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Abstract
Purpose of Review  To discuss the interplay behind how a high-fibre diet leads to lower blood pressure (BP) via the gut 
microbiome.
Recent Findings  Compelling evidence from meta-analyses support dietary fibre prevents the development of cardio- 
vascular disease and reduces BP. This relation is due to gut microbial metabolites, called short-chain fatty acids (SCFAs), 
derived from fibre fermentation. The SCFAs acetate, propionate and butyrate lower BP in independent hypertensive models. 
Mechanisms are diverse but still not fully understood—for example, they include G protein-coupled receptors, epigenet-
ics, immune cells, the renin-angiotensin system and vasculature changes. Lack of dietary fibre leads to changes to the gut 
microbiota that drive an increase in BP. The mechanisms involved are unknown.
Summary  The intricate interplay between fibre, the gut microbiota and SCFAs may represent novel therapeutic approaches 
for high BP. Other gut microbiota-derived metabolites, produced when fibre intake is low, may hold potential therapeutic 
applications. Further translational evidence is needed.
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Introduction

High blood pressure (BP), also known as hypertension, 
affects one in every three adults globally [1, 2]. The BP of 
two-thirds of hypertensive patients remains uncontrolled, 
especially in low- and middle-income countries [1]. Accord-
ing to the Global Burden of Disease study, high systolic BP 
is the leading risk for attributable deaths [3]. Thus, under-
standing the reasons why high BP remains highly preva-
lent and uncontrolled is crucial.A well-known risk factor 
for hypertension, and one of the first lines of intervention 
according to recent guidelines, is diet [4]. Alarmingly, in 

2017, the intake of most healthy foods was suboptimal 
[5•]. In the same year, dietary risks were estimated to have 
contributed to 11 million deaths and 255 million disabil-
ity-adjusted life-years (DALYs) in adults [5•]. The main 
cause of diet-related deaths and DALYs was cardiovascular 
disease (CVD) [5•]. Diet-related deaths were attributed to 
high sodium intake, followed by low intake of whole grains, 
fruits, nuts, seeds and vegetables, while DALYs were pri-
marily attributed to low intake of whole grains [5•]. Overall, 
foods high in whole grains, fruits, nuts, seeds and vegetables 
are high in fibre. The first evidence we could identify report-
ing that dietary fibre lowers BP is a small clinical trial that 
dates from 1979 [6]. Four decades later, the evidence that 
overall fibre intake is associated with a lower incidence of 
CVD and lower BP is robust [7••, 8]. Until recently, how-
ever, we did not understand how this happened and if this 
was an association or indeed dietary fibre was involved in BP 
regulation. Since 2017, a growing body of evidence suggests 
this occurs via the gut microbiota, the microorganisms that 
inhabit the intestine [9••, 10]. In this review, we summarize 
the complex interplay between fibre, the gut microbiota, 
microbial metabolites and their molecular mechanisms, and 
the associated changes in BP. We review the most recent 
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literature supporting that manipulation of the gut microbiota 
and/or their metabolites produced after fibre intake might be 
a novel therapeutic approach for hypertension.

Dietary Fibre and Lower Incidence of CVD: 
the Latest Evidence

Over the past decades, epidemiological studies and clinical 
trials revealed a strong association between dietary patterns 
and CVD (Fig. 1). A recent systematic review and meta-
analysis analysed 10 randomized clinical trials (RCTs) that 
employed the modified Dietary Approaches to Stop Hyper-
tension (DASH) diet, characterized by a diet low in sodium 
and enriched in fruits, grains, vegetables and low-fat dairy 
foods [11]. This showed the modified DASH diet reduced 
systolic BP by 3.3 mmHg and diastolic BP by 2.1 mmHg 
[11]. While sodium has been the focus of most studies in die-
tary interventions to treat hypertension, evidence supports 
that the DASH diet lowers BP even when sodium intake is 
high [12]. This reinforces the concept that improvements in 
BP are not only dependent on sodium [13]. Indeed, a sys-
tematic review and meta-analysis of 6 clinical trials focused 
on the Mediterranean diet and BP showed a small decrease 
in systolic (− 1.4 mmHg) and diastolic (− 0.7 mmHg) BP 
[14]. Furthermore, a recent RCT reported that both Mediter-
ranean and its improved version, the Green-Mediterranean 
diet, significantly reduced BP [15]. Apart from the DASH 
and Mediterranean diets, a meta-analysis of 185 prospective 
studies and a total of 58 RCTs, equivalent to ~ 135 million 

person-years, determined that higher fibre intake reduced 
overall and cardiovascular mortality by 15–30%. A diet high 
in fibre was also associated with a lower risk of CVD [7••]. 
Analysis of 15 RCTs, including 1064 intervention and 988 
control participants, reported that fibre reduced systolic BP 
by 1.27 mmHg [7••]. A more recent meta-analysis by the 
same authors included 12 RCTs of 878 patients with CVD 
or hypertension [8]. This study provided high certainty evi-
dence showing fibre reduces systolic BP by 4.3 mmHg [8]. 
An additional 5 g per day of fibre was sufficient to reduce 
systolic and diastolic BP by 2.8 mmHg and 2.1 mmHg, 
respectively [8]. These are robust evidence that dietary fibre 
lowers BP, even without sodium interventions.

A diet rich in fibre sources has been associated with 
beneficial health outcomes. Dietary fibre comprises all car-
bohydrates that resist digestion or absorption in the small 
intestine and have a degree of polymerization of at least ten 
monomers [16•, 17•]. There are two major types of dietary 
fibre, non-starch polysaccharides and resistant starches (RS). 
Non-starch polysaccharides, the main component of plant 
cell walls, include soluble fibre, which is capable of dis-
solving in water, and insoluble fibre, which is unable to be 
dissolved in water [16•, 17•]. RS range from type one to five 
and are the energy repertory for plants and a major dietary 
carbohydrate source for humans [16•]. Thus, different types 
of fibre are diverse and their physicochemical characteris-
tics, including solubility, viscosity and fermentability, can 
be variable based on different food processing methods and 
individual health conditions [16•]. While all types of fibre 
are not digested by mammalian enzymes and reach the large 

Fig. 1   Dietary fibre, acting via the gut microbiota, lowers blood pres-
sure. Diets high in fibre are associated with lower blood pressure (BP) 
and risk of cardiovascular disease (CVD). Fibres reach the colon 
intact, as they resist being digested or absorbed in the upper intes-
tine. In the colon, the gut microbiota utilizes them as fuel sources 
and produces short-chain fatty acids (SCFAs) as by-products. These 
microbial metabolites have different routes to cross the intestinal 
epithelium: binding G protein-coupled receptors (GPCR), through 

transporters such as MCT1 or SMCT1, or passive diffusion. SCFAs 
become intracellular or available in the circulation, especially acetate, 
through which they communicate with distal organs and exert their 
effects. Legend: DASH, dietary approaches to stop hypertension; 
MCT1, monocarboxylate transporter 1; MED, Mediterranean; OLFR, 
olfactory receptor; SMCT1, sodium-coupled monocarboxylate trans-
porter. Created with BioRender
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intestine intact, their degree of fermentation is variable. For 
example, certain types of soluble fibre (e.g. inulin, galac-
tooligosaccharides, pectins) and RS are highly ferment-
able, while some types of insoluble fibre (e.g. cellulose and 
lignins present in the cell walls) have lower fermentability 
[16•]. Research is largely lacking on the effect of different 
types of fibre on BP. In particular, RS are remarkably dif-
ficult to study and quantify, as their levels vary depending 
on how foods are cooked and ingested. The heterogeneity 
of trials poses a large limitation to the direct use of these 
types of fibre in clinical practice. Combined with a lack of 
information about fibre intake in hypertensive guidelines [4], 
overall diets aimed to increase the intake of foods high in 
fibre and potassium and lower in sodium, such as the DASH 
or Mediterranean diets, are still the best approach—at least 
for now.

Fibre Digestion by the Gut Microbiota

Fibre fermentation in the large intestine is driven by the gut 
microbiota [16•], the living microorganisms that inhabit the 
intestinal ecosystem [18•]. Thus, fibre intake not only modu-
lates the gut microbiome, the microbiota plus their nucleic 
acid, but also microbial structural elements and microbial 
metabolites [18•, 19••]. The latest estimation suggests a 
‘reference man’ has a similar number of human and bac-
teria cells in the body (~ 3.8 × 1013 each) [20]. However, a 
‘reference woman’, infants and the elder were estimated to 
have 1.7–2.2 more bacterial than human cells in the body 
[20]. While the vast majority of these bacterial cells inhabit 
the large intestine [20], the number of other microorganisms 
(e.g. viruses, fungi) remains unaccounted for.

Two recent crossover trials investigated the effect of 
two purified fibres, arabinoxylan and inulin; a mixture of 
five types of fibre; and RS on the microbiota [19••, 21]. 
These studies independently identified that each type of 
fibre was associated with distinct microbial responses [19••, 
21]. Likewise, small chemical structural changes in type 4 
(chemically modified) RS drove different effects on the gut 
microbiota and production of their metabolites in humans 
[22•]. However, a high inter-individual response is regularly 
observed in such interventions, highlighting the need for a 
precision approach to nutrition and microbiome interven-
tions, as well as a better understanding of the individual 
baseline microbiome [23].

The microbiota inhabits the gut and gut mucosal barrier, 
and supports the maintenance of a healthy gut epithelial bar-
rier via metabolite production, further discussed below [24]. 
This physical barrier prevents pathogenic colonization and 
invasion. In fibre-rich diets, there is a proliferation of gut 
microbiota that digests fibre, supporting the maintenance 
of the gut epithelial barrier [25]. In fibre-free diets, there 

is a shift in the gut microbiota composition, leading to the 
proliferation of bacteria that digest the intestinal mucus layer 
instead [25]. This contributes to the breakdown of the gut 
epithelial barrier; the entrance of undesirable microbes and 
their substances into the host’s systemic circulation; and the 
subsequent activation of a chronic inflammatory state [25]. 
A similar chronic inflammatory state is observed in CVD 
and high BP [26•]—this observation suggests gut dysbiosis 
and breakdown of the gut epithelial barrier may be involved 
in the development of these diseases.

Short‑Chain Fatty Acids: the Microbial 
Products Derived from Fibre Fermentation

In the large intestine, dietary fibre fermentation by the gut 
microbiota leads to the generation of SCFAs as by-products 
(Fig. 1) [27•]. Several bacteria are involved in this process 
via distinct biochemical pathways, summarized in Table 1. 
However, we still do not completely understand the enzy-
matic machinery necessary to degrade certain types of fibre, 
such as RS [23]. The three major SCFAs derived from micro-
bial metabolism are acetate, propionate and butyrate, previ-
ously reported to be in a ratio of approximately 60:20:20 in 
the colon of sudden death victims [28]. We analysed faecal 
levels of SCFAs in a multi-site cohort study and found that 
acetate corresponded to 55% of total SCFAs, while propion-
ate and butyrate were 17% each, with the remaining 11% 
being accounted for iso-butyric, iso-valeric, valeric and cap-
roic acids [29••]. SCFAs have 1–6 carbon-based anions, with 
acetate having 2, propionate 3 and butyrate 4 carbons [27•].

Although SCFAs can be ingested or produced by other 
metabolic processes, bacterial fermentation of fibre is the 
major source of SCFA production in the human body [27•]. 
Different types of fibre are also fermented in distinct regions 
of the colon [17•]. Rapidly fermented fibres, such as inulin, 
are fermented in the proximal region, while moderate- and 
slow-fermented fibres, such as RS type 2, are fermented in 
the proximal and transverse regions [17•]. This means that 
levels of SCFAs vary along the colon, with distal regions 
having lower levels due to the depletion of fermentable 
fibres, leading to protein fermentation instead [17•]. This 
is also reflected in changes in pH in the different intestinal 
regions, with the proximal region having the lowest and the 
distal region having the highest pH [17•]. While SCFAs 
were measured in faecal and blood samples in most of the 
human studies, these may not reflect the levels produced 
inside the intestine, particularly, in different colonic regions.

SCFAs, in particular butyrate, are absorbed by intestinal 
epithelial cells by the monocarboxylate transporter 1 (MCT1, 
encoded by the gene SLC16A1) and sodium-coupled mono-
carboxylate transporter (SMCT1, gene SLC5A8), promoting 
cellular metabolism [27•]. Butyrate, as a major source of 
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ATP for colonocytes, leads to the maintenance of the gut 
epithelial barrier [27•]. It also depletes intracellular oxygen 
which leads to the stabilization of the transcription factor 
hypoxia-inducible factor 1 (HIF1), which coordinates the 
expression of tight junction genes in the intestinal epithelial 
barrier [30]. Although all SCFAs inhibit histone deacety-
lases (HDACs), butyrate is the most potent [27•]. Moreo-
ver, SCFAs act via signalling cascades when they bind to 
the G protein-coupled receptors (GPCRs)—GPR41, GPR43 
and GPR109A (Table 1) [27•]. These receptors are mostly 
expressed on the surface of immune and gut epithelial cells 
[31]. Their function in hypertension is further discussed 
below.

The majority of SCFAs diffuse through the intestinal epi-
thelium to the lamina propria, entering the circulation via 
the portal vein [27•]. SCFAs can be utilized by different 
cell types, including enteroendocrine L-cells, beta cells in 
the pancreas and immune cells [32, 33]. While propionate is 
preferentially metabolized by hepatocytes, acetate is the only 

SCFA that is usually detected at physiological concentra-
tions in the host’s systemic circulation [27•]. In our studies, 
acetate was the main SCFA detected in plasma (94%), while 
propionate and butyrate corresponded to ~ 3% each [29••]—
reflecting that only a minority of these SCFAs become sys-
temically available. However, acetate can act as a substrate 
and be converted into fellow SCFAs [27•]. Nevertheless, the 
amount of SCFAs in the circulation and their turnover rate 
are also tightly regulated by the endogenous energy level, 
such as glucose, fatty acids and ketone bodies [34].

SCFAs Mediate Downstream Effects Outside 
the Intestine

It is estimated that 60% of colonic SCFAs diffuse from 
the lumen to the lamina propria with the remaining por-
tion taken up directly by MCT1 and SMCT1 transporters 
in the epithelial cells [35]. As mentioned, SCFAs can bind 

Table 1   Biosynthesis pathways and gut bacteria are involved in generating the three main short-chain fatty acids (acetate, butyrate and propion-
ate), and the main host receptors that sense these metabolites

* Not limited to the list. BP, blood pressure; FFAR, free fatty acid receptor; GPR, G protein-coupled receptors; HCAR2, hydroxycarboxylic acid 
receptor 2

Metabolite 
(number of 
carbons)

Possible microbial biochemical 
pathways*

SCFA-producing bacteria* Receptors and their expression in host 
cells

Acetate (C2) Classical pathway:
Pyruvate  acetyl-CoA  acetate [86]

▪ Prevotella spp.
▪ Ruminococcus spp.
▪ Bifidobacterium spp.
▪ Bacteroides spp.
▪ Clostridium spp.
▪ Streptococcus spp.
▪ Akkermansia muciniphila
▪ B. hydrogenotrophica [87]

▪ GPR41 (FFAR3)—expressed in 
pancreatic cells, neurons and white 
adipocytes (host metabolism) [88–90]

▪ GPR43 (FFAR2)—expressed in entero-
cytes and immune cells [32, 91, 92]

▪ OLFR78 (OR51E2)—expressed in 
renal afferent arterioles and extra-renal 
vascular beds [52•]

Wood-Ljungdahl pathway [93] ▪ Clostridium spp.
▪ Streptococcus spp. [93]

Propionate (C3) Acrylate pathway [94] ▪ Coprococcus catus [94]
▪ Megasphaera spp. [95]

▪ GPR41 (FFAR3)
▪ GPR43 (FFAR2)
▪ OLFR78 (OR51E2) [52•]Succinate pathway [94] ▪ Bacteroidetes [96]

▪ Veillonella spp. [95]
Propanediol pathway [94] ▪ Akkermansia municiphilla [97]

▪ Roseburia inulinivorans [98]
▪ Salmonella enterica serovar Typhimu-

rium [99]
▪ Ruminococcus obeum [95]

Butyrate (C4) Classical pathway: Butyrate kinase
(two acetyl-CoA molecules   butyryl-

CoA  Butyrate) [95]

▪ Coprococcus comes
▪ Coprococcus eutactus [95]

▪ GPR41 (FFAR3)
▪ GPR43 (FFAR2)
▪ GPR109A (HCAR2)—adipocytes, gut 

epithelium and immune cells [100, 
101]

Butyryl-CoA: acetate-CoA-transferase 
pathway [95]

▪ Ruminococcus bromii [102]
▪ Faecalibacterium prausnitzii [103]
▪ Eubacterium rectale
▪ Eubacterium hallii [103]
▪ Roseburia spp.
▪ Anaerostipes spp.
▪ Coprococcus catus [95]
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to GPR41, GPR43 and GPR109A expressed on diverse cell 
types, including gut epithelial cells, adipocytes, enteroen-
docrine L-cells, innate immune cells and neurons [36, 37•]. 
Intracellular SCFAs can regulate epigenetic genes by HDAC 
inhibition [38], where butyrate may act as a competitive 
inhibitor and might occupy the hydrophobic binding cleft of 
the active site [39]. Moreover, mainly in the liver, intracel-
lular SCFAs are essential substrates for β-oxidation and the 
Krebs cycle. A study investigated the roles of SCFAs in cell 
metabolism, in which mice were infused with physiological 
quantities of isotope labelled SCFAs into the cecum [34]. 
It identified butyrate as the main substrate for lipogenesis, 
propionate for gluconeogenesis and a minor proportion of 
acetate and butyrate for cholesterol synthesis [34]. At the 
epigenetic level, acetyl-CoA derived from β-oxidation, gly-
colysis and lipid metabolism can modulate histone acetyl-
transferase, the antagonistic enzyme of HDAC, activity 

in the nucleus [40]. The several downstream mechanisms 
involved in the actions of SCFAs that may impact BP are 
summarized in Fig. 2.

SCFAs and other gut microbiota-derived metabolites 
are key in microbiota-host communication as they can 
modulate distal organ physiological and molecular func-
tions. Indeed, using in vivo carbon-11 acetate and positron 
emission tomography, i.v. and colonic acetate were mostly 
absorbed by the brain, heart and liver [41]. Moreover, tran-
scriptomic analyses of 3-week administration of a high-RS 
diet and acetate in the drinking water showed downregula-
tion of the renin-aldosterone-angiotensin system (RAAS) 
and interleukin (IL)-1β in the kidney, and downregulation of 
mitogen-activated protein kinases (MAPK) and transforma-
tion of growth factor β (TGFβ) signalling in the heart, pro-
viding evidence for a gut-cardiorenal communication [9••]. 
Intervention with high RS and acetate increased the mRNA 

Fig. 2   Known molecular mechanisms of action of short-chain fatty 
acids and how they may lower blood pressure. The three main short-
chain fatty acids (SCFAs), acetate, propionate and butyrate, have multi-
faceted actions via G protein-coupled receptors (GPCR), epigenetic, 
immune-dependent and immune-independent mechanisms that together 
may lower blood pressure and elicit a cardiorenal protective effect. 
Legend: Ac, acetyl group; GPCRs/GPR, G protein-coupled receptors; 

HAT, histone acetyltransferase; HDAC, histone deacetylases; IL, inter-
leukin; IFN, interferon; MAPK, mitogen-activated protein kinases; 
NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; OLFR, 
olfactory receptor; RAAS, renin-aldosterone-angiotensin system; TGF, 
transformation of growth factor; Th, helper T; Treg, regulatory T. Cre-
ated with BioRender
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and protein levels of renal angiotensin-converting enzyme 
2 (ACE2) via GPR41/43/109A signalling [42]. Recent evi-
dence showed even maternal dietary fibre modulated the 
molecular and cellular composition of the adult offspring’s 
heart [43]. These demonstrate compelling evidence that 
SCFAs have important roles outside the intestine that may 
impact BP and CVD.

SCFAs and BP in Experimental Hypertension

Gut dysbiosis is characterized by changes to the structure 
of the gut microbiota and a compromised gut epithelial bar-
rier. An important component of hypertensive states may be 
changes in the capacity of the microbiota to produce SCFAs, 
which may lead to the breakdown of the gut epithelial bar-
rier. Indeed, lower SCFA-producing bacteria and increased 
intestinal permeability were reported in both hypertensive 
models (angiotensin II, DOCA/salt mice and spontaneously 
hypertensive rats (SHR)) and human hypertensive patients 
[9••, 29••, 44••, 45••, 46, 47]. Early studies using acute 
administration of SCFAs suggested these metabolites may 
have a BP-lowering effect: SCFAs caused vasodilation in 
dogs [48, 49], rat caudal arteries [50] and human colonic 
arteries from 6 donors [51]. More recently, acute delivery of 
propionate resulted in a dose-dependent reduction in BP via 
GPR41 signalling [52•]. Furthermore, acute administration 
of acetate reduced heart rate and mean arterial pressure—the 
use of atenolol to block sympathetic tone abolished the effect 
on heart rate, but the BP-lowering effect persisted [53].

The long-term effects of SCFAs have only been deter-
mined more recently, with a growing number of studies 
demonstrating the three main SCFAs were able to reduce 
BP and improve cardiac performance in independent stud-
ies (Table 1). Similarly, to a high-RS diet, we reported that 
magnesium acetate supplementation in the drinking water 
reduced BP and cardiorenal fibrosis in the DOCA-salt model 
[9••]. This was followed by further validations of a BP- and 
fibrotic-lowering effect of magnesium acetate, sodium pro-
pionate and sodium butyrate, as well as a combination of all 
three in the Ang II model, even in combination with a low-
fibre diet [54••]. Acetate led to a decrease in the calculated 
total peripheral resistance and sodium to potassium excre-
tion, but no changes were observed in cardiac output, stroke 
volume or plasma noradrenaline [54••]. BP-lowering effect 
induced by SCFAs has been independently validated by oth-
ers: butyrate supplementation in Ang II mice reduced their 
BP [55], and propionate supplementation in Ang II-infused 
apolipoprotein E knockout (Apoe−/−) mice ameliorated car-
diac hypertrophy, fibrosis and vascular dysfunction [56••]. 
Unpublished data from our team has compared the effect of 
magnesium and sodium acetate, which determined that the 
magnesium version had a larger BP-lowering effect than the 

sodium one. Unfortunately, butyrate and propionate are usu-
ally only available in sodium forms. This represents a barrier 
to their direct clinical use.

Consistently, butyrate intervention was shown to reduce 
BP in both hypertensive (SHR [57], Ang II-infused Sprague 
Dawley rats [58]) and normotensive (Wistar Kyoto [59]) 
rats. Sodium butyrate decreased the level of an endo-
toxin, lipopolysaccharide (LPS), in the plasma and associ-
ated expression of genes for the interleukin Il1β [57], the 
inflammasome-component Nlrp3, and the chemokine Mcp1 
in cardiac tissue via COX2/PGE2 pathway inhibition [58]. 
In another relevant study, Apoe−/− mice fed with a high-fat 
diet as a model of atherosclerosis, treatment with propionate 
reduced intestinal cholesterol and blood low-density lipo-
protein (LDL) levels that ameliorated the disease phenotype 
[60]. The molecular mechanisms of SCFAs identified so far 
are discussed below.

Olfactory receptor 78 (OLFR78, encoded by the gene 
Or51e2) is another GPCR that responds to SCFAs, particu-
larly acetate and propionate [52•]. OLFR78 is expressed 
in the vascular smooth muscle and renal juxtaglomerular 
apparatus, where it was detected to modulate renin secre-
tion [52•]. An acute propionate (10 mM) administration was 
assessed in Olfr78−/− mice. Due to the lack of OLFR78, the 
renin response was abolished and, thus, an acute drop in 
BP was observed, confirming that OLFR78 raised BP and 
antagonized the hypotensive effects of propionate [52•]. In a 
recent study, OLFR78 was investigated in chronic BP regu-
lation, showing that Olfr78−/− mice had lower renin levels 
but no differences in baseline BP compared to their WT 
counterparts [61].

Furthermore, evidence supports that propionate has a 
hypotensive effect via GPR41. Acute propionate admin-
istration caused a minimal reduction in BP response in 
Gpr41± heterozygotes and a modest increased BP response 
in Gpr41−/− animals [52•]. This demonstrated that, with the 
lack of GPR41, there is a reduction in the number of recep-
tors for propionate and, thus, their signalling that impacts 
BP responses. In addition, Gpr41−/− mice were reported 
to have higher systolic hypertension compared to WT ani-
mals [62•]. When comparing 3-month versus 6-month old 
Gpr41−/− mice, the older group was found with elevated 
pulse wave velocity, but no increase in ex vivo aorta stiff-
ness, suggesting that endothelial GPR41 lowers baseline 
BP by decreasing the vascular contractile activity without 
altering vascular characteristics [62•]. Moreover, one study 
compared the phenotype of naïve single GPR41, GPR43, 
GPR109A knockout and GPR43/109A double knockout 
mice [54••]. At 10 weeks of age, these animals showed 
no changes in BP, but all presented differences in cardiac 
function and fibrosis [54••]. Interestingly, the GPR43/109A 
double knockout mice had a more severe phenotype than 
individual GPCR knockouts [54••]. Hence, the role of 
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SCFAs-sensing receptors seems intricate—since these 
receptors act on similar pathways [37•], deletion of only one 
or two receptors might trigger compensatory mechanisms 
via the other(s). More comprehensive studies assessing the 
function of these receptors as well as MCT1 and SMCT1 in 
hypertension are needed.

SCFAs and BP in Essential Hypertension

A non-placebo controlled RCT showed healthy partici-
pants with 20-g supplementation of dietary fibre, inulin, for 
6 weeks had a significant increase in serum butyrate and 
reduced systolic (− 6.3 mmHg) and diastolic (− 3.1 mmHg) 
BP [63•]. Levels of pro-inflammatory cytokines IL-4, IL-8 
and TNFα were also reduced [63•]. This provides some 
translational evidence that SCFAs may lower BP in essen-
tial hypertension. However, clinical studies that assessed the 
levels of SCFAs in hypertensive patients have had incon-
sistent results (summarized in Table 2). On the one hand, 
untreated hypertensive patients, diagnosed by ambulatory 
BP monitoring, had higher plasma acetate and butyrate that 
positively correlated with systolic and diastolic BP [29••]. 
The bacterial pathway acetate-CoA ligase (ADP-forming), 
which converts ATP, CoA and acetate into ADP, acetyl-CoA 
and phosphate, was also upregulated in essential hyperten-
sion [29••]. BP variability, measured as morning BP surge, 
was negatively associated with total plasma SCFAs and, in 
particular, acetate [64]. Similarly, a higher level of circulat-
ing butyrate was found positively associated with ambulatory 
arterial stiffness index, a critical indicator of arterial func-
tion in cardiovascular diseases [65]. A possible explanation 
is that the sensing and uptake of SCFAs from the circulation 

into relevant cells are defective. This could be explained by 
observed reduced levels of GPR43 mRNA in hypertensive 
patients, and the negative association between both GPR41 
and GPR43 mRNA and arterial stiffness [29••, 65]. On the 
other hand, acetate and butyrate levels were lower in plasma 
from hypertensive patients, both untreated and patients taking 
anti-hypertensive drugs [66, 67•]. Furthermore, hypertensive 
subjects had a higher level of acetate, butyrate and propion-
ate in their stool samples [66, 68]. The detection of SCFAs 
in the faecal samples might indicate that their absorption 
efficacy in hypertension has been decreased as less than 5% 
of these metabolites are expected to be excreted in faeces. 
Further studies in larger cohorts with well-characterized BP 
are needed to clarify the direction of the association between 
SCFAs and essential hypertension.

The Effects of SCFAs on a Broad Range 
of Immune Cells Important for Hypertension

SCFAs have anti-inflammatory effects on several immune 
cells [27•], which are also associated with the development 
of hypertension [26•]. Cytokines such as IL-17 and IFN-γ 
were reported to promote the development of hypertension, 
whereas IL-10 attenuated the disease [26•]. The direct link 
between the anti-inflammatory actions of SCFAs in lowering 
BP is still missing. In patients with ulcerative colitis, butyrate 
decreased the number of macrophages and neutrophils in the 
plasma and intestinal lamina propria via inhibition of NF-KB 
nuclear translocation [69]. Lower levels of pro-inflammatory 
cytokines IL-6 and IL-12 were identified in intestinal mac-
rophages and bone marrow-derived macrophages treated with 
butyrate via an HDAC-dependent mechanism [70]. Similarly, 

Table 2   Cross-sectional clinical studies that assessed the levels of the three main short-chain fatty acids (acetate, butyrate and propionate) in 
hypertension

DBP diastolic blood pressure, HTN hypertensive patients, NT normotensive participants, SBP systolic blood pressure, SCFAs short-chain fatty 
acids

Blood pressure measurement Groups, sample size Gender and mean age (y) Main findings in hypertension Ref

Ambulatory BP monitoring Untreated HTN (n = 23) vs NT 
(n = 47)

Men and women
HTN (60.3 ± 6.6)
NT (59.2 ± 7.7)

↑ plasma acetate and butyrate, 
positively correlated with SBP 
and DBP

No change in faecal SCFAs
↓ levels of GPR43 expression in 

immune cells

[29••]

Office BP Untreated HTN (n = 29) vs NT 
(n = 32)

Men and women
HTN (53.7 ± 9.6)
NT (41.1 ± 9.1)

↓ plasma acetate & butyrate
↑ faecal acetate, propionate, 

butyrate

[66]

Office BP HTN (n = 22) vs NT (n = 18) Men and women (age not 
reported)

↓ plasma butyrate [67•]

Ambulatory BP monitoring HTN (n = 38); borderline (n = 7); 
NT (n = 9)

Men
HTN (46.2 ± 11.4); border-

line HTN (50.3 ± 13.3); NT 
(52.5 ± 8.2)

No change in serum and urine 
SCFAs

↑ faecal acetate, propionate and 
butyrate in HTN

[68]
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through HDAC inhibition, propionate and acetate increased 
acetylation of the mTOR pathway that blocks T helper 17 
(Th17) and T helper type 1 (Th1) differentiation [69]. As a 
result, these cells secrete fewer cytokines, including IL-17, 
interferon (IFN)-γ and IL-10 [71].

SCFAs may also have a direct anti-inflammatory role via 
differentiation of naïve T cells into regulatory T cells (Tregs), 
increasing Foxp3 expression via GPR43 [72]. In mice, a 
3-week intervention with RS or acetate increased the num-
ber of Tregs and upregulated methylation of genes associ-
ated with Tregs function in splenocytes [54••]. A group of 
SCFA-producing strains of Clostridia isolated from a healthy 
human faecal sample, enriched in Tregs-inducing species, 
was transferred into germ-free mice. This cluster of bacte-
ria generated a TGF-β-rich environment which favoured the 
differentiation of colonic Tregs [73]. In humans, however, a 
short (5 days) intervention that increased the systemic levels 
of acetate and propionate did not change the levels of Tregs 
[74]. This suggests issues with the translation or that longer 
term interventions may be needed in humans.

Overall, these studies showed that SCFAs have a direct 
effect on a broad range of immune cells, which in turn may 
either promote or attenuate hypertension. It remains unclear 
why SCFAs have different preferences for receptor activation 
and/or HDAC inhibition within different cell types.

What Happens to BP when Fibre Intake Is 
Low

Back in 1979, a study demonstrated participants with a low-
fibre intake diet had higher systolic and diastolic BP [6]. 
In the same study, 11 participants, who routinely were on 
a high-fibre diet, decreased their total dietary fibre intake 
by 55% for 4 weeks, resulting in an increase in their mean 
systolic and diastolic BP by 6.8% and 3.8%, respectively [6]. 
Now that we understand the importance of the gut micro-
biota for fibre fermentation and that the gut microbiota 
changes rapidly, it is important to differentiate association 
from causation in the change in BP. Germ-free mice, which 
do not possess any microbiota, are a very powerful tool to 
address this question [75]. Faecal microbiota transplanta-
tion (FMT) from low- and high-fibre fed mice into germ-
free animals demonstrated that a low-fibre diet is not merely 
associated with a higher incidence of high BP [54••]. The 
gut microbiota resulting from long-term low-fibre intake 
triggered and promoted the genesis of higher systolic 
(+ 17 mmHg) and diastolic (+ 14 mmHg) BP and cardio-
renal hypertrophy in mice, showing that this microbiota is 
hypertensinogenic [54••]. By supplementing acetate, pro-
pionate and/or butyrate in the water of conventional Ang II 
mice fed with a low-fibre diet, this hypertensinogenic effect 
was ameliorated [54••].

Furthermore, patients with an advanced stage of chronic 
kidney disease (CKD) with a low-fibre intake (< 25 g/
day) had a lower estimated glomerular filtration rate and 
a higher level of C-reactive protein, IL-6 and the uremic 
toxin indoxyl sulphate, indicating reduced renal function and 
increased inflammatory markers [76]. Similarly, in children 
with CKD, an inverse association was observed between 
fibre consumption and serum concentration of protein-bound 
uraemic toxins, such as indoxyl sulphate, p-Cresol sulphate, 
p-Cresol glucuronide and indole acetic acid [77]. This cor-
relation was dose-dependent: for every gram/day increase in 
fibre consumption, there was a small decrease in particular 
metabolites, which ameliorated their accumulation in the 
kidney [77].

Therefore, a diet lacking sufficient fibre may play a role 
in hypertension and CVD pathogenesis. A possible explana-
tion is a deficiency in fibre fermentation and, thus, SCFAs 
in the proximal and transverse colon, resulting in lower anti-
inflammatory effects in the interstitial epithelial cells and the 
systemic circulation. In return, increased protein fermenta-
tion takes place earlier in the colon, which might lead to 
exposure of the mucosal layer to potential harmful metabo-
lites, such as phenols and hydrogen sulphide [17•]. However, 
the specific processes that happen inside the intestine and 
over-flow to the systemic circulation when fibre intake is low 
are yet to be determined.

Challenges in the Field

There has been an over-reliance on the abundance of micro-
organisms instead of their function. As the pathogenesis of 
hypertension is a complex interplay between several sys-
temic systems, a similar approach regarding the microbiome 
needs to be considered in this setting. It is ideal to integrate 
multi-omics studies, such as metagenomics, metatranscrip-
tomics, metaproteomics and metabolomics, which will 
provide a more comprehensive understanding of BP regu-
lation from a microbiome perspective. There is evidence 
that SCFA producers such as Ruminococcus spp. are less 
prevalent in essential hypertension, and that there is a sig-
nificant shift in the gene pathways of the human hyperten-
sive microbiome [29••]. However, metatranscriptomic or 
metaproteomic studies, showing a shift in the expression and 
function of microbial SCFA-producing genes to determine 
a cause-effect relationship, for example, are still absent in 
hypertension. Sometimes, in vitro models cannot recapitu-
late in vivo, especially when assessing complex microbial 
ecosystems such as the one found in the human intestine 
[17•]. This complexity can be demonstrated by the findings 
of an RCT aimed at reducing sodium which resulted in an 
increase in the levels of plasma butyrate in women [78].
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In the last decade, we have seen an expansion of studies 
investigating gut microbiota-derived metabolites other than 
SCFAs in CVD—an example being trimethylamine N-oxide 
(TMAO) [79]. By combining convention and germ-free ani-
mals, a study identified four upregulated but under-studied 
metabolites in plasma samples of conventional Ang II mice 
[80]. This included 4-ethylphenyl sulphate and p-Cresol sul-
phate, with another eight metabolites downregulated [80]. In 
faecal samples, 25 metabolites, including choline phosphate 
and taurohyodeoxycholic acid, were upregulated, while 71 
were downregulated [80]. Additionally, β-hydroxybutyrate, 
a metabolite derived from the liver, was decreased in the 
circulation with a high-salt diet in hypertensive rats [81]. 
This downregulation was associated with increased activa-
tion of the inflammasome, which in turn increased the risk 
of hypertension [81]. There are several challenges in the 
identification of novel metabolites and their roles, as metab-
olomics tools are still considered emerging. These include a 
lack of validation of some putative metabolites or tools for 
absolute quantification, a large array of synonymous names 
for the same metabolites and a requirement to use different 
analysis tools for different metabolites (e.g. SCFAs vs other 
metabolites), amongst others [82].

Leveraging Fibre as Future Therapeutic 
Approaches for Hypertension

Lifestyle changes remain one of the first lines of interven-
tion in hypertension [4]; however, they fail to promote an 
increase in the quantity and quality of fibre. Guidelines on 
the use of prebiotic foods, which selectively stimulate the 
growth of health-promoting bacteria, are needed. These 
foods include, for example, highly fermentable fibre such as 
inulin, sugar gum and pectin. Future interventions involve 
designing and developing probiotics (i.e. live bacteria) that 
assist in fibre digestion and SCFA production. This will also 
require individuals to sustain a fibre-rich diet as a food sup-
ply for the microbes to survive and populate the gut. Finally, 
there is also an opportunity for direct administration of 
SCFAs as a postbiotic therapy. One RCT aimed at assessing 
the direct effect of the SCFAs acetate and butyrate to lower 
BP in human hypertension is in progress [83]. Neverthe-
less, this might not be a suitable approach for all patients if 
patients have lower expression of GPR41 or GPR43, making 
them less responsive to SCFAs.

Other potential approach includes FMTs from healthy 
donors with enriched SCFA-producing bacteria or 
Tregs-inducing bacteria. An RCT on the potential of FMTs to 
lower BP has been described [84], but the results are yet to be 
available. Moreover, interkingdom interactions within the gut 
could be leveraged: bacteriophages could be used to target 
and kill specific bacteria that produce detrimental metabolites 

from a low-fibre diet. Another approach could include the 
development of inhibitors for bacterial genes that produce 
detrimental metabolites, once these are identified, such as 
the one developed for TMAO’s precursor [85]. Nonetheless, 
all the above should be adjunctive therapies that complement 
other types of treatment or management, and it will require 
extensive RCTs to confirm these promising therapies.

Conclusions

Evidence from the last four decades supports that dietary 
fibre lowers BP and decreases cardiovascular and all-cause 
mortality. The mechanisms involved have only become evi-
dent recently, supporting the gut microbiota has a key role in 
this process via the production of SCFAs. These metabolites 
have multi-faceted actions via GPCRs, epigenetic, immune-
dependent and immune-independent mechanisms that 
together may elicit changes to BP and cardiorenal function. 
Alternatively, a lack of dietary fibre fosters a gut microbiota 
that also seems detrimental to cardiovascular health, lead-
ing to higher BP. The specific metabolites and mechanisms 
driving this are, however, unknown. Translational evidence 
for the direct use of SCFAs to lower BP in hypertensive 
patients is warranted, together with identification and selec-
tive inhibition of the production of detrimental metabolites 
associated with low-fibre intake.
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