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Abstract
Purpose of Review  Chronic liver disease is a major cause of morbidity and mortality amongst people living with HIV 
(PLWH). Emerging data suggests that gut microbial translocation may play a role in driving and modulating liver disease, a 
bi-directional relationship termed the gut–liver axis. While it is recognized that PLWH have a high degree of dysbiosis and 
gut microbial translocation, little is known about the gut–liver axis in PLWH.
Recent Findings  Recent studies have shown that microbial translocation can directly lead to hepatic inflammation, and have 
linked gut microbial signatures, dysbiosis, and translocation to liver disease in PLWH. Additionally, multiple trials have 
explored interventions targeting the microbiome in PLWH.
Summary  Emerging research supports the interaction between the gut microbiome and liver disease in PLWH. This offers 
new opportunities to expand our understanding of the pathophysiology of liver disease in this population, as well as to 
explore possible clinical interventions.

Keywords  Gut–liver axis · Microbiome · Microbial translocation · Dysbiosis

Introduction

The human microbiome is comprised of trillions of bacte-
ria, viruses, fungi, protozoa, and archaea that live on skin, 
gut lumen, and other mucosal surfaces. The study of the 
composition, byproducts, and effects of the human micro-
biome has flourished in the last decade, and many possible 
relationships have emerged between it and the pathogenesis 
of various diseases [1]. The unique association between the 
liver and the gut, connected via the portal system, systemic 
circulation and the biliary system, termed the gut–liver axis, 
has led to significant interest in how the microbiome and its 
byproducts may impact liver disease.

Chronic liver disease is a leading cause of morbidity and 
mortality among people living with HIV (PLWH) [2–5]. 

Viral hepatitis has historically been the cause of most liver 
disease amongst PLWH. The development of highly effec-
tive hepatitis B virus (HBV) antiviral therapy and curative 
hepatitis C virus (HCV) therapy has shifted this landscape, 
though data suggests that despite HCV cure, underlying liver 
disease may persist in PLWH [6]. HIV infection has also 
been linked to non-alcoholic fatty liver disease (NAFLD), 
which is common and more severe amongst PLWH than 
those without HIV [7, 8]. The drivers of this disparity remain 
unknown, but liver disease in PLWH has been increasingly 
linked to the gut microbiome. Dysbiosis, or perturbations 
in the composition and function of the microbiome, is espe-
cially striking in the setting of HIV infection [9, 10]. This 
review outlines the existing literature on the gut–liver axis 
in PLWH, starting with the impact of HIV on the gut micro-
biome and integrity, the effects of dysbiosis on the liver, 
and finally potential therapeutic interventions targeting the 
microbiome in PLWH. *	 Jennifer C. Price 
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HIV and the Gut

HIV and Immune Dysregulation

The human intestinal mucosa is comprised of a layer of 
columnar epithelial cells, lamina propria, and muscula-
ris mucosa [11]. The epithelial layer plays an important 
role in maintaining a healthy barrier between the luminal 
contents and the circulatory system and is maintained by 
CD4 + TH17 + T cells in the lamina propria which produce 
IL-17 and IL-22 [11, 12]. These cytokines induce epithelial 
cell proliferation, epithelial tight junction formation, and the 
expression of claudins, mucin, and defensins (Fig. 1) [11].

Upon infection with HIV, there is a rapid loss of activated 
T cells in the gut. This is particularly pronounced in the 
lamina propria and is thought to be due to direct cytotoxic 
effects of the virus, as gut HIV RNA levels correlate with the 

amount of CD4 + cell loss. Mucosal TH17 + , TH22 + cells 
as well as other activated cytokine producing T cells are 
preferentially impacted and may show reduced functional 
capabilities [13–15]. The decrease in TH17 + cells leads to 
a reduction in IL-17 and IL-22, which in turn disrupts the 
epithelial cell barrier due to abnormalities in the IL-17-reg-
ulated tight junction protein occludin [16]. These tight junc-
tion breaches, as well as other consequences of decreased 
IL-17 and IL-22, increase the potential for bacterial translo-
cation from the gut lumen into the portal and systemic circu-
lation (Fig. 1) [17]. Murine models have corroborated this, 
showing that IL-17 loss leads to shifts in the microbiome 
composition with associated greater systemic inflammation 
and a weakened gut luminal barrier [18]. Studies evaluating 
macaque models infected with simian immunodeficiency 
virus (SIV) have directly visualized microbial translocation 
from the gut, and found that in the absence of gut transloca-
tion there is no systemic immune activation [17, 19].

Fig. 1   Microbial translocation and liver disease in PLWH
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Notably, these mucosal changes persist despite HIV treat-
ment, that is, CD4 + cell loss in the gut was observed on 
histologic evaluation 6 months after initiating anti-retroviral 
therapy (ART) [14]. In chronic HIV infection, regulatory T 
cells (Treg) are upregulated and can help dampen immune 
activation; however, they have also been found to lead to 
collagen deposition in the gut mucosa, further depleting 
the CD4 + population in the gut [20]. Multiple studies have 
demonstrated disruption of the epithelial cell barrier in both 
acute and chronic HIV and SIV infection [19, 21, 22].

HIV and Microbial Translocation

In a landmark study, Brenchley et  al. provided a link 
between HIV infection, microbial translocation, and sys-
temic immune activation [23]. In patients with chronic 
untreated HIV infection and in rhesus macaques with acute 
SIV infection, lipopolysaccharide (LPS), a marker of bacte-
rial translocation, was elevated and strongly associated with 
levels of innate immune activation. ART reduced levels of 
LPS somewhat but did not normalize it [23]. Another study 
in macaque models showed that lack of histologic evidence 
for microbial translocation was associated with an absence 
of chronic immune activation [19]. Subsequent studies dem-
onstrated that higher levels of soluble (s)CD14 (sCD14, a 
marker of monocyte response to LPS), gut epithelial barrier 
dysfunction, and innate immune activation predict mortal-
ity in patients with treated HIV infection [13, 24]. Taken 
together, these studies link the gut microbiome to chronic 
immune activation in PLWH gut barrier dysfunction and 
microbial translocation.

In addition to its effects on gut permeability, HIV infec-
tion may impact the composition of the microbiome. Vujko-
vic-Cvijin et al. demonstrated that the gut microbiomes from 
people living with untreated HIV were more likely to har-
bor pathogenic bacteria and less commensal bacteria com-
pared to HIV-seronegative individuals [25]. Interestingly, 
the gut microbiota compositions of PLWH on ART varied 
widely, with some exhibiting a composition similar to those 
with untreated HIV and others closer to those without HIV; 
moreover, in PLWH on ART, the level of systemic inflam-
mation was correlated to microbial composition patterning 
that resembled untreated HIV [25, 26]. Potentially harmful 
classes such as proteobacteria were enriched in HIV and 
commensal bacteria such as Bacteroides were depleted [25].

Finally, the bidirectionality between microbiome translo-
cation and the gut luminal barrier in HIV was explored by 
Dillon et al. Their group demonstrated that HIV increases 
the amount of pathobionts in the gut microbiome, which 
can translocate across the weakened tight junctions in the 
epithelial barrier and activate innate immunity [10]. The 
activation of this innate immunity can in turn decrease 
TH17 + cells and lead to more epithelial barrier breakdown 

and thus microbial translocation [10]. More recent work has 
corroborated this and offered some optimism. A 2021 study 
analyzed markers of microbial translocation and immune 
activation in the peripheral serum of patients with treated 
HIV infection and suggested that ART leads to improve-
ments in markers of microbial translocation and gut integrity 
after 2 years [27].

The Human Microbiome and Liver Disease

The Gut–Liver Axis

A strong physiologic link exists between the gut lumen and 
the liver, as all venous outflow from the intestinal tract flows 
through the portal system and into hepatic sinusoids. This 
connection is bidirectional, with bile acids produced by the 
liver flowing into the duodenal lumen via the common bile 
duct and the Sphincter of Oddi. In addition, the liver and the 
gut are connected to each other (and the rest of the body) 
via systemic circulation. As a result of this interconnection, 
the liver is perhaps the organ most directly exposed to the 
contents of the intestinal lumen, including microbial flora 
and its byproducts.

Indeed, microbial translocation directly into the liver 
has been studied in SIV models. Estes et al. visualized 
increased amounts of E. coli in hepatic tissue in macaques 
with SIV/AIDS and epithelial barrier dysfunction [19]. 
Over the years, the translocation of microbes and microbial 
byproducts across the intestinal epithelial barrier has been 
associated with the pro-inflammatory state driving liver dis-
eases of diverse etiologies [28–30]. When microbial prod-
ucts translocate across the gut barrier, they enter the portal 
venous system and enter the hepatic sinusoids containing 
both Kupffer and hepatic stellate cells. Microbial associated 
molecular products (MAMPS) activate toll-like receptors on 
both Kupffer and stellate cells, leading to an inflammatory 
cascade mediated by Kupffer cells while stellate cell activa-
tion contributes to further injury and fibrosis (Fig. 1) [29].

As one example, the microbiome may play a significant 
role in the pathogenesis of NAFLD. In a groundbreaking 
experiment in 2013, Le Roy et al. demonstrated that the 
tendency to develop NAFLD in mice could be transmitted 
by transplanting gut microbiota [31]. While not specific to 
NAFLD, results of humans studies evaluating the effects of 
fecal microbiota transplant (FMT) suggest that the microbi-
ome may mediate metabolic syndrome, since participants 
with metabolic syndrome who underwent intestinal infusion 
of gut microbiota from lean individuals had improved insulin 
[32]. While the exact mechanism by which the microbiome 
induces NAFLD is incompletely elucidated, steatohepatitis 
may be linked to certain microbial signatures, particularly 
a predominance of Bacteroides and Ruminococcus species 
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[33]. Immunologic responses to these microbiota via toll-
like receptors may play a role, as TLR4 deficiency in murine 
models has been associated with an attenuation in steato-
hepatitis [34]. Other microbiome factors implicated in the 
pathogenesis of NAFLD include microbiota-driven changes 
in caloric absorption, altered choline metabolism mimick-
ing choline deficiency, and an increase in short chain fatty 
acids [35]. NAFLD is just one of many chronic liver condi-
tions being increasingly linked to dysbiosis [36]. Moreover, 
different liver disease etiologies are associated with unique 
patterns of dysbiosis, with alcohol-associated liver disease 
having a higher predominance of Enterobacteriaceae as well 
as higher gut permeability when compared to other causes 
of cirrhosis [28, 37].

Cirrhosis itself also causes a profound dysbiosis, and 
the gut microbiome in patients with cirrhosis is enriched in 
Enterobacteriaceae, Enterococcaceae, and Staphylococceae 
as opposed to the predominantly Bacteroides and Firmicutes 
present in healthy individuals [28, 36, 38–41]. Emerging 
data suggest that microbiome composition may influence 
infectious outcomes in decompensated cirrhosis [42] that 
microbial products may be linked to the development of 
hepatocellular carcinoma, and that the cirrhotic liver may 
be less able to clear microbial byproducts [43]. Impaired 
clearance of microbial byproducts could then lead to greater 
immune activation, resulting in a bidirectional effect similar 
to microbial translocation in HIV. Our developing under-
standing of the relationship between the microbiome and 
liver disease can help guide diagnostics and surveillance of 
liver disease, with one study demonstrating that metagen-
omic microbiome signatures can predict non-alcoholic stea-
tohepatitis (NASH) cirrhosis with an AUC of 0.91 [44], and 
another showing that microbiome analysis can identify early 
hepatocellular carcinoma [45].

HIV, HCV, and the Gut Microbiome

There is a rich new field investigating the connection 
between the gut–liver axis an HIV infection. Animal stud-
ies evaluating macaques infected with SIV demonstrated a 
20-fold increase of bacterial products in the livers of SIV-
infected animals resulting in CXCL16 production by mye-
loid dendritic cells (mDCs) [46]. Hepatic mDC activation 
and recruitment of NK cells expressing CXCL16 receptor 
correlated significantly with liver damage and fibrosis [74]. 
In a different SIV model, dysbiosis in SIV infection per-
sisted despite treatment with ART and was characterized 
by an increase in atypical mycobacteria, which in turn were 
shown to directly stimulate an inflammatory response in 
hepatocytes [47].

Most of the data surrounding the gut liver axis in PLWH 
focuses on co-infection with HCV, as PLWH and HCV expe-
rience more rapid progression of liver disease and fibrosis 

than those without HIV, and liver injury may persist in 
PLWH despite HCV cure [6, 48, 49]. Balagopal and col-
leagues first linked dysbiosis and advanced liver disease in 
PLWH and HCV, finding that elevated levels of LPS and 
other markers of microbial translocation were independently 
associated with cirrhosis in patients with both HIV and HCV 
[50]. Subsequent studies demonstrated that HIV and HCV 
were associated with a Kupffer cell–mediated inflammatory 
response in the liver [30, 51]. Marchetti et al. found that lev-
els of the macrophage activation marker sCD14 correlated 
to severity of liver disease and predicted response to HCV 
treatment in PLWH [52].

One more example of how the pathobionts, microbiota 
perturbations, and immune activation in HIV can exacer-
bate liver disease lies in the tryptophan catabolism path-
way. Tryptophan is an essential amino acid that is primarily 
catabolized via the kynurenine pathway, yielding metabolic 
byproducts including kynurenine. Both tryptophan and 
kynurenine levels can be measured in the serum, and eleva-
tions in the kynurenine to tryptophan (K:T) ratio are asso-
ciated with increased tryptophan catabolism. Kynurenine 
binds to T cells and inhibits differentiation of TH17 + cells, 
thus leading to a reduction of IL-17 and IL-22 production 
which results in a disruption of localization of the TH17-
regulated tight junction protein occludin [53]. This decreases 
in the integrity of tight junctions in the epithelial barrier, 
thus promoting translocation of microbes and their byprod-
ucts across the gut-mucosal wall, as well as greater immune 
activation [25, 54]. Microbiota enriched in the setting of 
HIV encode for greater numbers of tryptophan catabolism 
enzymes and thus increase the amount of kynurenine in the 
gut [25]. This leads to a bidirectional positive feedback cycle 
whereby the dysbiosis in HIV induces a higher K:T, which 
in turn prompts TH17 + cell loss, greater gut permeability, 
and greater dysbiosis [25, 55]. Elevated K:T has been asso-
ciated with disease progression in HIV, as well as increased 
systemic inflammation and mortality [13, 56]. In the con-
text of liver disease, Kardashian et al. found that a higher 
K:T ratio was associated with increased hepatic fibrosis in 
women living with HIV (with or without HCV coinfection) 
but not in women without HIV, suggesting that the altered 
gut microbiome in the setting of HIV might increase tryp-
tophan catabolism and thus immune activation and liver 
fibrosis [57].

Data suggests that this bidirectionality may be partly 
the progression of liver disease amongst PLWH. In a study 
with over 600 participants that examined the contribution 
of microbial translocation and liver fibrosis to the immune 
activation marker sCD14, Reid et al. found microbial trans-
location contributed to an increased sCD14 level during HIV 
infection, whereas liver fibrosis played a stronger role during 
HCV mono-infection. Co-infected persons may be at great-
est risk for progression, because of the independent effects 
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of microbial translocation and liver fibrosis on immune 
activation that arise as a result of HIV [58]. Overall, these 
studies support the hypothesis that microbial translocation 
and the resulting inflammatory response contributes to liver 
disease in PLWH and is further exacerbated by the presence 
of HCV [52, 57–59].

HIV, NAFLD, and the Gut Microbiome

With the advent of curative therapy for HCV, the epidemiol-
ogy of liver disease in PLWH has shifted toward fatty liver. 
However, the role of gut microbiome in driving non-viral 
liver disease in PLWH is unclear [3, 7, 60–63]. HIV confers 
a higher risk of NAFLD as well as progression to NASH, 
fibrosis, and cirrhosis. In PLWH without viral hepatitis and 
with established NAFLD or elevated liver enzymes, the esti-
mated prevalence of NASH is 42%, and ≥ F2 fibrosis is 22%, 
which may be higher than in persons without HIV (25% and 
19%, respectively) [64, 65]. As a result, NASH is recognized 
as a rising cause of morbidity and mortality in PLWH; how-
ever, the drivers of this elevated risk remain unknown. As 
above, the microbiome has been shown to impact fatty liver 
disease in populations without HIV. More recent data sug-
gests that the gut–liver axis and microbiome could be con-
tributory to fatty liver disease progression in PLWH as well. 
Indeed, a recent pilot study found that certain microbiome 
signatures are associated with liver steatosis and fibrosis in 
PLWH [66••], suggesting a relationship between the gut and 
liver in HIV-related NAFLD. Further research is needed to 
further elucidate these interactions.

Overview of Microbiome—Targeting 
Interventions

As gut dysbiosis has consistently been associated with 
increased inflammation, gut permeability, and poor out-
comes in PLWH, numerous studies have investigated how 
the microbiome can be manipulated to improve health in 
this population. Interventions, including FMT (both in liquid 
and pill formulation), dietary modifications, and pathobiont 
removal parallel interventions in HIV-seronegative popula-
tions attempting to alter the dysbiosis in the gut to improve 
health outcomes [67]. Although a careful analysis of studies 
in people without HIV is outside the scope of this review, 
we highlight below how the microbiome has been targeted 
to improve liver outcomes in HIV seronegative popula-
tions (Fig. 2). While unfortunately no existing studies have 
focused on the microbiome as a therapeutic target to improve 
liver disease in PLWH, the data from other populations may 
allow for some extrapolation.

Types of Interventions

One of the most well-known and promising interven-
tions in the gut microbiome is fecal microbiota trans-
plant (FMT), the inoculation of healthy diverse micro-
biota into people experiencing disease due to dysbiosis. 
FMT’s most notable success is in recurrent Clostridium 
difficile infection, which is caused by an overabundance 
of the toxin-producing bacteria C. diff [68]. The micro-
biome disequilibrium that allows C. diff to flourish and 
cause clinical infection is often brought about by the 
eradication of commensal bacteria with antibiotic use 
[68]. FMT allows inoculation of the gut lumen with a 
diverse, healthy microbiome community which (assuming 
appropriate microbial engraftment in the gut) is then able 
to out-compete the C. diff [69]. Further studies evaluat-
ing the role of antibiotics and other factors to increase 
engraftment with FMT are underway, and multiple com-
panies now offer oral alternatives to the traditional endos-
copy-delivered FMT [70]. Other interventions targeting 
the microbiome have focused on dietary modifications, 
including eliminating animal protein or the intake of pro-
biotics, which contain commensal bacteria to promote 
colonization of the gut microbiome with healthy commu-
nities of microbiota. Additional strategies aimed at modi-
fying the gut flora include therapies aimed at removing 
pathobionts with gut specific antibiotics such as Rifaxmin 
[71], which has already been shown to be effective at 
modulating small intestinal bacterial overgrowth (SIBO) 
and promoting healthy re-colonization of microbiota after 
traveler’s diarrhea [72]. Other more targeted approaches 
including the use of bacteriophages to target specific 

Fig. 2   Microbial targeting therapies in PLWH
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microbes and the use of chemical compounds to elimi-
nate harmful microbial metabolic products and enzymes 
are also being explored [73].

Microbiome Targeting Therapies for PLWH

Lessons learned from treating C. diff infection may be use-
ful for manipulating the dysbiosis seen in PLWH. In a 2017 
study, 6 PLWH underwent FMT in an attempt to modulate 
the gut microbiome (Table 1) [74]. However, unlike patients 
treated for C. diff infection, no significant changes in their 

Table 1   Literature evaluating microbiome targeting therapies for PLWH

Study (year) N Study design Population Intervention Findings

Vujkovic-Cvijin et al. 
(2017) [74]

6 Pilot study PLWH FMT No significant changes in 
stool microbiota composi-
tion or inflammatory mark-
ers in the peripheral blood 
after FMT

Serrano-Villar (2021) 
[75•]

14 Pilot placebo controlled 
trial

PLWH FMT Improved circulating serum 
levels of I-FABP, a marker 
of intestinal damage that 
independently predicts 
mortality

Utay et al. (2020) [76•] 6 Pilot study PLWH FMT Receiving weekly FMT for 
6 weeks led to increased 
microbial diversity dur-
ing the treatment period. 
Microbial diversity 
returned to baseline 
afterward

Dillon et al. (2014) [78] 18 Cross sectional study PLWH Plant-based diet Increased in Bacteroides on 
colon biopsy in PLWH 
who had a plant based diet

Noguera-Julian et al. 
(2016) [79]

240 Cross sectional study PLWH Plant-based diet No significant differences 
in microbiota composition 
of stool samples in PLWH 
who consumed a plant 
based diet

Kristensen et al. (2016) 
[80]

315 total Systematic review of 7 
RCTs on probiotics

HIV seronegative popula-
tions

Probiotics Overall no significant 
changes in microbiota 
composition of stool sam-
ples with administration of 
probiotic

Irvine et al. (2011) [81] 85 Cross sectional study PLWH Probiotics PLWH who consumed 
probiotic yogurt reported 
improved GI symptoms

Villar-Garcia et al. (2015) 
[82]

44 Double blind randomized 
placebo controlled trial

PLWH Probiotics Probiotic use was associated 
with decreased markers 
of gut permeability (LBP) 
and IL6

d’Ettorre et al. (2017) [83] 10 Sub-study in a longitudinal 
pilot study

PLWH Probiotics Improved barrier integrity 
on ileal and colonic biop-
sies with increased TH17 
levels

Williams et al. (2019) [71] 31 Sub-analysis within RCT​ PLWH who are ART non-
responders

Rifaximin Rifaximin had no impact on 
microbiota composition on 
rectal swab

Tenorio et al. (2015) [84] 43 Sub-analysis within an 
RCT​

PLWH who are ART non-
responders

Rifaximin No impact on serum markers 
of microbial translocation 
(LPS, sCD14) or CD8 
cell activation on flow 
cytometry
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gut microbiome compositions were observed post-FMT [74]. 
Recent studies involving FMT have yielded more encourag-
ing results: one trial of FMT in 30 participants with HIV 
showed an attenuation in a biomarker of gut permability 
[75•], and a smaller study of weekly FMTs in 6 PWH dem-
onstrated increased microbial diversity during the 6-week 
treatment period, with one subject experiencing improve-
ment in biomarkers of gut permeability and inflammation 
[76•]. Despite these promising results, there are inherent 
risks to FMT—namely transplanting untested pathogenic 
bacteria—and caution is advised in trials involving immu-
nocompromised populations. In 2019, a case report was 
published describing two patient deaths from sepsis after 
being inoculated with drug-resistant bacteria during FMT 
[77]. Both patients were immunocompromised. These cases 
sparked an FDA safety alert surrounding FMT as well as 
new protocols surrounding the screening of donor stool. 
Overall, more data are needed to determine whether FMT 
is a safe and viable option for the gut dysbiosis observed in 
HIV and whether it offers any mitigating effects on immune 
activation and long-term clinical outcomes.

Dietary interventions have also been studied in PLWH. 
In HIV-seronegative individuals, a plant-based diet has 
been associated with an enrichment of commensal bacterial 
species, including Bacteroides [78]. However, while HIV 
is associated with a depletion in Bacteroides, studies have 
thus far have failed to show an improvement in this dys-
biosis with dietary modifications or plant-based diets [79]. 
A more promising dietary adjustment is the use of probi-
otics. Although the data for probiotic use in PLWH have 
been mixed (Table 1), there appears to be an improvement 
in GI symptoms [81]. In addition, in a randomized controlled 
trial in 2015, Villar-Garcia et al. demonstrated that probiotic 
use was associated with decreased lipopolysaccharide bind-
ing protein (LBP, a marker of translocation), as well as a 
decrease in IL-6 [82, 83]. Another study found that PLWH 
who took probiotics were more likely to have increases in 
TH17 + cells and improved gut epithelial barrier integrity 
[85].

Rifaximin has been raised as a possible drug to help 
modulate the dysbiosis and immune activation seen in HIV; 
however, thus far, data has failed to demonstrate an improve-
ment in microbiome composition in PLWH taking rifaximin 
or in ART non-responders [71].

Microbiome‑Targeting Therapies for Liver Disease

In HIV seronegative populations, several of the above strat-
egies have also been evaluated as potential therapies for 
chronic liver disease. In a murine model of alcohol-associ-
ated liver disease, FMT from alcohol “resistant” mice (who 
did not develop liver injury from alcohol) was shown to 
protect alcohol “sensitive” mice from alcohol-induced liver 

injury [86]. Similarly, FMT attenuates acute liver injury in 
mice by regulating cytokine balance, and FMT from humans 
resistant or sensitive to alcohol can modulate the hepatic 
sensitivity of mice to alcohol [87•, 88]. In a 2020 review 
evaluating 6 human studies using FMT to treat alcohol asso-
ciated liver disease, all trials showed improvements in liver 
function and markers of liver injury, and three demonstrated 
a mortality benefit from FMT [89]. FMT may also improve 
antibiotic resistance patterns in cirrhosis [90], decrease 
HBeAg levels in HBV [91], improve hepatic encephalopathy 
outcomes [92], and improve liver enzymes in patients with 
primary sclerosing cholangitis [91]. As discussed above, 
there is some risk in pursuing FMT and morbidity and mor-
tality from transplanted microbiota has been reported in cir-
rhotic patients [77].

There is some evidence supporting a vegan or plant-based 
Mediterranean diet to improve liver enzymes and decrease 
intrahepatic fat in NAFLD [93]. The data on probiotics are 
more robust, with early murine NAFLD models suggesting 
that probiotics use may decrease hepatic fat and improve 
liver histology, and numerous human studies demonstrat-
ing possible improvements in microbiota diversity, LPS 
levels and liver histology with probiotic use [94, 95]. In a 
meta-analysis of 21 RCTs (1252 participants) examining 
the effects of probiotics on NAFLD, there appeared to be 
a benefit of probiotics on liver enzyme levels, fibrosis, and 
steatosis though the data were quite heterogenous [96]. Pro-
biotics have also been found to be beneficial in alcoholic 
liver disease [97, 98] and hepatic encephalopathy [99].

Finally, pathobiont removal with rifaximin has been 
extensively studied in liver disease. While most often used 
to prevent hepatic encephalopathy [100], it has also been 
implicated in improving outcomes in alcohol associated liver 
disease and NASH cirrhosis [101]. In addition, it has been 
studied as an agent for primary spontaneous bacterial peri-
tonitis prophylaxis [102] and has been shown to improve 
portal hypertension and hemodynamics in decompensated 
cirrhosis [103].

Conclusion

Overall, while the gut microbiome is known to have a role 
in liver disease, numerous knowledge gaps exist, particu-
larly in PLWH. Microbiome research is rapidly growing and 
offers many exciting avenues for discovery. However, to fully 
characterize the role of the microbiome in the pathogenesis 
of liver disease in PLWH, further investigation (both lab-
based and clinical) is required. Future research should focus 
on both human and animal studies and aim to analyze the 
mechanism and pathophysiology of microbial translocation 
and small molecules in liver disease and HIV. Remaining 
questions include the role of the microbiome in NAFLD in 



177Current HIV/AIDS Reports (2023) 20:170–180	

1 3

PLWH, how the microbiome can be used to predict liver 
disease progression in this population, and how diet and 
other environmental factors impact the gut microbiome and 
liver disease outcomes. As we look to the future, exploring 
whether the restoration of a healthy gut barrier and micro-
biome composition will impact liver disease and other clini-
cal outcomes in PLWH will be a major objective, as will a 
deeper understanding of successful microbiome targeting 
interventions.
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