Skip to main content

Advertisement

Log in

The Effects of Oral Taurine on Resting Blood Pressure in Humans: a Meta-Analysis

  • Antihypertensive Agents: Mechanisms of Drug Action (ME Ernst, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aims of this meta-analysis were to investigate the effects of orally administered isolated taurine on resting systolic blood pressure (SBP) and diastolic blood pressure (DBP) in humans.

Recent Findings

There is growing evidence that taurine deficiency is associated with hypertension and that oral supplementation can have antihypertensive effects in humans. However, these investigations have been conducted across a number of decades and populations and have not been collectively reviewed. A search was performed using various databases in May 2018 and later screened using search criteria for eligibility. There were seven peer-reviewed studies meeting the inclusion criteria, encompassing 103 participants of varying age and health statuses. Taurine ingestion reduced SBP (Hedges’ g = − 0.70, 95% CI − 0.98 to − 0.41, P < 0.0001) and DBP (Hedges’ g = − 0.62, 95% CI − 0.91 to − 0.34, P < 0.0001). These results translated to mean ~ 3 mmHg reductions in both SBP (range = 0–15 mmHg) and DBP (range = 0–7 mmHg) following a range of doses (1 to 6 g/day) and supplementation periods (1 day to 12 weeks), with no adverse events reported.

Summary

These preliminary findings suggest that ingestion of taurine at the stated doses and supplementation periods can reduce blood pressure to a clinically relevant magnitude, without any adverse side effects. Future studies are needed to establish the effects of oral taurine supplementation on targeted pathologies and the optimal supplementation doses and periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major Importance

  1. WHO Raised blood pressure: situation and trends. Global Health Observatory. http://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence_text/en/ (accessed 04 May 2018).

  2. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJL. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:1347–60.

    Article  PubMed  Google Scholar 

  3. Smith SC, Benjamin EJ, Bonow RO, et al. World Heart Federation and the Preventive Cardiovascular Nurses Association. Circulation. 2011;124:2458–73.

    Article  PubMed  Google Scholar 

  4. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC VII report. JAMA. 2003;289:2560–72.

    Article  PubMed  CAS  Google Scholar 

  5. Cook NR, Cohen J, Hebert PR, Taylor JO, Hennekens CH. Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med. 1995;155:701–9.

    Article  PubMed  CAS  Google Scholar 

  6. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM, et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47:296–308.

    Article  PubMed  CAS  Google Scholar 

  7. COLLABORATION BPLTT. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362:1527–35.

    Article  CAS  Google Scholar 

  8. Savica V, Bellinghieri G, Kopple JD. The effect of nutrition on blood pressure. Annu Rev Nutr. 2010;30:365–401.

    Article  PubMed  CAS  Google Scholar 

  9. Xu Y, Arneja AS, Tappia PS, Dhalla NS. The potential health benefits of taurine in cardiovascular disease. Exp Clin Cardiol. 2008;13:57–65.

    PubMed  PubMed Central  Google Scholar 

  10. Schaffer SW, Ito T, Azuma J. Clinical significance of taurine. Amino Acids. 2014;46:1–5.

    Article  PubMed  CAS  Google Scholar 

  11. Laidlaw SA, Grosvenor M, Kopple JD. The taurine content of common foodstuffs. Parenter Enter Nutr. 1990;14:183–8.

    Article  CAS  Google Scholar 

  12. Huxtable JR. Physiological actions of taurine. Physiol Rev. 1992;72:101–63.

    Article  PubMed  CAS  Google Scholar 

  13. Satoh H, Sperelakis N. Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol. 1998;30:451–63.

    Article  PubMed  CAS  Google Scholar 

  14. Liao XB, Zhou XM, Li JM, Tan ZP, Liu LM, Zhang W, et al. Taurine transporter is expressed in vascular smooth muscle cells. Amino Acids. 2007;33:639–43.

    Article  PubMed  CAS  Google Scholar 

  15. Ulusoy KG, Kaya E, Karabacak K, Seyrek M, Duvan İ, Yildirim V, et al. Taurine relaxes human radial artery through potassium channel opening action. Korean J Physiol Pharmacol. 2017;21:617–23.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yoshioka M, Takasugi Y, Koga Y. Central hypotensive effect involving neurotransmitters of long-term administration of taurine to stroke-prone spontaneously hypertensive rat. Masui. 2007;56:139–47.

    PubMed  Google Scholar 

  17. Ito T, Schaffer S, Azuma J. The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids. 2014;46:111–9.

    Article  PubMed  CAS  Google Scholar 

  18. •• Sagara M, Murakami S, Mizushima S, et al. Taurine in 24-h urine samples is inversely related to cardiovascular risks of middle aged subjects in 50 populations of the world. Adv Exp Med Biol. 2015;803:623–36. This multi-centre, cross-sectional study of > 4,000 patients demonstrated an inverse relationship between 24-h urinary taurine/creatinine ratios and both hypertension and obesity, highlighting the links between taurine deficiency and cardiovascular disease risk.

    Article  PubMed  CAS  Google Scholar 

  19. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Higgins JP, Altman DG. Assessing risk of bias in included studies. In: Higgins JP, Green S, editors. Cochrane handbook for systematic reviews of interventions: cochrane book series. Chichester: Wiley; 2008.

    Chapter  Google Scholar 

  21. Lipsey MW, Wilson DB. Practical meta-analysis. London: Sage; 2001.

    Google Scholar 

  22. Rosenthal R, Rosnow RL. Essentials of behavioral research: methods and data analysis. New York: McGraw-Hill; 1984.

    Google Scholar 

  23. Satoh H, Kang J. Modulation by taurine of human arterial stiffness and wave reflection. Adv Exp Med Biol. 2009;643:47–55.

    Article  PubMed  CAS  Google Scholar 

  24. Mizushima S, Nara Y, Sawamura M, et al. Effects of oral taurine supplementation on lipids and sympathetic nerve tone. Adv Exp Med Biol. 1996;403:615–22.

    Article  PubMed  CAS  Google Scholar 

  25. Ahmadian M, Roshan VD, Ashourpore E. Taurine supplementation improves functional capacity, myocardial oxygen consumption, and electrical activity in heart failure. J Diet Suppl. 2017;14:422–32.

    Article  PubMed  CAS  Google Scholar 

  26. Beyranvand MR, Khalafi MK, Roshan VD, Choobineh S, Parsa SA, Piranfar MA. Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol. 2011;57:333–7.

    Article  PubMed  Google Scholar 

  27. Fujita T, Ando K, Noda H, Ito Y, Sato Y. Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension. Circulation. 1987;75:525–32.

    Article  PubMed  CAS  Google Scholar 

  28. Warnock R, Jeffries O, Patterson S, Waldron M. The effects of caffeine, taurine or caffeine-taurine co-ingestion on repeat-sprint cycling performance and physiological responses. Int J Sports Physiol Perform. 2017;24:1–24.

    Google Scholar 

  29. Schwarzer R, Kivaranovic D, Mandorfer M. Randomised clinical study: the effects of oral taurine 6g/day vs placebo on portal hypertension. Aliment Pharmacol Ther. 2018;47:86–94.

    Article  PubMed  CAS  Google Scholar 

  30. • Sun Q, Wang B, Li Y, et al. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo-controlled study. Hypertension. 2016;67:541–9. This randomized, double-blind, placebo-controlled study demonstrated that oral taurine supplementation lowered blood pressure in a large cohort ( n = 120) of pre-hypertensive participants and provided the first mechanistic understanding of taurine’s effects on the vasculature.

    Article  PubMed  CAS  Google Scholar 

  31. Moloney MA, Casey RG, O'Donnell DH, Fitzgerald P, Thompson C, Bouchier-Hayes DJ. Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics. Diab Vasc Dis Res. 2010;7:300–10.

    Article  PubMed  Google Scholar 

  32. Siervo M, Lara J, Ogbonmwan I, Mathers JC. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J Nutr. 2013;143:818–26.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao D, Liu H, Dong P. A meta-analysis of antihypertensive effect of telmisartan versus candesartan in patients with essential hypertension. Clin Exp Hypertens. 2018;28:1–5.

    CAS  Google Scholar 

  34. Liang W, Ma H, Cao L, Yan W, Yang J. Comparison of thiazide-like diuretics versus thiazide-type diuretics: a meta-analysis. J Cell Mol Med. 2017;21:2634–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Peck RN, Smart LR, Beier R, Liwa AC, Grosskurth H, Fitzgerald DW, et al. Difference in blood pressure response to ACE-inhibitor monotherapy between black and white adults with arterial hypertension: a meta-analysis of 13 clinical trials. BMC Nephrol. 2013;14:201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Shao A, Hathcock JN. Risk assessment for the amino acids taurine, L-glutamine and Larginine. Regul Toxicol Pharmacol. 2008;50:376–99.

    Article  PubMed  CAS  Google Scholar 

  37. Ristori MT, Verdetti J. Effects of taurine on rat aorta in vitro. Fundam Clin Pharmacol. 1991;5:245–58.

    Article  PubMed  CAS  Google Scholar 

  38. Niu LG, Zhang MS, Liu Y, Xue WX, Liu DB, Zhang J, et al. Vasorelaxant effect of taurine is diminished by tetraethylammonium in rat isolated arteries. Eur J Pharmacol. 2008;580:169–74.

    Article  PubMed  CAS  Google Scholar 

  39. Nishida S, Satoh H. Vascular modulation of rat aorta by taurine. Adv Exp Med Biol. 2009;643:37–46.

    Article  PubMed  CAS  Google Scholar 

  40. Liu Y, Niu L, Zhang W, Cui L, Zhang X, Liang Y, et al. Effect of taurine on contractions of the porcine coronary artery. Pharmacol Rep. 2009;61:681–9.

    Article  PubMed  CAS  Google Scholar 

  41. Fanconi F, Giotti A, Manzini S, et al. The effect of taurine on high potassium- and noradrenaline-induced contraction in rabbit ear artery. Br J Pharmacol. 1982;75:605–12.

    Article  Google Scholar 

  42. Fujita T, Sato Y. The antihypertensive effect of taurine in DOCA-salt rats. J Hypertens Suppl. 1984;2:S563–5.

    Article  PubMed  CAS  Google Scholar 

  43. Hano T, Kasano M, Tomari H, et al. Taurine suppresses pressor response through the inhibition of sympathetic nerve activity and the improvement in baro-reflex sensitivity of spontaneously hypertensive rats. Adv Exp Med Biol. 2009;643:57–63.

    Article  PubMed  CAS  Google Scholar 

  44. Tian XY, Wong WT, Sayed N, Luo J, Tsang SY, Bian ZX, et al. NaHS relaxes rat cerebral artery in vitro via inhibition of l-type voltage-sensitive Ca2+ channel. Pharmacol Res. 2012;65:239–46.

    Article  PubMed  CAS  Google Scholar 

  45. Li C, Cao L, Zeng Q, Liu X, Zhang Y, Dai T, et al. Taurine may prevent diabetic rats from developing cardiomyopathy also by downregulating angiotensin II type 2 receptor expression. Cardiovasc Drugs Ther. 2005;19:105–12.

    Article  PubMed  CAS  Google Scholar 

  46. Jeevanandam M, Young DH, Ramias L, Schiller WR. Effect of major trauma on plasma free amino acid concentrations in geriatric patients. Am J Clin Nutr. 1990;51:1040–5.

    Article  PubMed  CAS  Google Scholar 

  47. Sole MJ, Jeejeebhoy KN. Conditioned nutritional requirements and the pathogenesis and treatment of myocardial failure. Curr Opin Clin Nutr Metab Care. 2000;3:417–24.

    Article  PubMed  CAS  Google Scholar 

  48. Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M, et al. Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr. 1995;61:1115–9.

    Article  PubMed  CAS  Google Scholar 

  49. Henriksson J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J Exp Biol. 1991;160:149–65.

    PubMed  CAS  Google Scholar 

  50. Souza DB, Del Coso J, Casonatto J, et al. Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. Eur J Nutr. 2017;56:13–27.

    Article  PubMed  CAS  Google Scholar 

  51. Waldron M, Patterson SD, Tallent J, Jeffries O. The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: a meta-analysis. Sports Med. 2018;48:1247–53.

    Article  PubMed  Google Scholar 

  52. Waldron M, Knight F, Tallent J, Patterson S, Jeffries O. The effects of taurine on repeat sprint cycling after low or high cadence exhaustive exercise in females. Amino Acids. 2018;50:663–9.

    Article  PubMed  CAS  Google Scholar 

  53. Baum M, Weiss M. The influence of a taurine containing drink on cardiac parameters before and after exercise measured by echocardiography. Amino Acids. 2001;20:75–82.

    Article  PubMed  CAS  Google Scholar 

  54. Galloway SD, Talanian JL, Shoveller AK, et al. Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. J Appl Physiol. 2008;105:643–51.

    Article  PubMed  CAS  Google Scholar 

  55. Ong KL, Cheung BMY, Man YB, Lau CP, Lam KSL. Prevalence, awareness, treatment, and control of hypertension among United States adults 1999–2004. Hypertension. 2007;49:69–75.

    Article  PubMed  CAS  Google Scholar 

  56. Nara Y, Zhao GS, Huang ZD, et al. Relationship between dietary factors and blood pressure in China. J Cardiovasc Pharmacol. 1990;16(Suppl. 8):S40–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Waldron.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Antihypertensive Agents: Mechanisms of Drug Action

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldron, M., Patterson, S.D., Tallent, J. et al. The Effects of Oral Taurine on Resting Blood Pressure in Humans: a Meta-Analysis. Curr Hypertens Rep 20, 81 (2018). https://doi.org/10.1007/s11906-018-0881-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0881-z

Keywords

Navigation