Skip to main content
Log in

Circadian Regulation of Blood Pressure: of Mice and Men

  • Sleep and Hypertension (SJ Thomas, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Blood pressure (BP) exhibits strong diurnal variations that have been shown to be important for normal physiology and health. In this review, we highlight recent advances in both basic and clinic research on how the circadian clock affects these BP rhythms.

Recent Findings

Tissue-specific and inducible knockout rodent models have provided novel ways to dissect how circadian clocks regulate BP rhythms and demonstrated that loss of these rhythms is associated with the development of disease. The use of circadian-specific research protocols has translated findings from rodent models to humans, providing insight into circadian control of BP, as well as how sleep, activity, and other factors influence diurnal BP rhythms.

Summary

Circadian mechanisms play an important role in the regulation of diurnal BP rhythms. Future research needs to extend these findings to clinical populations and determine the extent to which circadian factors may play a role in the development of novel treatment approaches to the management of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Ko MJ, Jo AJ, Park CM, Kim HJ, Kim YJ, Park DW. Level of blood pressure control and cardiovascular events: SPRINT criteria versus the 2014 hypertension recommendations. J Am Coll Cardiol. 2016;67(24):2821–31.

    PubMed  Google Scholar 

  2. Group SR, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.

    Google Scholar 

  3. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–e115.

    PubMed  CAS  Google Scholar 

  4. de la Sierra A, Segura J, Gorostidi M, Banegas JR, de la Cruz JJ, Ruilope LM. Diurnal blood pressure variation, risk categories and antihypertensive treatment. Hypertens Res. 2010;33(8):767–71.

    PubMed  Google Scholar 

  5. Witte K, Schnecko A, Buijs RM, van der Vliet J, Scalbert E, Delagrange P, et al. Effects of Scn lesions on orcadian blood pressure rhythm in normotensive and transgenic hypertensive rats. Chronobiol Int. 1998;15(2):135–45.

    PubMed  CAS  Google Scholar 

  6. Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA. Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci U S A. 2007;104(9):3450–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Yang G, Chen L, Grant GR, Paschos G, Song WL, Musiek ES, et al. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med. 2016;8(324):324ra16.

    PubMed  PubMed Central  Google Scholar 

  8. •• Chang L, Xiong W, Zhao X, Fan Y, Guo Y, Garcia-Barrio M, et al. Bmal1 in perivascular adipose tissue regulates resting-phase blood pressure through transcriptional regulation of angiotensinogen. Circulation. 2018;138(1):67–79 This study used tissue-specific deletion of Bmal1 from the perivascular adipose tissue to identify the time-dependent regulation of angiotensinogen on inactive period blood pressure.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Xie Z, Su W, Liu S, Zhao G, Esser K, Schroder EA, et al. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J Clin Invest. 2015;125(1):324–36.

    PubMed  Google Scholar 

  10. Ansermet C, Centeno G, Nikolaeva S, Maillard MP, Pradervand S, Firsov D. The intrinsic circadian clock in podocytes controls glomerular filtration rate. Sci Rep. 2019;9(1):16089.

    PubMed  PubMed Central  Google Scholar 

  11. Tokonami N, Mordasini D, Pradervand S, Centeno G, Jouffe C, Maillard M, et al. Local renal circadian clocks control fluid-electrolyte homeostasis and BP. J Am Soc Nephrol. 2014;25(7):1430–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM. A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron. 2006;50(3):465–77.

    PubMed  CAS  Google Scholar 

  13. DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci. 2007;10(5):543–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Landgraf D, Wang LL, Diemer T, Welsh DK. NPAS2 compensates for loss of CLOCK in peripheral circadian oscillators. PLoS Genet. 2016;12(2):e1005882.

    PubMed  PubMed Central  Google Scholar 

  15. Zuber AM, Centeno G, Pradervand S, Nikolaeva S, Maquelin L, Cardinaux L, et al. Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci U S A. 2009;106(38):16523–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Nikolaeva S, Pradervand S, Centeno G, Zavadova V, Tokonami N, Maillard M, et al. The circadian clock modulates renal sodium handling. J Am Soc Nephrol. 2012;23(6):1019–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Alibhai FJ, LaMarre J, Reitz CJ, Tsimakouridze EV, Kroetsch JT, Bolz SS, et al. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J Mol Cell Cardiol. 2017;105:24–37.

    PubMed  CAS  Google Scholar 

  18. Stow LR, Richards J, Cheng KY, Lynch IJ, Jeffers LA, Greenlee MM, et al. The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension. 2012;59(6):1151–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Richards J, Ko B, All S, Cheng KY, Hoover RS, Gumz ML. A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J Biol Chem. 2014;289(17):11791–806.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Solocinski K, Richards J, All S, Cheng KY, Khundmiri SJ, Gumz ML. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. Am J Physiol Ren Physiol. 2015;309(11):F933–42.

    CAS  Google Scholar 

  21. Richards J, Cheng KY, All S, Skopis G, Jeffers L, Lynch IJ, et al. A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention. Am J Physiol Ren Physiol. 2013;305(12):F1697–704.

    CAS  Google Scholar 

  22. •• Solocinski K, Holzworth M, Wen X, Cheng KY, Lynch IJ, Cain BD, et al. Desoxycorticosterone pivalate-salt treatment leads to non-dipping hypertension in Per1 knockout mice. Acta Physiol (Oxford). 2017;220(1):72–82 This study utilized a high salt/mineralocorticoid model of hypertension in Per1 knockout mice to recapitulate non-dipping hypertension.

    CAS  Google Scholar 

  23. •• Douma LG, Solocinski K, Holzworth MR, Crislip GR, Masten SH, Miller AH, et al. Female C57BL/6J mice lacking the circadian clock protein PER1 are protected from nondipping hypertension. Am J Phys Regul Integr Comp Phys. 2019;316(1):R50–8 This study postulates that sex may alter the non-dipping response to high salt/mineralocorticoid treatment in Per1 knockout mice.

    CAS  Google Scholar 

  24. Douma LG, Holzworth MR, Solocinski K, Masten SH, Miller AH, Cheng KY, et al. Renal Na-handling defect associated with PER1-dependent nondipping hypertension in male mice. Am J Physiol Ren Physiol. 2018;314(6):F1138–F44.

    CAS  Google Scholar 

  25. Zylka MJ, Shearman LP, Weaver DR, Reppert SM. Three period homologs in mammals: differential light reponses in the suprachiasmatic circadian clock and oscillating transcripts outside of the brain. Neuron. 1998;20(6):1103–10.

    PubMed  CAS  Google Scholar 

  26. Vukolic A, Antic V, Van Vliet BN, Yang Z, Albrecht U, Montani J-P. Role of mutation of the circadian clock gene Per2 in cardiovascular circadian rhythms. Am J Phys Regul Integr Comp Phys. 2010;298(3):R627–34.

    CAS  Google Scholar 

  27. Noda M, Iwamoto I, Tabata H, Yamagata T, Ito H, Nagata KI. Role of Per3, a circadian clock gene, in embryonic development of mouse cerebral cortex. Sci Rep. 2019;9(1):5874.

    PubMed  PubMed Central  Google Scholar 

  28. Okamura H, Doi M, Yamaguchi Y, Fustin JM. Hypertension due to loss of clock: novel insight from the molecular analysis of Cry1/Cry2-deleted mice. Curr Hypertens Rep. 2011;13(2):103–8.

    PubMed  CAS  Google Scholar 

  29. Nugrahaningsih DA, Emoto N, Vignon-Zellweger N, Purnomo E, Yagi K, Nakayama K, et al. Chronic hyperaldosteronism in cryptochrome-null mice induces high-salt- and blood pressure-independent kidney damage in mice. Hypertens Res. 2014;37(3):202–9.

    PubMed  CAS  Google Scholar 

  30. Zhang D, Jin C, Speed JS, Pollock DM. Evidence that food intake controls diurnal blood pressure rhythm in mice. FASEB J. 2019;33(1_supplement):533.12.

    Google Scholar 

  31. van den Buuse M, Malpas SC. 24-hour recordings of blood pressure, heart rate and behavioral activity in rabbits by radio-telemetry: effects of feeding and hypertension. Physiol Behav. 1997;62(1):83–9.

    PubMed  Google Scholar 

  32. Antic V, Van Vliet BN, Montani J-P. Loss of nocturnal dipping of blood pressure and heart rate in obesity-induced hypertension in rabbits. Auton Neurosci: Basic & Clinical. 2001;90:152–7.

    CAS  Google Scholar 

  33. Whelton PK. Sodium, potassium, blood pressure, and cardiovascular disease in humans. Curr Hypertens Rep. 2014;16(8):465.

    PubMed  Google Scholar 

  34. Chiu S, Bergeron N, Williams PT, Bray GA, Sutherland B, Krauss RM. Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial1–3. Am J Clin Nutr. 2016;103(2):341–7.

    PubMed  CAS  Google Scholar 

  35. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27(6):1212–21.e3.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Sheward WJ, Naylor E, Knowles-Barley S, Armstrong JD, Brooker GA, Seckl JR, et al. Circadian control of mouse heart rate and blood pressure by the suprachiasmatic nuclei: behavioral effects are more significant than direct outputs. PLoS One. 2010;5(3):e9783.

    PubMed  PubMed Central  Google Scholar 

  37. Van Vliet BN, Chafe LL, Montani JP. Characteristics of 24 h telemetered blood pressure in eNOS-knockout and C57Bl/6J control mice. J Physiol. 2003;549(Pt 1):313–25.

    PubMed  PubMed Central  Google Scholar 

  38. Kennaway DJ, Voultsios A, Varcoe TJ, Moyer RW. Melatonin in mice: rhythms, response to light, adrenergic stimulation and metabolism. Am J Phys Regul Integr Comp Phys. 2002;282:R358–R65.

    CAS  Google Scholar 

  39. Stehle JH, von Gall C, Korf HW. Organisation of the circadian system in melatonin-proficient C3H and melatonin-deficient C57BL mice: a comparative investigation. Cell Tissue Res. 2002;309(1):173–82.

    PubMed  CAS  Google Scholar 

  40. Klerman EB, Dijk DJ, Kronauer RE, Czeisler CA. Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period. Am J Phys. 1996;270(1 Pt 2):R271–82.

    CAS  Google Scholar 

  41. Duffy JF, Dijk DJ. Getting through to circadian oscillators: why use constant routines? J Biol Rhythm. 2002;17(1):4–13.

    Google Scholar 

  42. Stack N, Barker D, Carskadon M, Diniz BC. A model-based approach to optimizing ultradian forced desynchrony protocols for human circadian research. J Biol Rhythm. 2017;32(5):485–98.

    Google Scholar 

  43. •• Shea SA, Hilton MF, Hu K, Scheer FA. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ Res. 2011;108(8):980–4 This study used three different protocols to identify circadian control of blood pressure in humans.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Pickering TG, Shimbo D, Haas D. Ambulatory blood-pressure monitoring. N Engl J Med. 2006;354(22):2368–74.

    PubMed  CAS  Google Scholar 

  45. Ohkubo T, Hozawa A, Nagai K, Kikuya M, Tsuji I, Ito S, et al. Prediction of stroke by ambulatory blood pressure monitoring versus screening blood pressure measurements in a general population: the Ohasama study. J Hypertens. 2000;18(7):847–54.

    PubMed  CAS  Google Scholar 

  46. Dolan E, Stanton AV, Thom S, Caulfield M, Atkins N, McInnes G, et al. Ambulatory blood pressure monitoring predicts cardiovascular events in treated hypertensive patients--an Anglo-Scandinavian cardiac outcomes trial substudy. J Hypertens. 2009;27(4):876–85.

    PubMed  CAS  Google Scholar 

  47. Kario K, Pickering TG, Matsuo T, Hoshide S, Schwartz JE, Shimada K. Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension. 2001;38(4):852–7.

    PubMed  CAS  Google Scholar 

  48. Ben-Dov IZ, Kark JD, Ben-Ishay D, Mekler J, Ben-Arie L, Bursztyn M. Blunted heart rate dip during sleep and all-cause mortality. Arch Intern Med. 2007;167(19):2116–21.

    PubMed  Google Scholar 

  49. Sherwood A, Steffen PR, Blumenthal JA, Kuhn C, Hinderliter AL. Nighttime blood pressure dipping: the role of the sympathetic nervous system. Am J Hypertens. 2002;15(2 Pt 1):111–8.

    PubMed  Google Scholar 

  50. Kario K, Shimada K, Pickering TG. Abnormal nocturnal blood pressure falls in elderly hypertension: clinical significance and determinants. J Cardiovasc Pharmacol. 2003;41(Suppl 1):S61–6.

    PubMed  CAS  Google Scholar 

  51. Zelinka T, Strauch B, Pecen L, Widimsky J Jr. Diurnal blood pressure variation in pheochromocytoma, primary aldosteronism and Cushing’s syndrome. J Hum Hypertens. 2004;18(2):107–11.

    PubMed  CAS  Google Scholar 

  52. Hermida RC, Ayala DE, Fernandez JR, Portaluppi F, Fabbian F, Smolensky MH. Circadian rhythms in blood pressure regulation and optimization of hypertension treatment with ACE inhibitor and ARB medications. Am J Hypertens. 2011;24(4):383–91.

    PubMed  CAS  Google Scholar 

  53. Uzu T, Ishikawa K, Fujii T, Nakamura S, Inenaga T, Kimura G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1997;96(6):1859–62.

    PubMed  CAS  Google Scholar 

  54. Fujii T, Uzu T, Nishimura M, Takeji M, Kuroda S, Nakamura S, et al. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am J Kidney Dis. 1999;33(1):29–35.

    PubMed  CAS  Google Scholar 

  55. Agarwal R, Andersen MJ. Prognostic importance of ambulatory blood pressure recordings in patients with chronic kidney disease. Kidney Int. 2006;69(7):1175–80.

    PubMed  CAS  Google Scholar 

  56. Fabbian F, Smolensky MH, Tiseo R, Pala M, Manfredini R, Portaluppi F. Dipper and non-dipper blood pressure 24-hour patterns: circadian rhythm-dependent physiologic and pathophysiologic mechanisms. Chronobiol Int. 2013;30(1–2):17–30.

    PubMed  Google Scholar 

  57. Sica DA. What are the influences of salt, potassium, the sympathetic nervous system, and the renin-angiotensin system on the circadian variation in blood pressure? Blood Press Monit. 1999;4(Suppl 2):S9–S16.

    PubMed  Google Scholar 

  58. Thomas SJ, Booth JN 3rd, Jaeger BC, Hubbard D, Sakhuja S, Abdalla M. Association of sleep characteristics with nocturnal hypertension and non-dipping blood pressure in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. J Am Heart Assoc. 2020;70:A131 In Press.

    Google Scholar 

  59. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Narkiewicz K, Pesek CA, Kato M, Phillips BG, Davison DE, Somers VK. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension. 1998;32(6):1039–43.

    PubMed  CAS  Google Scholar 

  61. Narkiewicz K, Kato M, Phillips BG, Pesek CA, Davison DE, Somers VK. Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation. 1999;100(23):2332–5.

    PubMed  CAS  Google Scholar 

  62. •• Bello NA, Jaeger BC, Booth JN 3rd, Abdalla M, Anstey DE, Pugliese DN, et al. Associations of awake and asleep blood pressure and blood pressure dipping with abnormalities of cardiac structure: the Coronary Artery Risk Development in Young Adults study. J Hypertens. 2019;38(1):102–10 This study suggests that high awake and high asleep SBP, but not non-dipping SBP, are associated with left ventricular hypertrophy and hypertensive end-organ damage.

    Google Scholar 

  63. Van Dongen HP, Maislin G, Kerkhof GA. Repeated assessment of the endogenous 24-hour profile of blood pressure under constant routine. Chronobiol Int. 2001;18(1):85–98.

    PubMed  Google Scholar 

  64. Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension. 2004;43(2):192–7.

    PubMed  CAS  Google Scholar 

  65. Medicine AAoS. The international classification of sleep disorders. 3rd ed. Darien: American Academy of Sleep Medicine; 2014.

    Google Scholar 

  66. American Psychiatric Association. American Psychiatric Association. DSM-5 Task Force. In: Diagnostic and statistical manual of mental disorders : DSM-5, vol. xliv. 5th ed. Washington: American Psychiatric Association; 2013. p. 947.

    Google Scholar 

  67. Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A. 2016;113(10):E1402–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Reinberg AE, Smolensky MH, Riedel M, Riedel C, Brousse E, Touitou Y. Do night and around-the-clock firefighters’ shift schedules induce deviation in tau from 24 hours of systolic and diastolic blood pressure circadian rhythms? Chronobiol Int. 2017;34(8):1158–74.

    PubMed  Google Scholar 

  69. Strohmaier S, Devore EE, Zhang Y, Schernhammer ES. A review of data of findings on night shift work and the development of DM and CVD events: a synthesis of the proposed molecular mechanisms. Curr Diab Rep. 2018;18(12):132.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106(11):4453–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Wyse CA, Coogan AN. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res. 2010;1337:21–31.

    PubMed  CAS  Google Scholar 

  72. Hood S, Amir S. The aging clock: circadian rhythms and later life. J Clin Invest. 2017;127(2):437–46.

    PubMed  PubMed Central  Google Scholar 

  73. Chaix A, Panda S. Timing tweaks exercise. Nat Rev Endocrinol. 2019;15(8):440–1.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 15SFRN2390002 and 19CDA34660139 from the American Heart Association to SJT and the National Institute of Health T32 DK007545 to MKR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Justin Thomas.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sleep and Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhoads, M.K., Balagee, V. & Thomas, S.J. Circadian Regulation of Blood Pressure: of Mice and Men. Curr Hypertens Rep 22, 40 (2020). https://doi.org/10.1007/s11906-020-01043-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01043-3

Keywords

Navigation