Skip to main content

Advertisement

Log in

The Role of Gut Microbiota in Hypertension Pathogenesis and the Efficacy of Antihypertensive Drugs

  • Gut Microbiome and Hypertension (J Ferguson, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Heading

To review the relationship between intestinal microbes and hypertension and its impact on the efficacy of antihypertensive drugs, and help to address some of these knowledge gaps.

Recent Findings

Hypertension is associated with cardiovascular diseases and is the most important modifiable risk factor for all-cause morbidity and mortality worldwide. The pathogenesis of hypertension is complex, including factors such as dietary, environmental and genetics. Recently, the studies have shown that the gut microbiota influences the occurrence and development of hypertension through a variety of ways, including affecting the production of short-chain fatty acids, dysfunction of the brain-gut axis, and changes in serotonin content that cause the imbalance of vagus and sympathetic nerve output associated with hypertension. However, patients with hypertension typically take antihypertensive drugs orally on a long-term basis, and most antihypertensive drugs are absorbed by the gastrointestinal tract. Studies have shown that the pharmacokinetics and metabolism of antihypertensive drugs may be influenced by microbiota, or antihypertensive drugs act directly on the intestinal flora to exert efficacy, including regulation of intestinal microbial metabolism, intestinal inflammation, and intestinal sympathetic nervous system disorders.

Summary

The intestinal flora can affect the pharmacokinetics and metabolism of antihypertensive drugs in the rats, and intestinal microbiota also can be the target “organ” by antihypertensive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Muntner P, Carey RM, Gidding S, Jones DW, Taler SJ, Wright JT, et al. Potential US population impact of the 2017 ACC/AHA high blood pressure guideline. Circulation. 2018;137:109–18.

    Article  PubMed  Google Scholar 

  2. Seryan A, Hamimatunnisa J, Annette P. Association of hypertension cut-off values with 10-year cardiovascular mortality and clinical consequences: a real-world perspective from the prospective MONICA/KORA study. Eur Heart J. 2018;40:732–8.

    Google Scholar 

  3. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control. Circulation. 2016;134:441–50.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Noubiap JJ, Nansseu JR, Nyaga UF, Sime PS, Francis I, Bigna JJ. Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients. Heart. 2019;105:98–105.

    Article  PubMed  Google Scholar 

  5. Chow CK. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA. 2013;310:959–68.

    Article  CAS  PubMed  Google Scholar 

  6. Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol. 2017;7:381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14 This paper studied the changes in gut microbiota in both pre-hypertensive and hypertensive populations, compared to the healthy controls.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Toral M, Robles-Vera I, de la Visitación N, Romero M, Yang T, Sánchez M, et al. Critical role of the interaction gut microbiota–sympathetic nervous system in the regulation of blood pressure. Front Physiol. 2019;10:231.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2017;120:312–3 This paper confirmed that increased sympathetic drive to the gut is associated with gut pathology, dysbiosis, and inflammation and plays a key role in hypertension.

    Article  CAS  PubMed  Google Scholar 

  11. Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci. 2018;132:701–18.

    Article  CAS  Google Scholar 

  12. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570:462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang T, Aquino V, Lobaton GO, Li H, Colon Perez L, Goel R, et al. Sustained captopril-induced reduction in blood pressure is associated with alterations in gut-brain axis in the spontaneously hypertensive rat. J Am Heart Assoc. 2019;8:e10721.

    Google Scholar 

  14. Robles Vera I, Toral M, Visitación N, Sánchez M, Gómez Guzmán M, Muñoz R, et al. Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. Br J Pharmacol. 2020;177:2006–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol. 2011;61:423–8.

    Article  PubMed  Google Scholar 

  16. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li D, Wang P, Wang P, Hu X, Chen F. The gut microbiota: a treasure for human health. Biotechnol Adv. 2016;34:1210–24.

    Article  PubMed  Google Scholar 

  18. Carmody RN, Bisanz JE, Bowen BP, Maurice CF, Lyalina S, Louie KB, et al. Cooking shapes the structure and function of the gut microbiome. Nat Microbiol. 2019;4:2052–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe. 2018;23:41–53.

    Article  CAS  PubMed  Google Scholar 

  20. Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 2016;22:458–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67:1716–25.

    Article  CAS  PubMed  Google Scholar 

  22. Liu S, Da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe. 2016;19:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe. 2018;23:458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bana B, Cabreiro F. The microbiome and aging. Annu Rev Genet. 2019;53:239–61.

    Article  CAS  PubMed  Google Scholar 

  25. Rastelli M, Cani PD, Knauf C. The gut microbiome influences host endocrine functions. Endocr Rev. 2019;40:1271–84.

    Article  PubMed  Google Scholar 

  26. Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa E, Melo F, Roelofs JTHJ, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016;65:575–83.

    Article  CAS  PubMed  Google Scholar 

  27. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jackson MA, Verdi S, Maxan M, Shin CM, Zierer J, Bowyer RCE, et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun. 2018;9:2655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J. Tito RYet al., The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623–32.

    Article  CAS  PubMed  Google Scholar 

  30. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–45.

    Article  CAS  PubMed  Google Scholar 

  31. Marques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2018;15:20–32 This paper found high-fiber diet, or acetate supplementation can change the gut microbiota and play a protective role in the development of cardiovascular disease.

    Article  PubMed  Google Scholar 

  32. Wahlström A, Sayin SI, Marschall H, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41–50.

    Article  PubMed  CAS  Google Scholar 

  33. Marques FZ, Nelson E, Chu P, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135:964–77.

    Article  CAS  PubMed  Google Scholar 

  34. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40 This paper tested the hypothesis that dysbiosis in gut microbiota is associated with hypertension in 2 rat models of hypertension, a small cohort of patients and the chronic angiotensin II infusion rat model.

    Article  CAS  PubMed  Google Scholar 

  35. Bier A, Braun T, Khasbab R, Di Segni A, Grossman E, Haberman Y, et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients. 2018;10:1154.

    Article  PubMed Central  CAS  Google Scholar 

  36. Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM, et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2017;49:96–104.

    Article  CAS  PubMed  Google Scholar 

  37. Callejo M, Mondejar-Parreño G, Barreira B, Izquierdo-Garcia JL, Morales-Cano D, Esquivel-Ruiz S, et al. Pulmonary arterial hypertension affects the rat gut microbiome. Sci Rep. 2018;8:9681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR, et al. Gut microbiota composition and blood pressure. Hypertension. 2019;73:998–1006.

    Article  CAS  PubMed  Google Scholar 

  39. Verhaar BJH, Collard D, Prodan A, Levels JHM, Zwinderman AH, Bäckhed F, et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur Heart J. 2020;41:4259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Santisteban MM, Ahmari N, Carvajal JM, Zingler MB, Qi Y, Kim S, et al. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res. 2015;117:178–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Joe B, McCarthy CG, Edwards JM, Cheng X, Chakraborty S, Yang T, et al. Microbiota introduced to germ-free rats restores vascular contractility and blood pressure. Hypertension. 2020;76:1847–55.

    Article  CAS  PubMed  Google Scholar 

  42. Sharma RK, Yang T, Oliveira AC, Lobaton GO, Aquino V, Kim S, et al. Microglial cells impact gut microbiota and gut pathology in angiotensin II-induced hypertension. Circ Res. 2019;124:727–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Investig. 2019;129:4050–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci. 2013;110:4410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Padmanabhan S, Joe B. Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans. Physiol Rev. 2017;97:1469–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics. 2016;48:826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang H, Pu Y, Chen J, Tong W, Cui Y, Sun F, et al. Gastrointestinal intervention ameliorates high blood pressure through antagonizing overdrive of the sympathetic nerve in hypertensive patients and rats. J Am Heart Assoc. 2014;3:e929.

    Google Scholar 

  48. Yang T, Magee KL, Colon-Perez LM, Larkin R, Liao Y, Balazic E, et al. Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats. Acta Physiol. 2019;226:e13256.

    Article  CAS  Google Scholar 

  49. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:158r–263r.

    Article  CAS  Google Scholar 

  50. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22:586–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haase S, Wilck N, Haghikia A, Gold R, Mueller DN, Linker RA. The role of the gut microbiota and microbial metabolites in neuroinflammation. Eur J Immunol. 2020;50:1863–70.

    Article  CAS  PubMed  Google Scholar 

  52. Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017;11:617.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol. 2018;14:442–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18.

    Article  CAS  PubMed  Google Scholar 

  55. Östman S, Rask C, Wold AE, Hultkrantz S, Telemo E. Impaired regulatory T cell function in germ-free mice. Eur J Immunol. 2006;36:2336–46.

    Article  PubMed  CAS  Google Scholar 

  56. Ivanov II, Frutos RDL, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Calvillo L, Gironacci MM, Crotti L, Meroni PL, Parati G. Neuroimmune crosstalk in the pathophysiology of hypertension. Nat Rev Cardiol. 2019;16:476–90.

    Article  PubMed  Google Scholar 

  59. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, DeRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2015;43:817–29.

    Article  CAS  PubMed  Google Scholar 

  61. Nebigil CG, Jaffré F, Messaddeq N, Hickel P, Monassier L, Launay J, et al. Overexpression of the serotonin 5-HT2B receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Circulation. 2003;107:3223–9.

    Article  CAS  PubMed  Google Scholar 

  62. Blackmore WP. Effect of serotonin on renal hemodynamics and sodium excretion in the dog. Am J Physiol-Legacy Content. 1958;193:639–43.

    Article  CAS  Google Scholar 

  63. Gustafsson BI, Tømmerås K, Nordrum I, Loennechen JP, Brunsvik A, Solligård E, et al. Long-term serotonin administration induces heart valve disease in rats. Circulation. 2005;111:1517–22.

    Article  CAS  PubMed  Google Scholar 

  64. Nebigil CG, Maroteaux L. A novel role for serotonin in heart. Trends Cardiovasc Med. 2001;11:329–35.

    Article  CAS  PubMed  Google Scholar 

  65. Zubcevic J, Richards EM, Yang T, Kim S, Sumners C, Pepine CJ, et al. Impaired autonomic nervous system-microbiome circuit in hypertension. Circ Res. 2019;125:104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29:1395–403.

    Article  CAS  PubMed  Google Scholar 

  67. Mandić AD, Woting A, Jaenicke T, Sander A, Sabrowski W, Rolle-Kampcyk U, et al. Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci Rep. 2019;9:1177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McCarville JL, Chen GY, Cuevas VD, Troha K, Ayres JS. Microbiota metabolites in health and disease. Annu Rev Immunol. 2020;38:147–70.

    Article  CAS  PubMed  Google Scholar 

  70. Wang C, Huang Z, Yu K, Ding R, Ye K, Dai C, et al. High-salt diet has a certain impact on protein digestion and gut microbiota: a sequencing and proteome combined study. Front Microbiol. 2017;8:1838.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ferguson JF, Aden LA, Barbaro NR, Van Beusecum JP, Xiao L, Simons AJ, et al. High dietary salt–induced DC activation underlies microbial dysbiosis-associated hypertension. JCI Insight. 2019;4:e126241.

    Article  PubMed Central  Google Scholar 

  72. Yan X, Jin J, Su X, Yin X, Gao J, Wang X, et al. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circ Res. 2020;126:839–53.

    Article  CAS  PubMed  Google Scholar 

  73. Jama HA, Marques FZ. Don’t take it with a pinch of salt. Circ Res. 2020;126:854–6.

    Article  CAS  PubMed  Google Scholar 

  74. Ivy JR, Oosthuyzen W, Peltz TS, Howarth AR, Hunter RW, Dhaun N, et al. Glucocorticoids induce nondipping blood pressure by activating the thiazide-sensitive cotransporter. Hypertension. 2016;67:1029–37.

    Article  CAS  PubMed  Google Scholar 

  75. Brocca ME, Pietranera L, de Kloet ER, De Nicola AF. Mineralocorticoid receptors, neuroinflammation and hypertensive encephalopathy. Cell Mol Neurobiol. 2019;39:483–92.

    Article  CAS  PubMed  Google Scholar 

  76. Tralau T, Sowada J, Luch A. Insights on the human microbiome and its xenobiotic metabolism: what is known about its effects on human physiology? Expert Opin Drug Metab Toxicol. 2014;11:411–25.

    Article  PubMed  CAS  Google Scholar 

  77. Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69:1510–9.

    Article  CAS  PubMed  Google Scholar 

  78. Hitchings R, Kelly L. Predicting and understanding the human microbiome’s impact on pharmacology. Trends Pharmacol Sci. 2019;40:495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yoo HH, Kim IS, Yoo D, Kim D. Effects of orally administered antibiotics on the bioavailability of amlodipine. J Hypertens. 2016;34:156–62.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang J, Chen Y, Sun Y, Wang R, Zhang J, Jia Z. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine. Drug Deliv. 2018;25:1175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li H, Yang T, Richards EM, Pepine CJ, Raizada MK. Maternal treatment with captopril persistently alters gut-brain communication and attenuates hypertension of male offspring. Hypertension. 2020;75:1315–24 This article is about maternal captopril treatment persistently alters the gut-brain axis and attenuates hypertension of male offspring.

    Article  CAS  PubMed  Google Scholar 

  82. Wu D, Tang X, Ding L, Cui J, Wang P, Du X, et al. Candesartan attenuates hypertension-associated pathophysiological alterations in the gut. Biomed Pharmacother. 2019;116:109040 This study demonstrates for the first time that candesartan treatment alleviates hypertension-associated pathophysiological alterations in the gut, increases microbial production of SCFAs, and preserves gut Lactobacillus under hypertensive conditions.

    Article  CAS  PubMed  Google Scholar 

  83. Kato R, Yuasa H, Inoue K, Iwao T, Tanaka K, Ooi K, et al. Effect of Lactobacillus casei on the absorption of nifedipine from rat small intestine. Drug Metab Pharmacokinet. 2007;22:96–102.

    Article  CAS  PubMed  Google Scholar 

  84. Vivian TL, Christy CF, David CH, Susan CF. Minocycline repurposing in critical illness: focus on stroke. Curr Top Med Chem. 2013;13:2283–90.

    Article  CAS  Google Scholar 

  85. Lilian S, Ruchika M, Andreas S, Annett B, Michael B. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol. 2003;69:5849–54.

    Article  CAS  Google Scholar 

  86. Maaliki D, Shaito AA, Pintus G, El-Yazbi A, Eid AH. Flavonoids in hypertension: a brief review of the underlying mechanisms. Curr Opin Pharmacol. 2019;45:57–65.

    Article  CAS  PubMed  Google Scholar 

  87. Yan Y. The role and mechanism of intestinal flora in high salt-induced hypertension and nifedipine therapy. 2020.

  88. Najmanová I, Pourová J, Vopršalová M, Pilařová V, Semecký V, Nováková L, et al. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats. Mol Nutr Food Res. 2016;60:981–91.

    Article  PubMed  CAS  Google Scholar 

  89. Mulatero P, Glorioso N, Fallo F, Soro A, Morra Di Cella S, Carra R, et al. Absence of D147E mutation of CYP11B2 gene in hypertensive patients with increased corticosterone and aldosterone production. Eur J Endocrinol. 2001;144:397–400.

    Article  CAS  PubMed  Google Scholar 

  90. Aldo S, Mary CI, Giancarlo T, Nicola G, Robert F. Evidence of coexisting changes in 11 beta-hydroxysteroid dehydrogenase and 5 beta-reductase activity in subjects with untreated essential hypertension. Hypertension (Dallas, Tex: 1979). 1995;25:67–70.

    Article  Google Scholar 

  91. Ridlon JM, Kang D, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–59.

    Article  CAS  PubMed  Google Scholar 

  92. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci. 2011;108:4523–30.

    Article  CAS  PubMed  Google Scholar 

  93. Kandel BA, Thomas M, Winter S, Damm G, Seehofer D, Burk O, et al. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes. Biochim Biophys Acta (BBA) - Gene Regul Mech. 2016;1859:1218–27.

    Article  CAS  Google Scholar 

  94. Alexander KL, Targan SR, Elson CO. Microbiota activation and regulation of innate and adaptive immunity. Immunol Rev. 2014;260:206–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.

    Article  CAS  PubMed  Google Scholar 

  96. McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142:24–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. González-Ariki S, Husband AJ. The role of sympathetic innervation of the gut in regulating mucosal immune responses. Brain Behav Immun. 1998;12:53–63.

    Article  PubMed  Google Scholar 

  98. Krzyzaniak M, Peterson C, Loomis W, Hageny A, Wolf P, Reys L, et al. Postinjury vagal nerve stimulation protects against intestinal epithelial barrier breakdown. J Trauma. 2011;70:1168–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schäper J, Wagner A, Enigk F, Brell B, Mousa SA, Habazettl H, et al. Regional sympathetic blockade attenuates activation of intestinal macrophages and reduces gut barrier failure. Anesthesiology. 2013;118:134–42.

    Article  PubMed  CAS  Google Scholar 

  100. Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17:657–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Gut Microbiome and Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Xiong, Y., Zhu, P. et al. The Role of Gut Microbiota in Hypertension Pathogenesis and the Efficacy of Antihypertensive Drugs. Curr Hypertens Rep 23, 40 (2021). https://doi.org/10.1007/s11906-021-01157-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11906-021-01157-2

Keywords

Navigation