Skip to main content
Log in

Potential Contribution of Carotid Body-Induced Sympathetic and Renin-Angiotensin System Overflow to Pulmonary Hypertension in Intermittent Hypoxia

  • Pulmonary Hypertension (JR Klinger, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Obstructive sleep apnea (OSA), featured by chronic intermittent hypoxia (CIH), is an independent risk for systemic hypertension (HTN) and is associated with pulmonary hypertension (PH). The precise mechanisms underlying pulmonary vascular remodeling and PH in OSA are not fully understood. However, it has been suggested that lung tissue hypoxia, oxidative stress, and pro-inflammatory mediators following CIH exposure may contribute to PH.

Recent Findings

New evidences obtained in preclinical OSA models support that an enhanced carotid body (CB) chemosensory reactiveness to oxygen elicits sympathetic and renin-angiotensin system (RAS) overflow, which contributes to HTN. Moreover, the ablation of the CBs abolished the sympathetic hyperactivity and HTN in rodents exposed to CIH. Accordingly, it is plausible that the enhanced CB chemosensory reactivity may contribute to the pulmonary vascular remodeling and PH through the overactivation of the sympathetic-RAS axis. This hypothesis is supported by the facts that (i) CB stimulation increases pulmonary arterial pressure, (ii) denervation of sympathetic fibers in pulmonary arteries reduces pulmonary remodeling and pulmonary arterial hypertension (PAH) in humans, and (iii) administration of angiotensin-converting enzyme (ACE) or blockers of Ang II type 1 receptor (ATR1) ameliorates pulmonary remodeling and PH in animal models.

Summary

In this review, we will discuss the supporting evidence for a plausible contribution of the CB-induced sympathetic-RAS axis overflow on pulmonary vascular remodeling and PH induced by CIH, the main characteristic of OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

AHI:

Apnea/hypopnea index

Ang II:

Angiotensin II

ATR1:

Angiotensin II receptor type 1

ATR2:

Angiotensin II receptor type 2

BP:

Arterial blood pressure

BRS:

Baroreceptor reflex sensitivity

CB:

Carotid body

CIH:

Chronic intermittent hypoxia

CPAP:

Continuous positive airway pressure

CSN:

Carotid sinus nerve

CVO:

Circumventricular organs

ET-1:

Endothelin-1

ETB:

Endothelin type B receptor

HTN:

Systemic hypertension

HIFs:

Hypoxia-induced factors

IL-6:

Interleukin 6

IL-1β:

Interleukin 1β

ICAM:

Intercellular adhesion molecule 1

MnSOD:

Manganese-dependent superoxide dismutase

MCP-1:

Monocyte chemoattractant protein-1

MSNA:

Muscle sympathetic nerve activity

NA:

Nucleus ambiguous

NF-kB:

Transcription nuclear factor κB

NTS:

Nucleus of the tractus solitarious

NADPH:

Nicotinamide adenine dinucleotide phosphate

NOX2:

NADPH oxidase 2

NOX4:

NADPH oxidase 4

3-NT:

3-Nitrotyrosine

OSA:

Obstructive sleep apnea

PASMC:

Pulmonary arterial smooth muscle cells

PAH:

Pulmonary arterial hypertension

PH:

Pulmonary hypertension

PVN:

Paraventricular nucleus

RAS:

Renin-angiotensin system

ROS:

Reactive oxygen species

RVSP:

Right ventricular systolic pressure

RVH:

Right ventricular hypertrophy

RVLM:

Rostral ventrolateral medulla

SFO:

Subfornical organ

SHR:

Spontaneous hypertensive rats

TNF-α:

Tumor necrosis factor

VCAM:

Vascular cell adhesion molecule

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beebe DW, Gozal D. Obstructive sleep apnea and the prefrontal cortex: towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J Sleep Res. 2002;11:1–16.

    PubMed  Google Scholar 

  2. • Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90:47–112. This is a comprehensive review of the pathophysiological consequences of sleep apnea.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Garvey JF, Taylor CT, McNicholas WT. Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J. 2009;33:1195–205.

    CAS  PubMed  Google Scholar 

  4. Gozal D, Kheirandish-Gozal L. Cardiovascular morbidity in obstructive sleep apnea, oxidative stress, inflammation, and much more. Am J Respir Crit Care Med. 2008;177:369–75.

    CAS  PubMed  Google Scholar 

  5. • Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease. Circulation. 2008;118:1080–111. A complete review of the cardiovascular consequences of OSA.

    PubMed  Google Scholar 

  6. Gonçalves SC, Martinez D, Gus M, de Abreu-Silva EO, Bertoluci C, Dutra I, et al. Obstructive sleep apnea and resistant hypertension: a case-control study. Chest. 2007;132:1858–62.

    PubMed  Google Scholar 

  7. Tonecny T, Tomas K, Virend K. Somers. Obstructive sleep apnea and hypertension an update. Hypertension. 2014;63:203–9.

    Google Scholar 

  8. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31:1071–8.

    PubMed  PubMed Central  Google Scholar 

  9. Fletcher EC, Lesske J, Behm R, Miller CC, Stauss H, Unger T. Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Physiol. 1992a;72:1978–84.

    CAS  PubMed  Google Scholar 

  10. Prabhakar NR, Kumar GK, Peng YJ. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol. 2012;113:1304–10.

    PubMed  PubMed Central  Google Scholar 

  11. Iturriaga R, Oyarce MP, Dias ACR. Role of carotid body in intermittent hypoxia-related hypertension. Curr Hyperten Rep. 2017;19:38.

    Google Scholar 

  12. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. Am Coll Cardiol. 2013;62:D34–41.

    Google Scholar 

  13. • Atwood CW Jr, McCrory D, Garcia JG, Abman SH, Ahearn GS, American College of Chest Physicians. Pulmonary artery hypertension and sleep-disordered breathing: ACCP evidence-based clinical practice guidelines. Chest. 2004;126(1 Suppl):72S–7S. A complete review of the relationship between pulmonary hypertension and sleep disorders.

    PubMed  Google Scholar 

  14. Bosc LVG, Resta T, Walker B, Kanagy NL. Mechanisms of intermittent hypoxia induced hypertension. J Cell Mol Med. 2010;14:3–17.

    PubMed  Google Scholar 

  15. Floras JS. Sleep apnea and cardiovascular disease: an enigmatic risk factor. Circ Res. 2018;122:1741–64.

    CAS  PubMed  Google Scholar 

  16. Me AS, El-Desoky ME, Maaty AER, Abd-ElMaksoud AM, Suliman LA. Pulmonary hypertension in obstructive sleep apnea hypopnea syndrome. Egyp J Chest Dis Tuber. 2013;62:459–65.

    Google Scholar 

  17. Imran TF, Ghazipura M, Liu S, Hossain T, Ashtyani H, Kim B, et al. Effect of continuous positive airway pressure treatment on pulmonary artery pressure in patients with isolated obstructive sleep apnea: a meta-analysis. Heart Fail Rev. 2016;21:591–8.

    CAS  PubMed  Google Scholar 

  18. Adegunsoye A, Ramachandran S. Etiopathogenetic mechanisms of pulmonary hypertension in sleep-related breathing disorders. Pulm Med. 2012;2012:273591.

    PubMed  PubMed Central  Google Scholar 

  19. Kholdani S, Fares WH, Mohsenin V. Pulmonary hypertension in obstructive sleep apnea: is it clinically significant? A critical analysis of the association and pathophysiology. Pulm Circ. 2015;5:220–7.

    PubMed  PubMed Central  Google Scholar 

  20. Ismail K, Roberts K, Manning P, Manley C, Hill NS. OSA and pulmonary hypertension: time for a new look. Chest. 2015;147:847–61.

    PubMed  Google Scholar 

  21. • Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LR, Mewburn JD, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest. A complete review of pulmonary hypertension mechanisms. 2017;151:181–92.

  22. Suresh K, Shimoda LA. Lung circulation. Compr Physiol. 2016;6:897–943.

    PubMed  Google Scholar 

  23. •• Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367–520. A comprehensive review of hypoxic vasoconstriction in the lung.

    CAS  PubMed  Google Scholar 

  24. Nara A, Nagai H, Shintani-Ishida K, Ogura S, Shimosawa T, Kuwahira I, et al. Pulmonary arterial hypertension in rats due to age-related arginase activation in intermittent hypoxia. Am J Respir Cell Mol Biol. 2015;53:184–92.

    CAS  PubMed  Google Scholar 

  25. Jin H, Liu M, Zhang X, Pan J, Han J, Wang Y, et al. Grape seed procyanidin extract attenuates hypoxic pulmonary hypertension by inhibiting oxidative stress and pulmonary arterial smooth muscle cells proliferation. J Nutr Biochem. 2016;36:81–8.

    CAS  PubMed  Google Scholar 

  26. Jin H, Wang Y, Zhou L, Liu L, Zhang P, Deng W, et al. Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J Pineal Res. 2014;57:442–50.

    CAS  PubMed  Google Scholar 

  27. Nisbet RE, Graves AS, Kleinhenz DJ, Rupnow HL, Reed AL, Fan THM, et al. The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Moll Biol. 2009;40:601–9.

    CAS  Google Scholar 

  28. Cho HJ, Heo W, Han JW, Lee YH, Park JM, Kang MJ, Kim JY. Chronological change of right ventricle by chronic intermittent hypoxia in mice. Sleep. 2017;40.

  29. Fagan KA. Selected Contribution: Pulmonary hypertension in mice following intermittent hypoxia. J Appl Physiol. 2001;90:2502–7.

    CAS  PubMed  Google Scholar 

  30. Lu H, Wu X, Fu C, Zhou J, Li S. Lung injury and inflammation response by chronic intermittent hypoxia in rats. Sleep Sci Pract. 2017;1:1.

    Google Scholar 

  31. Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. New Eng J Med. 2004;351:1425–36.

    CAS  PubMed  Google Scholar 

  32. Shao J, Wang P, Liu A, Du X, Bai J, Chen M. Punicalagin prevents hypoxic pulmonary hypertension via antioxidant effects in rats. Am J Chin Med. 2016;44:785–801.

    CAS  PubMed  Google Scholar 

  33. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res. 2002;91:719–26.

    CAS  PubMed  Google Scholar 

  34. Bakouboula B, Morel O, Faure A, Zobairi F, Jesel L, Trinh A, et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;177:536–43.

    CAS  PubMed  Google Scholar 

  35. Hassoun PM, Mouthon L, Barberà JA, Eddahibi S, Flores SC, Grimminger F, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009;54:S10–9.

    CAS  PubMed  Google Scholar 

  36. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006:99675–91.

  37. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1:a000034.

    PubMed  PubMed Central  Google Scholar 

  38. Lu W, Kang J, Hu K, Tang S, Zhou X, Yu S, et al. Angiotensin-(1–7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats. Braz J Med Biol Res. 2016;49:e5431.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu XM, Yao D, Cai XD, Ding C, Lin QD, Wang LX, et al. Effect of chronic continual- and intermittent hypoxia-induced systemic inflammation on the cardiovascular system in rats. Sleep Breath. 2015;19:677–84.

    PubMed  Google Scholar 

  40. Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91:807–19.

    CAS  PubMed  Google Scholar 

  41. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, et al. ROS and ROS-mediated cellular signaling. Oxidative Med Cell Longev. 2016;2016:4350965.

    Google Scholar 

  42. Zhang X, Rui L, Wang M, Lian H, Cai L. Sinomenine attenuates chronic intermittent hypoxia-induced lung injury by inhibiting inflammation and oxidative stress. Med Sci Monit. 2018;24:1574–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang CH, Zhuang WL, Shen YJ, Lai CJ, Kou YR. NADPH oxidase-derived ROS induced by chronic intermittent hypoxia mediates hypersensitivity of lung vagal C fibers in rats. Front Physiol. 2016;7:166.

    PubMed  PubMed Central  Google Scholar 

  44. Shimoda LA, Semenza GL. HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. AJ Res Crit Care Med. 2011;183:152–6.

    CAS  Google Scholar 

  45. Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med. 2002;8:702–10.

    CAS  PubMed  Google Scholar 

  46. Abud EM, Maylor J, Undem C, Punjabi A, Zaiman AL, Myers AC, et al. Digoxin inhibits development of hypoxic pulmonary hypertension in mice. Proc Natl Acad Sci U S A. 2012;109:1239–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest. 1999;103:691–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. • Brusselmans K, Compernolle V, Tjwa M, Wiesener MS, Maxwell PH, Collen D, et al. Heterozygous deficiency of hypoxia-inducible factor-2α protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest. 2003;111:1519–27. Highlighted the role played by HIF-2α in pulmonary hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cowburn AS, Crosby A, Macias D, Branco C, Colaço RD, Southwood M, et al. HIF2α-arginase axis is essential for the development of pulmonary hypertension. Proc Natl Acad Sci U S A. 2016;113:8801–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dai Z, Li M, Wharton J, Zhu M. Zhao YY.PHD2 deficiency in endothelial cells and hematopoietic cells induces obliterative vascular remodeling and severe pulmonary arterial hypertension in mice and humans through HIF-2α. Circulation. 2016;133:2447–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. De Morais SDB, Shanks J, Zucker IH. Integrative physiological aspects of brain ras in hypertension. Curr Hypertense Rep. 2018;26(20):10.

    Google Scholar 

  52. Fung ML. The role of local renin-angiotensin system in arterial chemoreceptors in sleep-breathing disorders. Front Physiol. 2014;5:336.

    PubMed  PubMed Central  Google Scholar 

  53. Marshall RP. The pulmonary renin-angiotensin system. Curr Pharm Des. 2003;9:715–22.

    CAS  PubMed  Google Scholar 

  54. Maron BA, Leopold JA. The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension. Pulm Circ. 2013;4:200–10.

    Google Scholar 

  55. de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, François C, et al. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186:780–9.

    PubMed  PubMed Central  Google Scholar 

  56. Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179:1048–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. • Morrel NW, Kenneth GM, Stenmark KR. Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol. 1995;269:H1186–94. Pioneer work on the contribution of RAS on pulmonary hypertension.

    Google Scholar 

  58. Morrell NW, Upton PD, Higham MA, Yacoub MH, Polak JM, Wharton J. Angiotensin II stimulates proliferation of human pulmonary artery smooth muscle cells via the AT1 receptor. 1998;114:90S–91S.

  59. Jia G, Aroor AR, Hill MA, Sowers JR. Role of renin-angiotensin-aldosterone system activation in promoting cardiovascular fibrosis. Hypertension. 2018;72:537–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98:1627–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Martyniuk TV, Chazova IE, Masenko VP, Volkov VN, Belenkov IN. Activity of renin-angiotensin-aldosterone system (RAAS) and vasopressin level in patients with primary pulmonary hypertension. Ter Arkh. 1988;70:33–6.

    Google Scholar 

  62. Schuster DP, Crouch EC, Parks WC, Johnson T, Botney MD. Angiotensin converting enzyme expression in primary pulmonary hypertension. Am J Respir Crit Care Med. 1996;154:1087–91.

    CAS  PubMed  Google Scholar 

  63. Michelakis ED. The role of the NO axis and its therapeutic implications in pulmonary arterial hypertension. Heart Fail Rev. 2003;8:5–21.

    CAS  PubMed  Google Scholar 

  64. Maron BA, Zhang YY, White K, Chan SY, Handy DE, Mahoney CE, et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation. 2012;126:963–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. da Silva GBD, Happé C, Schalij I, Pijacka W, Paton JFR, Guignabert C, et al. Renal denervation reduces pulmonary vascular remodeling and right ventricular diastolic stiffness in experimental pulmonary hypertension. JACC: Bas Trans Sci. 2017;2:22–35.

    Google Scholar 

  66. Shirai M, Tsuchimochi H, Hisashi Nagai H, Gray E, Pearson JT, Sonobe T, et al. Pulmonary vascular tone is dependent on the central modulation of sympathetic nerve activity following chronic intermittent hypoxia. Basic Res Cardiol. 2014;109:432.

    PubMed  Google Scholar 

  67. Vaillancourt M, Chia P, Sarji S, Nguyen J, Hoftman N, Ruffenach G, et al. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir Res. 2017;18:201.

    PubMed  PubMed Central  Google Scholar 

  68. Velez-Roa S, Ciarka A, Najem B, Vachiery J-L, Naeije R, van de Borne P. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004;110:1308–12.

    PubMed  Google Scholar 

  69. Kummer W. Pulmonary vascular innervation and its role in responses to hypoxia. Proc Am Thorac Soc. 2011;8:471–6.

    CAS  PubMed  Google Scholar 

  70. Kadowitz PJ, Joiner PD, Hyman AL. Influence of sympathetic stimulation and vasoactive substances on the canine pulmonary veins. J Clin Invest. 1975;56:354–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Szidon JP, Flint JF. Significance of sympathetic innervation of pulmonary vessels in response to acute hypoxia. J Appl Physiol. 1977;43:65–71.

    CAS  PubMed  Google Scholar 

  72. • Chen S, Zhang FF, Xu J, Xie DJ, Zhou L, Nguyen T, et al. Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study. J Am Coll Cardiol. 2013;62:1092–100. First-in-man study to test the safety and feasibility pulmonary artery denervation to treat pulmonary hypertension.

    PubMed  Google Scholar 

  73. Liu Q, Song J, Lu D, Geng J, Jiang Z, Wang K, et al. Effects of renal denervation on monocrotaline induced pulmonary remodeling. Oncotarget. 2017;8:46846–55.

    PubMed  PubMed Central  Google Scholar 

  74. Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation. 1998;97:943–5.

    CAS  PubMed  Google Scholar 

  75. Del Rio R, Moya EA, Iturriaga R. Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link. Eur Respir J. 2010;36:143–50.

    PubMed  Google Scholar 

  76. Fletcher EC, Lesske J, Culman J, Miller CC, Unger T. Sympathetic denervation blocks blood pressure elevation in episodic hypoxia. Hypertension. 1992b;20:612–9.

    CAS  PubMed  Google Scholar 

  77. Del Rio R, Moya EA, Iturriaga R. Differential expression of pro-inflammatory cytokines, endothelin-1 and nitric oxide synthases in the rat carotid body exposed to intermittent hypoxia. Brain Res. 2011;1395:74–85.

    PubMed  Google Scholar 

  78. Peng YJ, Prabhakar NR. Reactive oxygen species in the plasticity of breathing elicited by chronic intermittent hypoxia. J Appl Physiol. 2003;94:2342–9.

    CAS  PubMed  Google Scholar 

  79. Rey S, Tarvainen MP, Karjalainen PA, Iturriaga R. Dynamic time-varying analysis of heart rate and blood pressure variability in cats exposed to short-term chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2008;295:R28–37.

    CAS  PubMed  Google Scholar 

  80. Rey S, Del Rio R, Alcayaga J, Iturriaga R. Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J Physiol. 2004;560:577–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lavie L. Obstructive sleep apnoea syndrome: an oxidative stress disorder. Sleep Med Rev. 2003;7:35–51.

    PubMed  Google Scholar 

  82. Lévy P, Pépin JL, Arnaud C, Tamisier R, Borel JC, Dematteis M, et al. Intermittent hypoxia and sleep-disordered breathing: current concepts and perspectives. Eur Respir J. 2008;32:1082–95.

    PubMed  Google Scholar 

  83. Bao G, Metreveli N, Li R, Taylor A, Fletcher EC. Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol. 1997;83:95–101.

    CAS  PubMed  Google Scholar 

  84. Del Rio R, Moya EA, Parga MJ, Madrid C, Iturriaga R. Carotid body inflammation and cardiorespiratory alterations in intermittent hypoxia. Eur Respir J. 2012;39:1492–500.

    PubMed  Google Scholar 

  85. Peng YJ, Nanduri J, Yuan G, Wang N, Deneris E, Pendyala S, et al. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci. 2009;29:4903–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Iturriaga R. Translating carotid body function into clinical medicine. J Physiol. 2018;596:3067–77.

    CAS  PubMed  Google Scholar 

  87. Prabhakar NR, Semenza GL. Regulation of carotid body oxygen sensing by hypoxia-inducible factors. Pflugers Arch. 2016;468:71–5.

    CAS  PubMed  Google Scholar 

  88. Moya EA, Arias P, Varela C, Oyarce MP, Del Rio R, Iturriaga R. Intermittent hypoxia-induced carotid body chemosensory potentiation and hypertension are critically dependent on peroxynitrite formation. Oxidative Med Cell Longev. 2016;2016:9802136.

    Google Scholar 

  89. Krause BJ, Casanello P, Dias ACR, Arias P, Velarde V, Arenas GA, et al. Chronic intermittent hypoxia-induced vascular dysfunction in rats is reverted by N-acetylcysteine supplementation and arginase inhibition. Front Physiol. 2018;9:901.

    PubMed  PubMed Central  Google Scholar 

  90. Iturriaga R, Moya EA, Del Rio R. Inflammation and oxidative stress during intermittent hypoxia: the impact on chemoreception. Exp Physiol. 2015;100:149–55.

    CAS  PubMed  Google Scholar 

  91. Del Rio R, Andrade D, Lucero C, Arias P, Iturriaga R. Carotid body ablation abrogates hypertension and autonomic alterations induced by intermittent hypoxia in rats. Hypertension. 2016;68:436–45.

    PubMed  Google Scholar 

  92. Iturriaga R. Carotid body ablation: a new target to address central autonomic dysfunction. Curr Hyperten Rep. 2018b;20:53.

    Google Scholar 

  93. Iturriaga R, Alcayaga J. Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Brain Res Rev. 2004;47:46–53.

    CAS  PubMed  Google Scholar 

  94. Knight WD, Little JT, Carreno FR, Toney GM, Mifflin SW, Cunningham JT. Chronic intermittent hypoxia increases blood pressure and expression of FosB/ΔFosB in central autonomic regions. Am J Phys. 2011;301:R131–9.

    CAS  Google Scholar 

  95. Knight WD, Saxena A, Shell B, Nedungadi P, Mifflin SW, Cunningham JT. Central losartan attenuates increases in arterial pressure and expression of FosB/ΔFosB along the autonomic axis associated with chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2013;305:R1051–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sharpe AL, Calderon AS, Andrade MA, Cunningham JT, Mifflin SW, Toney GM. Chronic intermittent hypoxia increases sympathetic control of blood pressure: role of neuronal activity in the hypothalamic paraventricular nucleus. Am J Phys. 2013;305:H1772–80.

    CAS  Google Scholar 

  97. Iturriaga R, Del Rio R, Idiaquez J, Somers VK. Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease. Biol Res Biol Res. 2016;49:13.

    PubMed  Google Scholar 

  98. Marcus NJ, Philippi NR, Bird CE, Li YL, Schultz HD, Morgan BJ. Effect of AT1 receptor. blockade on intermittent hypoxia -induced endothelial dysfunction. Neurobiol Respir Physiol. 2012;183:67–74.

    CAS  Google Scholar 

  99. Kim SJ, Fong AY, Pilowsky PM, Abbott SBG. Sympathoexcitation following intermittent hypoxia in rat is mediated by circulating angiotensin II acting at the carotid body and subfornical organ. J Physiol. 2018;596:3217–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Saxena A, Little JT, Nedungadi P, Cunningham JT. Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure. Am J Phys. 2015;308:H435–46.

    CAS  Google Scholar 

  101. • Sugito K, Tatsumi K, Igari H, Kasahara Y, Tani T, Kimura H, et al. Role of carotid body in pressure response of pulmonary circulation in rats. Respir Physiol. 1998;111:283–93. This study shows that carotid body increases arterial blood pressure in the lung.

    CAS  PubMed  Google Scholar 

  102. Shinoda M, Saku K, Abe K, Takehara T, Kuwabara Y, Yoshida K, et al. Carotid body denervation markedly improves the survival of monocrotaline induced pulmonary hypertension rats. The Faseb J. 2015;29:1 suppl.

    Google Scholar 

Download references

Funding

This work was supported by grant 1150040 from the National Fund for Scientific and Technological Development of Chile (FONDECYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Iturriaga.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pulmonary Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iturriaga, R., Castillo-Galán, S. Potential Contribution of Carotid Body-Induced Sympathetic and Renin-Angiotensin System Overflow to Pulmonary Hypertension in Intermittent Hypoxia. Curr Hypertens Rep 21, 89 (2019). https://doi.org/10.1007/s11906-019-0995-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-019-0995-y

Keywords

Navigation