;102(22):2739–44. https://doi.org/10.1161/01.Cir.102.22.2739.

    Article  PubMed  CAS  Google Scholar 

  144. Goodfellow J, Bellamy MF, Gorman ST, Brownlee M, Ramsey MW, Lewis MJ, et al. Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc Res. 1998;40(3):600–6. https://doi.org/10.1016/S0008-6363(98)00197-7.

    Article  PubMed  CAS  Google Scholar 

  145. Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol. 1994;171(1):158–64.

    Article  PubMed  CAS  Google Scholar 

  146. Herrera EA, Krause B, Ebensperger G, Reyes RV, Casanello P, Parra-Cordero M, et al. The placental pursuit for an adequate oxidant balance between the mother and the fetus. Front Pharmacol. 2014;5:149. https://doi.org/10.3389/fphar.2014.00149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Thakor AS, Richter HG, Kane AD, Dunster C, Kelly FJ, Poston L, et al. Redox modulation of the fetal cardiovascular defence to hypoxaemia. J Physiol. 2010;588(Pt 21):4235–47. https://doi.org/10.1113/jphysiol.2010.196402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Xiao D, Huang X, Yang S, Zhang L. Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring. Hypertension. 2013;61(6):1246–54. https://doi.org/10.1161/HYPERTENSIONAHA.113.01152.

    Article  PubMed  CAS  Google Scholar 

  149. Ojeda NB, Hennington BS, Williamson DT, Hill ML, Betson NE, Sartori-Valinotti JC, et al. Oxidative stress contributes to sex differences in blood pressure in adult growth-restricted offspring. Hypertension. 2012;60(1):114–22. https://doi.org/10.1161/HYPERTENSIONAHA.112.192955.

    Article  PubMed  CAS  Google Scholar 

  150. Tao H, Rui C, Zheng J, Tang J, Wu L, Shi A, et al. Angiotensin II-mediated vascular changes in aged offspring rats exposed to perinatal nicotine. Peptides. 2013;44:111–9. https://doi.org/10.1016/j.peptides.2013.02.019.

    Article  PubMed  CAS  Google Scholar 

  151. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141–8.

    Article  PubMed  CAS  Google Scholar 

  152. Chow AK, Cena J, Schulz R. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol. 2007;152(2):189–205. https://doi.org/10.1038/sj.bjp.0707344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, et al. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension. 1998;32(3):488–95.

    Article  PubMed  CAS  Google Scholar 

  154. Rodriguez-Lopez M, Osorio L, Acosta-Rojas R, Figueras J, Cruz-Lemini M, Figueras F, et al. Influence of breastfeeding and postnatal nutrition on cardiovascular remodeling induced by fetal growth restriction. Pediatr Res. 2016;79(1–1):100–6. https://doi.org/10.1038/pr.2015.182.

    Article  PubMed  CAS  Google Scholar 

  155. • Terstappen F, Spradley FT, Bakrania BA, Clarke SM, Joles JA, Paauw ND, et al. Prenatal sildenafil therapy improves cardiovascular function in fetal growth restricted offspring of Dahl salt-sensitive rats. Hypertension. 2019;73(5):1120–7. https://doi.org/10.1161/HYPERTENSIONAHA.118.12454. This study showed translationally important, in utero treatment could be beneficial for cardiovascular programming in a sex-specific manner; however, caution is warranted since recent human trials have been halted because of potentially deleterious neonatal side effects when treating pregnancies complicated with severe FGR with sildenafil.

  156. Vaughan OR, Rossi CA, Ginsberg Y, White A, Hristova M, Sebire NJ, et al. Perinatal and long-term effects of maternal uterine artery adenoviral VEGF-A165 gene therapy in the growth-restricted guinea pig fetus. Am J Physiol Regul Integr Comp Physiol. 2018;315(2):R344–53. https://doi.org/10.1152/ajpregu.00210.2017.

    Article  PubMed  CAS  Google Scholar 

  157. Chimini JS, Possomato-Vieira JS, da Silva MLS, Dias-Junior CA. Placental nitric oxide formation and endothelium-dependent vasodilation underlie pravastatin effects against angiogenic imbalance, hypertension in pregnancy and intrauterine growth restriction. Basic Clin Pharmacol Toxicol. 2019;124(4):385–93. https://doi.org/10.1111/bcpt.13149.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Nancy Busija for the help in English correction of the manuscript.

Funding

This study was supported by AHA 16SDG27770041, ASN Kidney Research Career Development grant, and Start-up funds from Tulane University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suttira Intapad.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amruta, N., Kandikattu, H.K. & Intapad, S. Cardiovascular Dysfunction in Intrauterine Growth Restriction. Curr Hypertens Rep 24, 693–708 (2022). https://doi.org/10.1007/s11906-022-01228-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-022-01228-y

Keywords

Navigation