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Abstract
Purpose of Review  In this review, we discuss what persistent viremia has taught us about the biology of the HIV-1 reservoir 
during antiretroviral therapy (ART). We will also discuss the implications of this phenomenon for HIV-1 cure research and 
its clinical management.
Recent Findings  While residual viremia (RV, 1–3 HIV-1 RNA copies/ml) can be detected in most of people on ART, some 
individuals experience non-suppressible viremia (NSV, > 20–50 copies/mL) despite optimal adherence. When issues of 
drug resistance and pharmacokinetics are ruled out, this persistent virus in plasma is the reflection of virus production from 
clonally expanded CD4+ T cells carrying proviruses. Recent work has shown that a fraction of the proviruses source of NSV 
are not infectious, due to defects in the 5′-Leader sequence. However, additional viruses and host determinants of NSV are 
not fully understood.
Summary  The study of NSV is of prime importance because it represents a challenge for the clinical care of people on ART, 
and it sheds light on virus-host interactions that could advance HIV-1 remission research.

Keywords  Residual viremia · Nonsuppressible viremia · Clonal expansion · Defective provirus · HIV-1 integration · Virus 
production

Introduction

During acute infection with human immunodeficiency virus 
type 1 (HIV-1), plasma HIV-1 RNA (commonly referred to 
as viral load, VL) reaches a peak of ~ 106 copies/mL before 
falling to a lower set point of ~ 104 copies/mL [1]. Untreated 
HIV-1 infection progresses to acquired immunodeficiency 
syndrome (AIDS) as peripheral blood CD4+ T cells decrease 
to below 200 cells/uL [2], eventually leading to life-threat-
ening opportunistic infections and cancer. Antiretroviral 
therapy (ART) halts viral replication by inhibiting multiple 
steps of the HIV-1 life cycle. Blockade of viral replication 
rapidly causes a biphasic, exponential decrease of plasma 
VL to below the limit of detection of clinical assays (20–50 
copies/mL) [3, 4]. Maintaining undetectable VL results in 
CD4+ T cell recovery, arrest of disease progression, and 

prevents HIV-1 transmission [5, 6]. Despite its success in 
changing the history of the epidemic, ART can only block 
infection of new target cells and does not affect latently 
infected cells containing stably integrated HIV-1 DNA 
(provirus) [7, 8]. A small fraction of these cells called the 
HIV-1 reservoir carries infectious proviruses that can rekin-
dle viral replication shortly after ART interruption [9–11]. 
Another reflection of HIV-1 persistence despite years of 
ART is the presence of low levels of HIV-1 RNA in plasma 
due to the daily activation of latently infected cells leading 
to virus production (Table 1). Indeed, ultrasensitive assays 
and intensive sampling of plasma revealed that about half 
of people living with HIV (PLWH) on ART have traces of 
HIV-1 RNA, referred to as residual viremia (RV), of about 
1–3 copies/mL (Fig. 1A) [12••, 13••]. Some PLWH may 
experience viral blips, isolated episodes of detectable VL 
followed by re-suppression [14, 15]. Moreover, some indi-
viduals present with or develop persistently or intermittently 
detectable low-level viremia (LLV), usually below 200 cop-
ies/mL, that is not due to drug resistance or problems with 
adherence or drug absorption. In recent years, the term 
non-suppressible viremia (NSV) has been used in lieu of 
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LLV [16••]. The term NSV shifts the focus on the fact that 
this viremia, regardless of the amount of virus measured 
by clinical assays, is not due to viral replication and cannot 
be further decreased by modification or intensification of 
ART. For example, we recently described an individual with 
NSV caused by a single non-infectious provirus, persistently 
around 3 × 103 copies/mL [17••]. To a certain extent, RV 
and NSV are reflections of the same phenomenon: spontane-
ous transcriptional activity of HIV-1 infected cells (Fig. 1A 
and B). In this review, we present the recent developments 
regarding the characteristics and drivers of RV and NSV in 
people on effective ART and discuss unmet knowledge gaps 
that would provide a better understanding of HIV-1 host 
interactions and clinical management.

Lessons Learned from Residual Viremia

The presence of RV during effective ART has been rec-
ognized more than two decades ago owing to the devel-
opment of sensitive PCR assays based on ultracentrifuga-
tion of plasma [12••, 13••]. Ultracentrifugation not only 
concentrates viral particles, increasing sensitivity, but also 
narrows downstream analyses to packaged, membrane-asso-
ciated HIV-1 RNA. These single-copy assays evolved over 
time, with optimizations that allowed greater recovery and 
reduced amplification failure due to inter-individual viral 
diversity [18]. A newer version of this protocol pellets virus 
with a table-top centrifuge, avoiding the need for ultracen-
trifugation [19]. Finally, automated extraction and amplifi-
cation systems based on multi-replicate analyses perform 
equally to manual approaches and allow the study of larger 
sample sets and participant cohorts [20].

The quantitative and qualitative characterization of 
RV has been instrumental in the understanding of HIV-1 

persistence. However, the root mechanisms of RV have 
been one of the most debated topics in HIV-1 biology: is 
RV caused by ongoing viral replication, or is it the result 
of virus production from a pool of persistent cells infected 
before ART? Understanding which of these two mecha-
nisms contributes to RV and reservoir maintenance has pro-
found implications, as it dictates whether the development 
of curative strategies should focus on antiretrovirals with 
better potency and tissue penetration, or the elimination of 
latently infected cells [21]. Despite some reports describing 
cryptic HIV-1 replication in anatomical sites (central nerv-
ous system, genital tract, and gut) due to low drug penetra-
tion, there is vastly preponderant evidence supporting that 
RV is caused by the release of virus from expanded cells 
rather than ongoing viral replication [22–27]. Since HIV-1 
reverse transcriptase is highly error-prone and has a striking 
propensity for recombination [28], ongoing viral replication 
should result in a diverse population of viruses in plasma 
that accumulates new mutations over time [29]. However, 
longitudinal sampling indicated viral populations lacking 
sequence diversity and evolution, suggesting that RV must 
be the result of virus production from cells infected before 
ART introduction, rather than from new infection events 
[30]. In most individuals, one or few predominant plasma 
sequences are identified, reflecting one or few infected T cell 
clones contributing to residual viremia [31••]. These so-
called predominant plasma clones (PPC) are non-evolving 
and sensitive to the concurrent drug regimen, further sup-
porting that RV is not due to ongoing viral replication. In 
addition, attempts at ART optimization, or intensification 
by adding a fourth drug, are not effective [32, 33]. HIV-1 
RNA sequences from plasma often, but not always, match 
rare proviral genomes from peripheral blood CD4+ T cells 
and tissues [31••, 34]; this observation represented the first 
evidence that infected cells persist during long-term ART 

Table 1   Definitions of HIV-1 RNA in plasma during ART​

* JAMA/International AIDS Society: 50-200cp/mL, WHO: 50-1000cp/mL
** JAMA/International AIDS Society: 2 consecutive VL > 200cp/mL, WHO: 2 consecutive VL > 1000cp/mL

Definitions of HIV-1 RNA in 
plasma during ART​

Detected by clinical assays Detected by 
ultrasensitive 
assays

HIV-1 RNA 
copies per mL of 
plasma

Notes

Residual viremia (RV) no yes  ~ 1–3 Reflection of HIV-1 persistence; caused 
by release of viral particles from 
infected cells

Low level viremia (LLV) yes yes variable*
Non-suppressible viremia (NSV) yes yes  > 20 NSV not caused by virus replication, It is 

an extreme form of RV
Viral blips yes, isolated measurements yes  < 1000
Virological failure (VF) yes yes variable** Result of overt viral replication due to 

drug resistance or insufficient drug 
concentrations
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through cell proliferation, which is now recognized as the 
major mechanism of reservoir persistence and a barrier to 
HIV-1 remission [31••, 35, 36, 37••, 38, 39]. Similarly to 
infected T cell clones, the frequency and relative abundance 
of plasma viruses also wax and wane over time on ART, 
suggesting a correlation between the stimuli driving clonal 
dynamics and virus production from infected cells [31••, 
34, 40]. However, the exact mechanisms by which the cells 
responsible for RV are induced to produce virus remain 
unclear.

To better understand the source and consequences of 
HIV-1 persistence, numerous studies investigated clinical 
and laboratory parameters that could correlate with RV. 

Persistent viremia on ART positively correlates with HIV-1 
RNA levels before starting ART, initiation of treatment dur-
ing the chronic phase of infection, and, in some studies, with 
the frequency of infected cells based on total proviral DNA 
[14, 41]. In an analysis of paired samples from individuals 
who had been on ART for 24–96 weeks, RV had a moderate 
yet significant correlation with reservoir size by the quan-
titative viral outgrowth assay (qVOA) [42]. These results 
suggested that, to some extent, RV reflects the magnitude of 
proviruses that persist upon ART introduction. However, a 
striking majority of proviruses have defects that preclude the 
formation of viral particles and/or replication competence, 
complicating the association between RV and cell-associated 

Fig. 1   Characteristics of persistent HIV-1 viremia during effective 
antiretroviral therapy. A Distribution of HIV-1 RNA levels in plasma 
among people on ART; each bar represents a range of HIV-1 RNA 
copies/mL; RV, residual viremia; NSV, non-suppressible viremia; 
SCA, single copy assay; limit of detections of most clinical assays 
are indicated by dashed lines. B Example of an individual develop-
ing NSV after years of undetectable viremia; standard ART regimen 
and ART intensification and indicated by light and dark gray areas, 
respectively. C Representative simulated phylogenetic maximum-
likelihood tree of HIV-1 sequences recovered from plasma virus 
(orange circles), viral outgrowth (purple circles), or proviral DNA 
(blue squares); boxes and arrows indicate large groups of identical 

sequences reflecting clonally expanded HIV-1-infected cells; exam-
ple clones of interested are indicated by numbers: clone 1 is repli-
cation competent but does not contribute to viremia; clone 2 is also 
infectious, it can be found in plasma, and it can be detected among 
infected cells; clone 3 is a predominant plasma variant, but it cannot 
be recovered by viral outgrowth. D Summary of virus and host fac-
tors that may favor only some infected clones to contribute to NSV. 
E Schematic of the potential response of a study participant with 
NSV to experimental interventions aimed at enhancing virus produc-
tion and/or elimination of infected cells causing NSV; LRA, latency-
reversing agent
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HIV-1 DNA and RNA [43]. Additional studies showed that 
RV is higher—or more likely to be detected—in individu-
als who have been on ART for less than 2 years, are male, 
have higher body mass index, and are older [44, 45]. In a 
large longitudinal study, Riddler and colleagues investigated 
the dynamics of persistent RV from participants who had 
been on suppressive ART between 4 and 12 years. This work 
revealed a continued decline of RV over time (6% per year), 
with an estimated half-life of 11 years, suggesting a progres-
sive loss of infected cells capable of producing virus [46]. 
Such observation was consistent with the known slow decay 
of the reservoir [47••] and foreshadowed more recent stud-
ies showing that intact proviruses decay faster than those 
with defects [48–53] and that the reservoir is progressively 
enriched in genomic locations associated with deeper viral 
latency [54].

Detectable Viremia Despite Optimal 
Adherence

NSV represents an extreme case of RV, in which HIV-1 
RNA is persistently—or intermittently—above the limit of 
detection of clinical assays (> 20–50 copies/mL) despite 
100% adherence to ART (Fig. 1B). In one of the first reports, 
Simonetti et al. described an individual who developed 
NSV after the diagnosis of oral cancer [55]. Plasma virus 
had two sources: (i) a swarm of replicating, drug-resistant 
variants that disappeared after ART optimization and (ii) 
a single, drug-sensitive PPC. The latter variant decreased 
immediately after chemo-radiation but reappeared upon 
cancer recrudescence and disease progression. Viral out-
growth experiments revealed that the virus in plasma was 
replication-competent, harbored by a single CD4+ clone that 
underwent extensive proliferation. These results, which con-
tradicted previous data suggesting clonally expanded T cells 
contain only defective proviruses [56], were then confirmed 
by multiple studies [35, 36, 38]. Analysis of CD4+ T cells 
from multiple anatomical sites demonstrated enrichment 
in metastatic tissues of the provirus causing NSV called 
“AMBI-1” because of its ambiguous genomic location. 
These results led to the hypothesis that infected CD4+ T 
cells from this clone were producing viruses in response to 
a cancer neoantigen. The characteristics of NSV were then 
confirmed by the description of the same phenomenon in a 
small cohort of people on ART by Halvas and colleagues 
[16••]. In most individuals, NSV appears in the absence of 
clinical events or changes in therapy, usually after years of 
undetectable VL [16••, 17••]. Although only a few studies 
with small sample sizes are available, we roughly estimate 
that about 1 in 250 individuals on effective ART experiences 
NSV [16••, 17••]; larger, multi-center studies are needed to 
provide a better frequency of this phenomenon. As with RV, 

the characterization of plasma virus from individuals with 
NSV shows no drug resistance mutations to concurrent ART 
and drug concentrations within the therapeutic range [16••, 
17••]. Similarly, NSV is sustained by one or a few PPCs 
(Fig. 1C) [16••, 17••]. The development of NSV is likely 
multifactorial, a “perfect storm” of both viral and host pro-
cesses. Interestingly, if these factors are present in all people 
on ART, why do only rare individuals experience persistent 
NSV? We will further address some of these mechanisms in 
the section below, summarized in Fig. 1D.

Proviral Sequence

A fraction of HIV-1 variants in plasma can be recovered 
from viral outgrowth ex  vivo (for example, clone 2 in 
Fig. 1C), indicating replication-competence of the provi-
ruses giving rise to NSV [16••, 57, 58]. In addition, pre-
vious studies linked clones contributing plasma viremia 
and cell-associated RNA to viral rebound sequences in the 
context of analytical treatment interruption (ATI) [58–60]. 
However, not all PPCs can be isolated from viral outgrowth 
assays (e.g., clone 3 in Fig. 1C), which could be explained 
by limited sampling, tissue residency of infected clones, or 
the inability of these variants to infect target cells. Defective 
HIV-1 genomes represent approximately 95% of the provi-
ruses found in people on ART [48, 61••]. Some defective 
proviruses can produce HIV-1 RNA and proteins, resulting 
in the expression of viral antigens and viral particles [62, 
63]. The in-depth characterization of 4 individuals with NSV 
revealed defective viruses with small 5′-Leader defects, typi-
cally 21–22 nucleotide deletion or mutations affecting the 
Major Splicing Donor (MSD) site [17••]. The secondary 
RNA structure of 5′-Leader orchestrates multiple steps in the 
HIV-1 life cycle: initiation of reverse transcription, transac-
tivation of proviral transcription, dimerization of genomic 
RNA, binding to Gag, packaging in viral particles, and alter-
native splicing of viral mRNA [64–67]. Thus, even small 
defects in the 5′-Leader can abrogate viral replicative fitness 
[48, 61••]. Interestingly, three out of four participants shared 
the same 22-nucleotide deletion (d22). In a separate study, 
three out of eight cases of NSV were also caused by provi-
ruses with 5′-Leader defects, one affected by the same d22 
deletion [68]. These recurring deletions may be favored by 
repeated sequences that cause a misplaced template switch 
by the reverse transcriptase. Although proviruses with 
5′-Leader deletions are common, representing about 5–10% 
of all proviruses found during suppressive ART [17••, 48, 
57, 61••], the d22 deletion is extremely rare (Duan et al., in 
preparation). Since this specific defect can be found in the 
plasma of multiple participants, we posit that some defects, 
like d22, can promote the development of NSV. We recently 
demonstrated that deletions in the MSD can result in new 
strong splice donors that only partially rescue alternative 
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splicing, resulting in the production of viral particles lacking 
Envelope incorporation [17••, 69]. Future studies should 
investigate whether these 5′-Leader defects provide a selec-
tive advantage. The lower Envelope expression and viral par-
ticle production could result in decreased cytopathic effect 
and escape from neutralizing or effector antibodies, extend-
ing the half-life of virus-producing cells.

Proviral Location

The site of HIV-1 integration can influence the persis-
tence of infected cells and viral gene expression. Provi-
ruses located within gene bodies can affect the expres-
sion of the surrounding gene, a phenomenon known as 
insertional mutagenesis [70]. For example, proviral pro-
moters can increase host gene mRNA expression (as in 
the case of BACH2 and STAT3), while the introduction 
of splice sites and polyadenylation signals can disrupt 
host genes [70, 71••]. While these processes can lead 
to loss of infected cells if detrimental to T cell function, 
HIV-1 integration in rare genes (BACH2, STAT5B, MKL2, 
MKL1, IL2RB, MYB, and POU2F1) has been linked to 
the persistence of a small fraction of infected cells in 
people on ART [72••]. Growing evidence suggests that 
the genomic context of a provirus may affect its expres-
sion and the survival of the infected cells over time. A 
few studies reported an accumulation of intact proviruses 
in heterochromatic chromosomal locations, such as cen-
tromeric alpha repeats, and zinc finger (ZNF) gene clus-
ters in elite controllers, people who have been on ART 
for multiple decades, and post-treatment controllers [54, 
73–75]. Since HIV-1 integration favors easily accessi-
ble actively transcribed genes, proviruses in transcrip-
tionally inactive regions of the genome are rare before 
or shortly after ART introduction [76, 77]. Thus, the 
observed enrichment is likely the reflection of a selective 
advantage: the protection from adaptive and innate immu-
nity via deeper latency. Due to the limited sample size, 
whether genomic location plays a key role in proviruses 
that cause NSV is still unclear. However, the majority 
of proviruses reported so far were found within introns 
of genes with variable expression in CD4+ T cells and 
all integrated into the opposite orientation of the gene 
transcription (MATR3 [16••], ADK, DNAJB14, RRM1, 
ZFYVE9, CCND3 [17••]). Recently, Mohammadi and 
colleagues reported that virus-producing proviruses were 
enriched in proximity to the activating H3K36me3 epi-
genetic mark [68]. Taken together, the current evidence 
suggests that an epigenetic environment permissive to 
latency reversal and HIV-1 transcription can contribute 
to the development of NSV.

Clonal Expansion

Infected CD4+ T cells proliferate through a combination of 
mechanisms, including the effects of HIV-1 integration (as 
discussed above), homeostatic stimuli, and antigen-driven 
proliferation [78]. To recall immune responses against pre-
viously encountered pathogens, memory cells need to be 
maintained even in the absence of antigenic exposure [79]. 
Homeostatic proliferation and survival of T cells are driven 
by cytokines such as IL-7 and IL-15 [80–84]. Indeed, these 
cytokines also play a role in the persistence of infected CD4+ 
T cells. Higher levels of IL-7 in plasma are correlated with 
a higher frequency of proliferating cells in PLWH [85]. Of 
note, IL-7 allows cell division with little to no production 
of viral particles, allowing the proliferation of infected cells 
without recognition by immune surveillance [86, 87]. Sev-
eral recent studies have shown that antigen-driven prolifera-
tion in PLWH contributes to the expansion and selection of 
infected cells [37••, 57]. Although the size of the latent res-
ervoir is stable, individual clones of infected cells compris-
ing the reservoir are far more dynamic, as they tend to wax 
and wane over months or years [40]. The process of waxing 
and waning is the reflection of clonal expansion and contrac-
tion, typical of immune responses to antigens. Infected cells 
contributing to NSV are usually detected as part of expanded 
clones, but the cell dynamics that preceded the onset of 
NSV are poorly understood. In one participant described 
by White, Wu et al., the provirus responsible for 100% of 
plasma virus was undetectable before viremia became clini-
cally relevant and subsequently reached a new plateau of ~ 50 
copies/106 CD4+ T cells. Whether this increase was the 
result of gradual inflation over time or a rapid burst of divi-
sions in response to antigenic stimulation remains unclear. 
Although specific sequences dominate NSV, the proviruses 
from which they are derived are rare among all proviral 
variants (e.g., clone 3 in Fig. 1C). Harnessing integration 
site-specific digital PCR, White, Wu et al. showed that pro-
viruses source of NSV were compartmentalized in effector 
memory cells [17••]. Given the shorter half-life of this more 
differentiated subset, these clones must be maintained by 
frequent proliferation [88]. Finally, although the overall size 
of an infected clone likely contributes to the development of 
NSV, clonal size does not correlate with the magnitude of 
viremia, suggesting that other processes are at play. Some 
factors could include which fraction of a clone produces 
virions at a given time, the amount of virus produced per 
cell before it dies or returns to latency, and the frequency 
with which the cells of a clone are stimulated.

Immune Stimulation

The exact mechanisms contributing to the activation of clon-
ally expanded cells causing NSV are poorly understood. As 
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depicted in Fig. 1C, only one or a few variants contribute 
to persistent NSV, while viruses derived from other induc-
ible, infectious proviruses, abundant among those recovered 
by viral outgrowth, are not found in plasma (clone 1). The 
activation of an infected CD4+ T cell is necessary for the 
completion of HIV-1 RNA expression and virion production 
[89]. We posit that chronic or ubiquitous antigens could be 
the immune stimuli inducing spontaneous reservoir activity, 
leading to RV and NSV [90]. Antigens are processed and 
presented as peptides on major histocompatibility complex 
(MHC) molecules on the surface of antigen-presenting cells 
and recognized by the T cell receptor (TCR) on T cells [91]. 
The TCR-peptide-MHC interaction triggers downstream 
pathways transcriptional activation, effector function, and 
expansion of T cells [92]. In addition, self-peptides loaded 
on MHC molecules provide survival stimuli and tonic sign-
aling to maintain proper reactivity to foreign antigens [93, 
94]. Our group recently reported that proviruses causing 
NSV can be found in cells responsive to viral and autolo-
gous protein stimulation [95]. The frequency of CD4+ T 
cells that recognize such antigens and also carry a provirus 
capable of producing viral particles is extremely low, poten-
tially explaining the low frequency of NSV among people 
on ART.

Consequences of Persistent Viremia

People on long-term ART, even with undetectable viremia 
and optimal CD4+ T cell recovery, show higher levels of 
inflammatory markers than HIV-1 negative controls [96]. 
The drivers of this phenomenon are complex and include 
co-morbidities, other chronic infections (one above all, 
cytomegalovirus), lifestyle, residual viral expression from 
HIV-1-infected cells, and legacy effects from the period 
of untreated infection [97, 98]. However, to which extent 
RV and NSV drive immune activation and chronic inflam-
mation remains unclear. The presence of RV is associ-
ated with older age, potentially reflecting the weakening 
of immune responses, the inflation of the memory T cell 
compartment, and the progressive clonal expansion of total 
and HIV-infected cells[99–103]. Some groups reported the 
association of RV with increased levels of soluble IL-6, 
CD14, and TNF-ɑ as an indication of chronic immune acti-
vation [104–106], while others found no association with 
IL-6, but rather microbial translocation [107, 108]. Riddler 
et al. reported that RV is associated with higher CD8+ T cell 
counts and a lower CD4/CD8 ratio on ART, both markers 
suggesting incomplete immune recovery [46]. However, a 
direct link between RV and NSV remains elusive, because 
it is challenging to untangle whether inflammation is caused 
by pre-ART immune dysregulation or directly due to per-
sistent viremia on ART. In a study by Gandhi et al., the 

higher levels of immune activation in people on suppressive 
ART were associated with higher levels of inflammation and 
set-point viremia before ART introduction, suggesting that 
immune dysregulation is a long-term sequelae, rather than 
an ongoing process sustained by persistent viremia [109••]. 
One way to tease out the contribution of RV and NSV would 
be to monitor immunological markers before and after an 
experimental intervention that effectively reduces HIV-1 
expression and viral particle formation. Unfortunately, as 
discussed below, such intervention is not currently available, 
and research efforts in this direction remain a high priority.

Implications for Cure Strategies

The ultimate goal of achieving an HIV-1 cure is to signifi-
cantly reduce the reservoir size and induce immune con-
trol that would prevent viral rebound, disease progression, 
and transmission in the absence of ART [110, 111]. The 
mechanisms driving RV and NSV reflect the major chal-
lenges in finding a cure for HIV-1 for all people on ART. If 
the proviruses contributing to viral rebound are those with 
frequent transcriptional activity, then proviruses respon-
sible for RV and NSV may be the first to rekindle HIV-1 
replication upon ART cessation. Indeed, proviral sequences 
found in some people on ART are identical to plasma viral 
sequences found before and after ATI, suggesting that a frac-
tion of variants from RV can also lead to viral rebound [58, 
59, 112]. However, without knowing the immune stimuli 
driving the activation of these infected clones, the exact 
link between viruses contributing to RV and those caus-
ing rebound remains unclear. Rebound-competent provi-
ruses may have acquired mutations that allow for escape 
from immune pressure, such as autologous neutralizing and 
effector antibodies, cytolytic T cells, and interferon [113, 
114]; thus, understanding the replicative fitness and immune 
escape profile of variants causing persistent viremia should 
be thoroughly investigated in future studies.

One of the main strategies pursued to eliminate the HIV-1 
reservoir is the so-called “shock-and-kill,” in which latency 
reversal is followed by enhanced immune engagement and 
killing of virus-producing cells [110, 111]. Unfortunately, 
despite promising pre-clinical data, most latency-reversing 
agents (LRAs) tested so far are ineffective at inducing robust 
levels of viral antigen expression from infected cells in vivo, 
preventing “killing” strategies from reaching their full poten-
tial [115, 116]. The presence of NSV is often an exclusion 
criterion for enrollment into HIV-1 cure clinical trials. The 
main rationale is that individuals with persistent viremia 
may not be fully suppressed or have an atypical reservoir 
size and composition. In addition, the presence of detect-
able viremia could further complicate the primary outcome 
analyses, such as viral load changes upon ATI. We argue that 
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clinical trials involving participants with NSV could offer 
the opportunity to study novel interventions to reactivate 
and eliminate reservoir cells or even proviral latency (the so-
called “block and lock”) [117]. The lack of an effective LRA 
to induce HIV-1 expression without global T cell activation 
is a great roadblock to test effective kill strategies in clini-
cal trials; thus, the selective elimination of infected clones 
with spontaneous virus production, like those fueling NSV, 
could be used to test the efficacy of an intervention in vivo. 
In addition, given the short half-lives of both virions and 
virus-producing cells, the impact of shock-and-kill strategies 
could be assessed rapidly by monitoring changes in viral 
load, without the need for ultrasensitive single-copy assays 
or ATIs to understand whether an intervention effectively 
killed the HIV-1-infected clones of interest (Fig. 1E).

Recent discoveries showed that the inflammasome mol-
ecule CARD8 can sense HIV-1 protease activity in virus-
producing T cells and macrophages [118]. HIV-1 eludes this 
innate mechanism because protease is mostly active only 
after viral particles leave the cell [119]. However, some non-
nucleoside reverse transcriptase inhibitors (NNRTIs) that 
have been used for two decades to treat HIV-1, such as efa-
virenz and rilpivirine, have recently been shown to induce 
intracellular Gag-Pol dimerization and premature protease 
activation, triggering the CARD8 inflammasome, and death 
of HIV-1-producing cells via pyroptosis [118, 120]. In the 
context of RV and NSV, the use of NNRTIs or other mol-
ecules inducing CARD8-sensing of HIV-1 could represent 
a promising strategy to eliminate infected cells contributing 
to persistent viremia and accelerate reservoir decay [121].

Clinical Management of NSV

The onset of NSV after years of undetectable VL is a chal-
lenging clinical scenario. In the past, larger cohort studies 
have linked detectable viremia with a higher risk of viro-
logical failure and selection for drug resistance [122••, 
123–125]. However, in recent studies with in-depth viro-
logical characterization, individuals did not experience viral 
rebound or selection for drug-resistance mutations when 
viremia is caused by virus production from infected clones 
[16••, 126]. NSV can also be a cause of concern regarding 
transmission, especially when HIV-1 RNA levels are above 
200 copies/mL, since landmark studies demonstrated that 
undetectable equals untransmissible (U = U) for people on 
ART with < 200 copies/mL [127••]. However, a recent sys-
tematic review showed almost zero risk for sexual transmis-
sion when VL is less than 1000 copies/mL, supporting that 
U = U is also for people with NSV [128].

Determining whether detectable viremia is due to an 
incomplete blockade of viral replication or due to virus 
release remains critical for the correct management of peo-
ple on ART with detectable viremia. Due to the lack of uni-
fied guidelines and technical limitations, understanding the 
cause of NSV is challenging [122••]. Table 2 summarizes 
the causes, consequences, and management of detectable 
viremia. Importantly, the lack of awareness surrounding 
NSV often leads to unnecessary tests, treatment changes, 
and mistrust when persons report optimal adherence, com-
promising the relationship between clinical care provid-
ers and patients. If the cause of persistent viremia is not 

Table 2   Clinical management of detectable viremia on ART​

*** Usually possible only with HIV-1 RNA levels above 400 copies/mL

Machanism underlying detectable 
viremia on ART​

Causes Consequences Management

Viral replication (ongoing new 
infection events)

Suboptimal adherence Viral evolution Adherence counselling
Reduced ART concentration due 

to drug-to-drug interactions or 
limited absorbsion

Drug resistance Therapeutic drug monitoring
Increase in viremia and virologi-

cal failure
HIV-1 genotyping from plasma***

CD4+ T cells loss ART regimen optimization
Drug resistance Risk of transmission

Viral expression from infected 
cells (virus production)

Latency reversal resulting in con-
tinuous virus production

No viral evolution If all of the above not suggestive 
for viral replication:

No drug resistance to current 
regimen

Monitoring of viremia over time

Intermittent or stable viremia for 
months/years

Short course ART intensification

Clonal expansion of cells carrying 
intact or defective proviruses

Stable CD4+ T cells Characterization of virus in 
plasma with ultrasensitive 
assays

Potential higher inflammation
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understood, NSV can be a source of frustration and anxiety 
on both sides.

Sequencing of plasma virus remains the most informa-
tive step to guide the management of detectable viremia. 
Unfortunately, clinical-grade genotyping assays often fail 
when plasma HIV-1 RNA is below 500 copies/mL. Con-
sequently, clinicians usually resort to genotyping HIV-1 
DNA from infected cells; although this approach is success-
ful even when viremia is undetectable, bulk sequencing of 
HIV-1 DNA hardly represents the rare proviruses causing 
NSV [129, 130]. Thus, there is a dire need to develop ultra-
sensitive clinical assays that can sequence low-level plasma 
virus and provide information regarding (i) the presence of 
drug resistance, (ii) defects that would abrogate infectious-
ness, (iii) degree of clonality, and (iv) the evolution—or lack 
thereof—of plasma variants over time.

Currently, there is no effective pharmacological strategy 
to further decrease viremia in people on effective ART, as 
antiretrovirals only block new infection events of target 
cells. For example, fostemsavir, an attachment inhibitor 
that prevents the binding of gp120 to CD4 molecules, is a 
newly FDA-approved drug with shown efficacy in PLWH 
with multidrug resistance [131, 132]. However, since fos-
temsavir has no effect on virus production, it cannot reduce 
HIV-1 RNA expressed from persistent reservoirs. In a recent 
study, fostemsavir intensification in a participant with NSV 
did not decrease plasma viral load [17••]. Lenacapavir is a 
new-in-class long-acting capsid inhibitor that blocks core 
disassembly, the interaction between capsid and host fac-
tors, viral assembly, and maturation [133]. Lenacapavir has 
been recently approved in Europe and North America for 
the treatment of multidrug-resistant HIV-1 infection [134]. 
At higher concentrations, lenacapavir inhibits capsid assem-
bly and viral particle formation in vitro, which may reduce 
HIV-1 RNA in plasma. Future studies should investigate 
whether ART intensification with lenacapavir could be a 
successful strategy to treat individuals with NSV.

Concluding Remarks

Since the discovery of the latent reservoir, the characteri-
zation of viremia has played a key role in the understand-
ing of HIV-1 persistence, from viral dynamics upon ART 
introduction to the proliferation of infected clones [13••, 
31••]. Decades later, we are still learning from RV and 
NSV, and remarkable progress has been made in defining 
which virus and host factors shape the selection of long-
lived infected cells. However, numerous questions remain 
unanswered, including which processes lead to spontaneous 
proviral expression of only selected cells, which fraction of 
viruses in plasma can cause viral rebound if ART is stopped, 
and whether persistent viremia sustains ongoing immune 

stimulation. Moreover, there is a critical need for better clini-
cal assays, guidelines, and therapeutic options to assist those 
individuals with detectable viremia despite 100% adherence 
to ART. The study of HIV-1 viremia remains an ideal nexus 
between basic and clinical science. Further research sur-
rounding RV and NSV is needed, as not only it can provide 
new insight into reservoir persistence and how to perturb 
it but it can also improve the clinical care of people living 
with HIV-1.
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