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Abstract
Purpose of Review  The study aims to capture the history and lineage of hypertension researchers from the University of 
Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology 
of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including 
microbiota and metabolomic links to BP regulation.
Recent Findings  The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the 
Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the 
scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence 
in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of 
hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously 
unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by 
the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead 
the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hyperten‑
sion research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders 
in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded 
its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision 
Medicine led by Bina Joe as its founding Director.
Summary  Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, 
is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the 
last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of 
this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent 
leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged 
at Inter​views.
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Founding and Biomedical Research 
at the Medical College of Ohio (MCO)

The University of Toledo College of Medicine and Life 
Sciences (UTCOMLS) (https://​www.​utole​do.​edu/​med/) 
was originally known as the Medical College of Ohio 
(MCO). MCO was founded in 1964 but its first class of 
medical students began their studies in 1969 [1]. MCO has 
a history of innovative researchers in the cardiovascular 
field since its founding in 1964 (Figs. 1, 2, and Table 1). 
MCO was Northwest Ohio’s first independent medical 
school since the closure of the Toledo Medical College 
(1882–1914) (https://​www.​utole​do.​edu/​libra​ry/​canad​ay/​
findi​ngaid​s1/​UM_​68.​pdf).

The foundations of basic cardiovascular research at 
MCO were laid by Murray Saffran, Ph.D., a renowned neu‑
roendocrinologist [2–6] who arrived in 1969 and was the 
founder of the Biochemistry Department. Before arriving 
at MCO, Saffran worked at McGill University, Montreal, 
Canada, where he helped uncover the role of cortisol as a 
regulator of the body’s response to stress [2–6]. At MCO, 
Saffran continued his endocrinology research and explored 
the role of insulin in the vascular complications of diabe‑
tes [7–11]. Throughout the 1970s, he laid the foundation 
for a world-class cardiovascular and biochemical research 
department.

Also in 1970, George D. Ludwig, M.D., from the Uni‑
versity of Pennsylvania joined MCO in 1970 as the found‑
ing chairman of the Department of Medicine. Although 
Ludwig’s expertise was on metabolic, endocrine, and 
molecular diseases with contributions in the areas of the 
abnormal heme, porphyrin, indoles, calcium-phosphate 
metabolism, parathyroid diseases, and inborn errors of 
metabolism, he is most remembered as a pioneer of the 
clinical application of the ultrasound technology. Tragi‑
cally, Ludwig died of a cerebral hemorrhage in 1973, 
bringing a brilliant career to an untimely end at the age of 
51 (https://​www.​ob-​ultra​sound.​net/​ludwig.​html).

Meanwhile, Murray Saffran recruited Maurice Manning, 
Ph.D., from McGill University; Amir Askari, Ph.D., from 
Cornell University; and Patrick Mulrow, Ph.D., from Yale 
University (Fig. 1). Mulrow played a critical role in com‑
mencing hypertension research at MCO.

Manning began working in MCO in 1969 and was a 
faculty member for MCO’s inaugural class. He has made 
seminal contributions to advance the pharmacology of 
oxytocin and vasopressin [12–40]. During the course 
of his research, he has donated thousands of samples of 
oxytocin and vasopressor analogs from his laboratory to 
other researchers across the world and is internationally 
known for his expertise in peptide biochemistry. To-date, 

Manning remains as an Emeritus faculty member of 
UTCOMLS.

Na+/K+ ATPase Pump Physiology

Amir Askari, Ph.D., pursued pioneering research related to 
cardiac glycoside-sensitive proteins and their effect on the 
cardiac Na+/K+ ATPase pump [41–43]. Askari investigated 
the pharmacologic properties of digitalis and how the drug 
affected the activity of the Na+/K+ ATPase pump. In 1990, 
Zijian Xie arrived at Toledo as a post-doctoral fellow in Aska‑
ri’s laboratory. Xie continued working in MCO and further 
advanced research in Na+/K+ ATPase and cell membrane sig‑
nal transduction [43–48, 49•]. Though the physiologic func‑
tion of the pump has been studied for decades, the signaling 
capabilities of the pump were identified as a new function 
independent of the pump activity to maintain intracellular 
sodium and potassium homeostasis [49•, 50]. The research at 
Toledo to investigate how the Na+/K+ ATPase pump affected 
neighboring membrane proteins and signaling cascades was 
a unique aspect of its role in cardiovascular health. Unfortu‑
nately, both Askari and Xie passed away in 2020.

From Endocrinology to Cardiovascular 
Research

Patrick Mulrow, M.D. is a Cornell and Stanford trained endo‑
crine physician well known for his research on the renin-
angiotensin aldosterone system (RAAS). Mulrow’s research 
was instrumental in proving that angiotensin II stimulated 
aldosterone secretion, and not adrenocorticotrophic hormone 
[51–56]. Mulrow trained at the University of Pennsylvania 
and was recruited to Toledo in 1971 by Ludwig (Table 1). 
At Toledo, Mulrow conducted hypertension research in col‑
laboration with Roberto Franco-Saenz, M.D., for 25 years 
[51–79]. Dr. Franco-Saenz was an enthusiastic physician and 
scientist. Many of his publications in Toledo were focused on 
the renin-angiotensin system and mechanisms of hyperten‑
sion. In 1975, Mulrow became Chair of Medicine at MCO 
(Fig. 2). As Chair from 1975 to 1995, Mulrow continued his 
physiology research and expanded hypertension research in the 
department (Table 1). Mulrow and Franco-Saenz discovered 
that atrial natriuretic factor, a heart hormone, inhibited aldos‑
terone production. Mulrow’s research along with his penchant 
for leadership in a variety of scientific organizations such as 
chairman of the American Heart Association’s (AHA) Council 
for High Blood Pressure Research, chairman of the Medical 
Research Council in Canada, president of the Central Society 

https://www.utoledo.edu/med/
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https://www.utoledo.edu/library/canaday/findingaids1/UM_68.pdf
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for Clinical Research, member of the US National Research 
Council, Member of the Board of Directors of the Inter‐
American Society of Hypertension, and involvement with the 
National High Blood Pressure Education Program (NHBPEP) 
gained national and international visibility to MCO.

Clinical Hypertension Research

Mulrow had a productive career at MCO in both cardio‑
vascular and renal hypertension research. He found that 
NSAIDs like indomethacin or naproxen could inhibit renin 

Fig. 1   Flowchart of the history of cardiovascular research at The University of Toledo. Initial discoveries in endocrinology and nephrology over 
the last six decades have paved the way for future research in genomics, microbiome, and hypertension
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secretion and lead to kidney damage in animals as well as 
patients with volume depletion [80, 81]. This was an early 
link to an NIH-funded National Analgesic Nephropathy 
Study, which would later be led by the nephrologists Joseph 
Shapiro, M.D., who came to MCO in 1995 and William 
Henrich, M.D., who worked at MCO from 1995 to 1999 
[82–90]. Henrich is now President of the University of Texas 
Health Science Center, San Antonio, TX.

In 1999, Shapiro was appointed the Chair of Medicine 
at MCO. He continued to foster the research environment 
that Mulrow had established over the last 3 decades and 
researched on various topics pertinent to hypertension [91, 
92, 93••, 94–119]. Shapiro served as Chair until 2012, and 
subsequently moved as the Dean at Marshall University Col‑
lege of Medicine.

Between 2004 and 2008, MCO went through two name 
changes from the Medical University of Ohio to what is now 
referred to as the University of Toledo College of Medicine 
and Life Sciences. Therefore, references beyond these years 
are likely to not refer to MCO anymore.

Renal research at UTCOMLS had a high point in 2014 
with the publication of The Cardiovascular Outcomes in 
Renal Atherosclerotic Lesions (CORAL) trial [93••]. The 
CORAL trial, led by Christopher Cooper, Lance Dworkin, 
William Henrich, and Joseph Shapiro, evaluated the clini‑
cal outcomes of renal artery stents in patients with renal 
artery stenosis. Renal artery stenosis is present in 1–5% of 
patients with hypertension and can occur in the setting of 
other cardiovascular diseases and comorbidities. Results 
of the trial indicated that renal artery stents did not sig‑
nificantly decrease the incidence of adverse cardiovascular 

events [93••]. This study was published in the New England 
Journal of Medicine in 2014 and was one of the top 5 cardio‑
vascular studies in that year [93••]. Results of the CORAL 
trial provided important data regarding the clinical manage‑
ment of these patients and were incorporated into the 2017 
American College of Cardiology (ACC)/AHA Hypertension 
Guidelines [120] for the treatment of hypertensive patients. 
Cooper, who is now the Dean of the College of Medicine 
and Life Sciences stated, “I think I’ve done a tiny little piece 
of unraveling the biology of people. I think the better we 
understand the biology of people, the better we can take care 
of the people we serve.”

Learning the Genetics of Hypertension

In addition to the physiological and clinical studies, this 
institution is internationally reputed for its pioneering 
contributions to the dissection of genetic elements caus‑
ing hypertension in experimental rats [121, 122••]. This 
new area of research was initiated by John Rapp, who was 
recruited to MCO by Mulrow. Rapp had acquired unique rat 
strains called the Dahl rats [123]. The Dahl rats are named 
after Lewis Kitchener Dahl, M.D., a physiologist who dis‑
covered the association between salt intake and hyperten‑
sion. Dahl selectively bred the rats for salt sensitivity (S) 
and salt resistance (R), with the goal being to determine 
if there were genetic differences between these two strains 
of rats [124–130]. For details on Dahl and the history of 
these strains, readers are referred to the 2014 Dahl lecture 
award article [123]. It is important to note that their findings 

Fig. 2   Timeline of hypertension research at The University of Toledo (UT), formerly known as the Medical College of Ohio (MCO). There is a 
long-standing history of hypertension research at UT that began in the 1970s and continues to grow today
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Table 1    Highlights of contributions and achievements of investigators at UT
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preceded the now common knowledge that a high-salt diet 
is associated with hypertension. In 1976, Mulrow recruited 
Rapp, who brought his Dahl rats to MCO. MCO was a new 
medical college at the time. The major focus of Rapp’s 
research at Toledo was uncovering the causal genes for the 
pathogenesis of salt-sensitive hypertension. Throughout the 
1970s, he was primarily focused on the inbreeding of the S 
and R rat strains. This helped maintain genetic uniformity 
and the stability of the traits in each strain.

Rapp laid the groundwork for understanding their genet‑
ics by inbreeding these rats to develop the Dahl salt-sensitive 
(S) and Dahl salt-resistant (R) rats [131]. These are to-date 
among the most widely used inbred models for studies on 
hypertension as they are the only rat models with direct 
clinical relevance to salt-sensitive hypertension. The origi‑
nal colonies of the Dahl S and R strains are maintained in-
house at the University of Toledo College of Medicine and 
Life Sciences. The inbred strains are now officially desig‑
nated as SS/Jr and SR/Jr for salt-sensitive and salt-resistant, 
and Jr stands for John Rapp. These rats have been recently  
licensed to Charles River Laboratories and registered at the 
rat genome database as SS/Jr/Tol rats (https://​rgd.​mcw.​edu/​
rgdweb/​report/​strain/​main.​html?​id=​724573).

Rapp hypothesized that a few major genes would be 
involved in the pathogenesis of hypertension and was 
focused on the reproducibility of his results. He performed 
breeding experiments to determine which chromosomes 
and what portions of the chromosomes were involved in 
the genetic predisposition to salt-sensitive hypertension. It 
was important to identify segments of chromosomes where 
a gene might be located. This research occurred before 
the human genome project, and consequently, widespread 
sequencing was not available.

Using these rats, Rapp created maps of chromosomes to 
find the areas of the chromosomes that were segregated by 
blood pressure, known as quantitative trait loci (QTLs). His 
outstanding work on discovering multiple such QTLs [121] 
was lauded by the  AHA Council for High Blood Pressure 
Research, which decorated him with its highest honor, the 
Excellence in Hypertension Research Award (which was 
then referred to as the Novartis award). He became Chair 
of the Physiology department in 1994 and helped reshape 
the focus of the department to cardiovascular genetics. Dr. 
Rapp had two trainees that would go on to make significant 
contributions to the field of hypertension in their own right: 
Bina Joe and Michael Garrett.

In 1995, Rapp recruited Garrett to Toledo as a research 
assistant for his laboratory, who worked with Rapp to 
advance the genetic analysis of renal disease in the Dahl S 
rat. Joe was recruited by Rapp as Research Faculty in 2001. 
Prior to coming to Toledo, Joe, who graduated from Mysore 
University in India, was a Fogarty fellow at the Intramural 
division of the NIH. While at the NIH, she was conducting 

research on the genetics of rheumatoid arthritis using experi‑
mental congenic rat models. After many years of collabora‑
tion in Toledo, Rapp, Garrett, and Joe identified multiple 
genetic loci that causally regulated blood pressure in the 
Dahl S rat [121, 132–145]. They continued to work together 
until Rapp retired in 2004. In 2007, Garrett left Toledo, 
moved to the Medical College of Wisconsin, and moved 
again to the University of Mississippi Medical Center, where 
he is a Professor. He continues to work on the Dahl S rats 
to delineate the genetics of kidney disease [146–166]. The 
Joe lab in Toledo further advanced this positional cloning 
research by combining it with gene-editing technology to 
identify many protein coding genes and non-coding genes 
as BP QTLs [132–145].

In tracing this “genealogy,” it is important to mention 
that there are multiple varieties of the Dahl S rats which 
are genetically distinct and present with varying extents 
of hypertension [167]. Researchers who intend to use the 
original stock of Dahl S rats, which were inbred by Rapp, 
may please note that these are currently available through 
two academic sources, the Joe laboratory at the University 
of Toledo (https://​www.​utole​do.​edu/​med/​depts/​physp​harm/​
facul​ty/​joe.​html) and the Garrett laboratory at the University 
of Mississippi Medical Center (https://​www.​umc.​edu/​som/​
Depar​tments%​20and%​20Off​ices/​SOM%​20Dep​artme​nts/​ 
Pharm​acolo​gy%​20and%​20Tox​icolo​gy/​Facul​ty/​Micha​el-​ 
Garre​tt.​html). Besides these 2 sources, a commercial source 
is the Charles River Laboratory as the Dahl S rat was 
recently licensed to the Charles River Laboratory by Rapp, 
which was facilitated by Joe.

From Genetics to the Gut Microbiota 
in Hypertension

Close to a decade after the human and rat genome sequences 
were decoded, the Joe lab was successful in positional clon‑
ing of genetic loci regulating BP in the Dahl rat [122••, 135, 
136, 168, 169]. However, genome-wide association stud‑
ies in humans as well as QTL mapping studies in rats shed 
light on the landscape of the genetics of hypertension to be 
much larger than what was originally anticipated. More than 
1500 loci in humans [170] and > 500 loci (https://​rgd.​mcw.​
edu/) [122••] in rats were located as potential regions of 
the mammalian genome to harbor BP regulatory genes. As 
such, contemplating clinical targets to render genetic correc‑
tions was not feasible. The value of identifying the polymor‑
phisms was therefore pivoted by human geneticists towards 
the development of a polygenic risk score for predictive 
individualized medicine. Meanwhile, intrigued by a Science 
publication in 2010 that mice lacking Tlr5 [171], a bacte‑
rial flagellin receptor, developed microbial dysbiosis and 
metabolic syndrome, the Joe laboratory hypothesized that 

https://rgd.mcw.edu/rgdweb/report/strain/main.html?id=724573
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https://www.umc.edu/som/Departments%20and%20Offices/SOM%20Departments/Pharmacology%20and%20Toxicology/Faculty/Michael-Garrett.html
https://www.umc.edu/som/Departments%20and%20Offices/SOM%20Departments/Pharmacology%20and%20Toxicology/Faculty/Michael-Garrett.html
https://www.umc.edu/som/Departments%20and%20Offices/SOM%20Departments/Pharmacology%20and%20Toxicology/Faculty/Michael-Garrett.html
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beyond the genetics of hypertension, microbiota, which are 
sensitive to salt and antibiotics, is a factor contributing to BP 
regulation. The hypothesis was indeed proven correct by the 
demonstration via cecal transplantation studies that the Dahl 
S rats increased BP when gavaged with cecal microbiota 
from the Dahl salt-resistant (R) rat [172••, 173]. Since the 
publication of this pioneering study in 2015, the University 
of Toledo is currently regarded as the site of discovery of 
the important link between gut microbiota and hypertension 
[172••, 174–188]. More recently, Joe et al. have employed 
germ-free rats and reported that gut microbiota is obligatory 
to blood pressure homeostasis [179].

Yet another significant contribution from the Joe labora‑
tory is the discovery of the strong link between metabo‑
lism [189•], especially the inverse relationship between the 
ketone body, betahydroxybutyrate (BHB), and hypertension 
[190]. Both renal and vascular mechanisms have been identi‑
fied via BHB facilitating the inhibition of the Nlrp3 inflam‑
masome and vasodilatory function, respectively [191–193].

Overall, these impactful contributions were recognized 
by the Hypertension research community in the form of the 
Lewis Dahl Lectureship award in 2014 [123] and the Harriet 
Dustan Award in 2019 [189•] to Joe. It is notable that in both 
categories, Joe is globally, the first woman of color awardee 
of both of these awards.

Current Hypertension Research

Building on this strong foundation of both basic and clini‑
cal sciences, in 2011, the University-wide Research Coun‑
cil approved the Center for Hypertension and Precision 
Medicine. Most importantly, in 2015, fueled by a significant 
50-year legacy model affiliation with a local Health organiza‑
tion, ProMedica (https://​www.​prome​dica.​org/​servi​ce-​to-​the-​
commu​nity/​ut-​acade​mic-​affil​iation), the Dean of the Col‑
lege of Medicine, Cooper, and the Director of Hypertension 
Research, Joe, both Distinguished University Professors of the 
University, have expanded talent acquisition for hypertension 
research. Notable recruits include Matam Vijay-Kumar, who 
initially discovered the link between Tlr5 receptors and blood 
pressure [171, 172••, 173–180, 183–185, 187, 188, 189•, 191, 
192, 194–205], [181, 196]; Jasenka Zubcevic [206–244], who 
focuses on the gut-brain axis; Jennifer Hill, whose work is 
on prenatal environmental effects on hypertension [182, 186, 
189•, 196]; Tao Yang, who is studying microbiota as causes 
for drug resistance in hypertensives [175, 179, 181, 187, 
189•, 192, 209, 210, 223, 229–234, 239]; Charles Thodeti  
and Guillermo Vazquez, who focus on transient receptor 
potential channels [245–283]; Islam Osman, who is a vascu‑
lar physiologist [284–296]; Lauren Koch, who has developed 
unique rat models with distinct aerobic exercise endurance 

capacities: low- and high-capacity runners (LCR and HCR) 
to study the relationship between exercise and hypertension 
[188, 189•, 199]; Sailaja Paruchuri, who works on lipid medi‑
ators [245, 246, 248–252, 255, 257, 258, 261, 263–265]; and 
Piu Saha, who is working in immunological aspects promot‑
ing hypertension in rat genetic models [174, 175, 179, 180, 
187, 191, 194, 195, 197, 200, 201, 205]. From the Depart‑
ment of Medicine, Cooper and his colleagues including Lance 
Dworkin, David Kennedy, Steven Haller, and Rujun Gong 
continue their investigations on the renal physiology of BP 
control [101, 102, 104, 112, 297–339]. From the College of 
Pharmacy, members of the Center for Hypertension and Preci‑
sion Medicine include Wissam Aboualaiwi [340–350] in the 
Department of Pharmacology and Experimental Therapeutics 
who investigates drug targets and the physiology of cilia in 
polycystic kidney disease and hypertension. Further, in 2018, 
UTCOMLS identified Hypertension as a strategically focused 
spotlight area of unique distinction.
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