Skip to main content

Advertisement

Log in

HIV Reservoir: How to Measure It?

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purposeof Review

In the current quest for a complete cure for HIV/AIDS, the persistence of a long-lived reservoir of cells carrying replication-competent proviruses is the major challenge. Here, we describe the main elements and characteristics of several widely used assays of HIV latent reservoir detection.

Recent Findings

To date, researchers have developed several different HIV latent reservoir detection assays. Among them, the in vitro quantitative viral outgrowth assay (QVOA) has been the gold standard for assessing latent HIV-1 viral load. The intact proviral DNA assay (IPDA) based on PCR also demonstrated the predominance of defective viruses. However, these assays all have some drawbacks and may still be inadequate in detecting the presence of ultralow levels of latent virus in many patients who were initially thought to have been cured, but eventually showed viral rebound.

Summary

An accurate and precise measurement of the HIV reservoir is therefore needed to evaluate curative strategies, aimed to functional cure or sterilizing cure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The literature used and referenced in this study are all available in peer-reviewed journals and are publicly accessible.

Abbreviations

ART:

antiretroviral therapy

CA-RNA:

cell-associated viral RNA

ddPCR:

digital droplet PCR

ELISA:

enzyme-linked immunosorbent assay

FLIPS:

Full-Length Individual Proviral Sequencing

hmVOA:

humanized mouse-based HIV-1 viral outgrowth assay

IPDA:

intact proviral DNA assay

IS:

integration site

IUPM:

infectious units per million cells

MIP-seq:

matched integration site and proviral sequencing

msRNA:

multiple spliced RNA

mVOA:

murine viral outgrowth assay

PBMCs:

peripheral blood mononuclear cells

PCR:

polymerase chain reaction

PLWH:

people living with HIV

PMA:

phorbol 12-myristate 13-acetic acid

PRIP-seq:

parallel HIV-1 RNA, integration site, and proviral sequencing

QVOA:

quantitative viral outgrowth assay

STIP-Seq:

Simultaneous TCR, Integration site and Provirus sequencing

TILDA:

Tat/Rev Induced Limiting Dilution Assay

UNAIDS:

United Nations Programme on AIDS

WGA:

whole-genome amplification

References

  1. UNAIDS. UNAIDS Global AIDS Update 2022. July 27, 2022; Available from: https://www.unaids.org/en/resources/documents/2022/in-danger-global-aids-update.

  2. Wandeler G, Johnson LF, Egger M. Trends in life expectancy of HIV-positive adults on antiretroviral therapy across the globe: comparisons with general population. Curr Opin HIV AIDS. 2016;11(5):492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Palella FJ Jr, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853–60.

    Article  PubMed  Google Scholar 

  4. Palmer S, et al. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A. 2008;105(10):3879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chun TW, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finzi D, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300.

    Article  CAS  PubMed  Google Scholar 

  7. Davey RT Jr, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A. 1999;96(26):15109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wan C, et al. Heritability of the HIV-1 reservoir size and decay under long-term suppressive ART. Nat Commun. 2020;11(1):5542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Antar AA, et al. Longitudinal study reveals HIV-1-infected CD4+ T cell dynamics during long-term antiretroviral therapy. J Clin Invest. 2020;130(7):3543–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bruner KM, Hosmane NN, Siliciano RF. Towards an HIV-1 cure: measuring the latent reservoir. Trends Microbiol. 2015;23(4):192–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delagreverie HM, et al. Ongoing clinical trials of human immunodeficiency virus latency-reversing and immunomodulatory agents. Open Forum Infect Dis. 2016;3(4):189.

    Article  Google Scholar 

  12. Chun TW, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387(6629):183–8.

    Article  CAS  PubMed  Google Scholar 

  13. Finzi D, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5(5):512–7.

    Article  CAS  PubMed  Google Scholar 

  14. Chun TW, et al. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med. 1995;1(12):1284–90.

    Article  CAS  PubMed  Google Scholar 

  15. Laird GM, et al. Measuring the frequency of latent HIV-1 in resting CD4(+) T cells using a limiting dilution coculture assay. Methods Mol Biol. 2016;1354:239–53.

    Article  CAS  PubMed  Google Scholar 

  16. Pinzone MR, O’Doherty U. Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology. 2018;15(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Laird GM, et al. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 2013;9(5):e1003398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salantes DB, et al. HIV-1 latent reservoir size and diversity are stable following brief treatment interruption. J Clin Invest. 2018;128(7):3102–15.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stuelke EL, et al. Measuring the inducible, replication-competent HIV reservoir using an ultra-sensitive p24 readout, the digital ELISA viral outgrowth assay. Front Immunol. 2020;11:1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ren, Y., et al. 2018 Susceptibility to neutralization by broadly neutralizing antibodies generally correlates with infected cell binding for a panel of clade B HIV reactivated from latent reservoirs. J Virol 92(23)

  21. Massanella M, et al. Improved assays to measure and characterize the inducible HIV reservoir. EBioMedicine. 2018;36:113–21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rosenbloom DI, et al. Designing and interpreting limiting dilution assays: general principles and applications to the latent reservoir for human immunodeficiency virus-1. Open Forum Infect Dis. 2015;2(4):123.

    Article  Google Scholar 

  23. Ho YC, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Metcalf Pate KA, et al. A murine viral outgrowth assay to detect residual HIV type 1 in patients with undetectable viral loads. J Infect Dis. 2015;212(9):1387–96.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yuan Z, et al. Reactivation of HIV-1 proviruses in immune-compromised mice engrafted with human VOA-negative CD4+ T cells. J Virus Erad. 2017;3(1):61–5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Henrich TJ, et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: an observational study. PLoS Med. 2017;14(11): e1002417.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Palmer S, et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 2003;41(10):4531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011;13(3):135–48.

    PubMed  PubMed Central  Google Scholar 

  29. Deruaz M, Tager AM. Humanized mouse models of latent HIV infection. Curr Opin Virol. 2017;25:97–104.

    Article  CAS  PubMed  Google Scholar 

  30. Berges BK, Rowan MR. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology. 2011;8:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013;435(1):14–28.

    Article  CAS  PubMed  Google Scholar 

  32. Lan P, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

    Article  CAS  PubMed  Google Scholar 

  33. Wege AK, et al. Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol. 2008;324:149–65.

    CAS  PubMed  Google Scholar 

  34. Charlins P, et al. A humanized mouse-based HIV-1 viral outgrowth assay with higher sensitivity than in vitro qVOA in detecting latently infected cells from individuals on ART with undetectable viral loads. Virology. 2017;507:135–9.

    Article  CAS  PubMed  Google Scholar 

  35. Schmitt K, Akkina R. Ultra-sensitive HIV-1 latency viral outgrowth assays using humanized mice. Front Immunol. 2018;9:344.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dufour C, et al. The multifaceted nature of HIV latency. J Clin Invest. 2020;130(7):3381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yukl, S.A., et al., HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci Transl Med, 2018. 10(430).

  38. Neumann M, et al. Splicing variability in HIV type 1 revealed by quantitative RNA polymerase chain reaction. AIDS Res Hum Retroviruses. 1994;10(11):1531–42.

    Article  CAS  PubMed  Google Scholar 

  39. Purcell DF, Martin MA. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993;67(11):6365–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fischer M, et al. Attenuated and nonproductive viral transcription in the lymphatic tissue of HIV-1-infected patients receiving potent antiretroviral therapy. J Infect Dis. 2004;189(2):273–85.

    Article  CAS  PubMed  Google Scholar 

  41. Fisher AG, et al. The trans-activator gene of HTLV-III is essential for virus replication. Nature. 1986;320(6060):367–71.

    Article  CAS  PubMed  Google Scholar 

  42. Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science. 2001;293(5534):1503–6.

    Article  CAS  PubMed  Google Scholar 

  43. Laspia MF, Rice AP, Mathews MB. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell. 1989;59(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  44. Blissenbach M, et al. Nuclear RNA export and packaging functions of HIV-1 Rev revisited. J Virol. 2010;84(13):6598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng H, et al. Single cell transcript analysis of human immunodeficiency virus gene expression in the transition from latent to productive infection. Virology. 1995;206(1):16–27.

    Article  CAS  PubMed  Google Scholar 

  46. Vesanen M, et al. Human immunodeficiency virus type-1 mRNA splicing pattern in infected persons is determined by the proportion of newly infected cells. Virology. 1997;236(1):104–9.

    Article  CAS  PubMed  Google Scholar 

  47. Procopio FA, et al. A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine. 2015;2(8):874–83.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lungu C, Procopio FA. TILDA: Tat/Rev induced limiting dilution assay. Methods Mol Biol. 2022;2407:365–72.

    Article  CAS  PubMed  Google Scholar 

  49. Mehta K, et al. An improved Tat/Rev induced limiting dilution assay with enhanced sensitivity and breadth of detection. Front Immunol. 2021;12:715644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lungu, C., et al., Inter-laboratory reproducibility of inducible HIV-1 reservoir quantification by TILDA. Viruses, 2020. 12(9).

  51. Pezzi HM, et al. RNA-mediated TILDA for improved cell capacity and enhanced detection of multiply-spliced HIV RNA. Integr Biol (Camb). 2017;9(11):876–84.

    Article  CAS  PubMed  Google Scholar 

  52. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347(1–2):70–8.

    CAS  PubMed  Google Scholar 

  53. Pardons M, et al. Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. PLoS Pathog. 2019;15(2):e1007619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Papasavvas E, et al. Intact human immunodeficiency virus (HIV) reservoir estimated by the intact proviral DNA assay correlates with levels of total and integrated DNA in the blood during suppressive antiretroviral therapy. Clin Infect Dis. 2021;72(3):495–8.

    Article  CAS  PubMed  Google Scholar 

  55. Lungu C, et al. Inducible HIV-1 reservoir quantification: clinical relevance, applications and advancements of TILDA. Front Microbiol. 2021;12:686690.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kulpa, D.A., et al., Differentiation into an effector memory phenotype potentiates HIV-1 latency reversal in CD4(+) T Cells. J Virol, 2019. 93(24).

  57. Fromentin R, et al. CD4+ T cells expressing PD-1, TIGIT and LAG-3 contribute to HIV persistence during ART. PLoS Pathog. 2016;12(7):e1005761.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saiki RK, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–4.

    Article  CAS  PubMed  Google Scholar 

  59. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.

    Article  CAS  PubMed  Google Scholar 

  60. Bartlett JM, Stirling D. A short history of the polymerase chain reaction. Methods Mol Biol. 2003;226:3–6.

    CAS  PubMed  Google Scholar 

  61. Clementi M, et al. Quantitative PCR and RT-PCR in virology. PCR Methods Appl. 1993;2(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  62. Massanella M, Richman DD. Measuring the latent reservoir in vivo. J Clin Invest. 2016;126(2):464–72.

    Article  PubMed  PubMed Central  Google Scholar 

  63. De Spiegelaere W, et al. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics. Clin Chem. 2014;60(6):886–95.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kiselinova M, et al. Integrated and total HIV-1 DNA predict ex vivo viral outgrowth. PLoS Pathog. 2016;12(3):e1005472.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kiselinova M, et al. HIV-1 RNA and HIV-1 DNA persistence during suppressive ART with PI-based or nevirapine-based regimens. J Antimicrob Chemother. 2015;70(12):3311–6.

    CAS  PubMed  Google Scholar 

  66. Belmonti, S., S. Di Giambenedetto, and F. Lombardi, Quantification of Total HIV DNA as a marker to measure viral reservoir: methods and potential implications for clinical practice. Diagnostics (Basel), 2021. 12(1).

  67. Rouzioux C, Avettand-Fenoel V. Total HIV DNA: a global marker of HIV persistence. Retrovirology. 2018;15(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rouzioux C, Melard A, Avettand-Fenoel V. Quantification of total HIV1-DNA in peripheral blood mononuclear cells. Methods Mol Biol. 2014;1087:261–70.

    Article  CAS  PubMed  Google Scholar 

  69. Folks TM, et al. Biological and biochemical characterization of a cloned Leu-3- cell surviving infection with the acquired immune deficiency syndrome retrovirus. J Exp Med. 1986;164(1):280–90.

    Article  CAS  PubMed  Google Scholar 

  70. Adachi A, et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986;59(2):284–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Christopherson C, et al. PCR-based assay to quantify human immunodeficiency virus type 1 DNA in peripheral blood mononuclear cells. J Clin Microbiol. 2000;38(2):630–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gibellini D, et al. Quantitative detection of human immunodeficiency virus type 1 (HIV-1) proviral DNA in peripheral blood mononuclear cells by SYBR green real-time PCR technique. J Clin Virol. 2004;29(4):282–9.

    Article  CAS  PubMed  Google Scholar 

  73. Thomas J, et al. Measuring the success of HIV-1 cure strategies. Front Cell Infect Microbiol. 2020;10:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharkey ME, et al. Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy. Nat Med. 2000;6(1):76–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brown PO, et al. Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci U S A. 1989;86(8):2525–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pang S, et al. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature. 1990;343(6253):85–9.

    Article  CAS  PubMed  Google Scholar 

  77. Teo I, et al. Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. J Virol. 1997;71(4):2928–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Farnet CM, Haseltine WA. Circularization of human immunodeficiency virus type 1 DNA in vitro. J Virol. 1991;65(12):6942–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bukrinsky M, Sharova N, Stevenson M. Human immunodeficiency virus type 1 2-LTR circles reside in a nucleoprotein complex which is different from the preintegration complex. J Virol. 1993;67(11):6863–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Munir S, et al. Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle. Retrovirology. 2013;10:87.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wu Y, Marsh JW. Early transcription from nonintegrated DNA in human immunodeficiency virus infection. J Virol. 2003;77(19):10376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Friedrich B, et al. Quantitative PCR used to assess HIV-1 integration and 2-LTR circle formation in human macrophages, peripheral blood lymphocytes and a CD4+ cell line. Virol J. 2010;7:354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Madlala P, et al. Analysis of ex vivo HIV-1 infection in a controller-discordant couple. J Virus Erad. 2018;4(3):170–3.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zazzi M, et al. Evaluation of the presence of 2-LTR HIV-1 unintegrated DNA as a simple molecular predictor of disease progression. J Med Virol. 1997;52(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  85. Panther LA, et al. Unintegrated HIV-1 circular 2-LTR proviral DNA as a marker of recently infected cells: relative effect of recombinant CD4, zidovudine, and saquinavir in vitro. J Med Virol. 1999;58(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  86. Pierson TC, et al. Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. J Virol. 2002;76(8):4138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Butler SL, Johnson EP, Bushman FD. Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. J Virol. 2002;76(8):3739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. White, J.A., et al., Complex decay dynamics of HIV virions, intact and defective proviruses, and 2LTR circles following initiation of antiretroviral therapy. Proc Natl Acad Sci U S A, 2022. 119(6).

  89. Zennou V, et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell. 2000;101(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  90. Iglesias C, et al. Residual HIV-1 DNA Flap-independent nuclear import of cPPT/CTS double mutant viruses does not support spreading infection. Retrovirology. 2011;8:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yoder KE, Fishel R. PCR-based detection is unable to consistently distinguish HIV 1LTR circles. J Virol Methods. 2006;138(1–2):201–6.

    Article  CAS  PubMed  Google Scholar 

  92. Barton K, Winckelmann A, Palmer S. HIV-1 reservoirs during suppressive therapy. Trends Microbiol. 2016;24(5):345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Engelman AN, Singh PK. Cellular and molecular mechanisms of HIV-1 integration targeting. Cell Mol Life Sci. 2018;75(14):2491–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wiskerchen M, Muesing MA. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J Virol. 1995;69(1):376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Engelman A, et al. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol. 1995;69(5):2729–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brussel A, Sonigo P. Evidence for gene expression by unintegrated human immunodeficiency virus type 1 DNA species. J Virol. 2004;78(20):11263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nakajima N, Lu R, Engelman A. Human immunodeficiency virus type 1 replication in the absence of integrase-mediated dna recombination: definition of permissive and nonpermissive T-cell lines. J Virol. 2001;75(17):7944–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vandegraaff N, et al. Kinetics of human immunodeficiency virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay for detection of integrated HIV DNA. J Virol. 2001;75(22):11253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Butler SL, Hansen MS, Bushman FD. A quantitative assay for HIV DNA integration in vivo. Nat Med. 2001;7(5):631–4.

    Article  CAS  PubMed  Google Scholar 

  100. Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002;3(5):370–9.

    Article  CAS  PubMed  Google Scholar 

  101. Jelinek WR, Schmid CW. Repetitive sequences in eukaryotic DNA and their expression. Annu Rev Biochem. 1982;51:813–44.

    Article  CAS  PubMed  Google Scholar 

  102. Mighell AJ, Markham AF, Robinson PA. Alu sequences. FEBS Lett. 1997;417(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  103. Deininger P. Alu elements: know the SINEs. Genome Biol. 2011;12(12):236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rubin CM, et al. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature. 1980;284(5754):372–4.

    Article  CAS  PubMed  Google Scholar 

  105. Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab. 1999;67(3):183–93.

    Article  CAS  PubMed  Google Scholar 

  106. Grover D, et al. Nonrandom distribution of alu elements in genes of various functional categories: insight from analysis of human chromosomes 21 and 22. Mol Biol Evol. 2003;20(9):1420–4.

    Article  CAS  PubMed  Google Scholar 

  107. Brussel A, Delelis O, Sonigo P. Alu-LTR real-time nested PCR assay for quantifying integrated HIV-1 DNA. Methods Mol Biol. 2005;304:139–54.

    CAS  PubMed  Google Scholar 

  108. Liszewski MK, Yu JJ, O’Doherty U. Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR. Methods. 2009;47(4):254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. O’Doherty U, et al. A sensitive, quantitative assay for human immunodeficiency virus type 1 integration. J Virol. 2002;76(21):10942–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Malatinkova, E., et al., Measuring proviral HIV-1 DNA: hurdles and improvements to an assay monitoring integration events utilising human Alu repeat sequences. Life (Basel), 2021. 11(12).

  111. Bourinbaiar AS. HIV and gag. Nature. 1991;349(6305):111.

    Article  CAS  PubMed  Google Scholar 

  112. Janocko L, et al. The molecular characterization of intestinal explant HIV infection using polymerase chain reaction-based techniques. AIDS Res Hum Retroviruses. 2015;31(10):981–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cardelli M. Alu PCR Methods Mol Biol. 2011;687:221–9.

    Article  CAS  PubMed  Google Scholar 

  114. Symons J, Cameron PU, Lewin SR. HIV integration sites and implications for maintenance of the reservoir. Curr Opin HIV AIDS. 2018;13(2):152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yu JJ, et al. A more precise HIV integration assay designed to detect small differences finds lower levels of integrated DNA in HAART treated patients. Virology. 2008;379(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  116. Eriksson S, et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 2013;9(2):e1003174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kiselinova M, et al. Correction: Integrated and total HIV-1 DNA predict ex vivo viral outgrowth. PLoS Pathog. 2016;12(3):e1005532.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jacobson JM, et al. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: a randomized, double-blind, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;72(1):31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rasmussen TA, et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV. 2014;1(1):e13-21.

    Article  PubMed  Google Scholar 

  120. Lehrman G, et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet. 2005;366(9485):549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lassen K, et al. The multifactorial nature of HIV-1 latency. Trends Mol Med. 2004;10(11):525–31.

    Article  CAS  PubMed  Google Scholar 

  122. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A. 1999;96(16):9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hindson BJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Anderson EM, Maldarelli F. Quantification of HIV DNA using droplet digital PCR techniques. Curr Protoc Microbiol. 2018;51(1):e62.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Massanella, M., et al., Quantification of total and 2-LTR (long terminal repeat) HIV DNA, HIV RNA and Herpesvirus DNA in PBMCs. Bio Protoc, 2015. 5(11).

  126. Strain MC, et al. Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One. 2013;8(4):e55943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Althaus CF, et al. Rational design of HIV-1 fluorescent hydrolysis probes considering phylogenetic variation and probe performance. J Virol Methods. 2010;165(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  128. Hindson CM, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10(10):1003–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Levy CN, et al. A highly multiplexed droplet digital PCR assay to measure the intact HIV-1 proviral reservoir. Cell Rep Med. 2021;2(4):100243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kinloch NN, et al. HIV-1 diversity considerations in the application of the intact proviral DNA assay (IPDA). Nat Commun. 2021;12(1):165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hiener B, et al. Identification of genetically intact HIV-1 proviruses in specific CD4(+) T cells from effectively treated participants. Cell Rep. 2017;21(3):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bruner KM, et al. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature. 2019;566(7742):120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bruner KM, et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med. 2016;22(9):1043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Imamichi H, et al. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci U S A. 2016;113(31):8783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu R, Catalano AA, Ho YC. Measuring the size and decay dynamics of the HIV-1 latent reservoir. Cell Rep Med. 2021;2(4):100249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gaebler C, et al. Combination of quadruplex qPCR and next-generation sequencing for qualitative and quantitative analysis of the HIV-1 latent reservoir. J Exp Med. 2019;216(10):2253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Simonetti FR, et al. Intact proviral DNA assay analysis of large cohorts of people with HIV provides a benchmark for the frequency and composition of persistent proviral DNA. Proc Natl Acad Sci U S A. 2020;117(31):18692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gandhi RT, et al. Selective decay of intact HIV-1 proviral DNA on antiretroviral therapy. J Infect Dis. 2021;223(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  139. Avettand-Fenoel V, et al. Total HIV-1 DNA, a marker of viral reservoir dynamics with clinical implications. Clin Microbiol Rev. 2016;29(4):859–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Crooks AM, et al. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J Infect Dis. 2015;212(9):1361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Colby DJ, et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med. 2018;24(7):923–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Estes JD, et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat Med. 2017;23(11):1271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Buzon MJ, et al. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med. 2010;16(4):460–5.

    Article  PubMed  Google Scholar 

  144. Baxter AE, O’Doherty U, Kaufmann DE. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs. Retrovirology. 2018;15(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sanyal A, et al. Novel assay reveals a large, inducible, replication-competent HIV-1 reservoir in resting CD4(+) T cells. Nat Med. 2017;23(7):885–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hiener, B., et al., Amplification of near full-length HIV-1 proviruses for next-generation sequencing. J Vis Exp, 2018(140).

  147. Einkauf KB, et al. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J Clin Invest. 2019;129(3):988–98.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jiang C, et al. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature. 2020;585(7824):261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Einkauf KB, et al. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell. 2022;185(2):266–28215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cole B, et al. In-depth single-cell analysis of translation-competent HIV-1 reservoirs identifies cellular sources of plasma viremia. Nat Commun. 2021;12(1):3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sannier G, et al. Combined single-cell transcriptional, translational, and genomic profiling reveals HIV-1 reservoir diversity. Cell Rep. 2021;36(9):109643.

    Article  CAS  PubMed  Google Scholar 

  152. Clark, I.C., et al., HIV silencing and cell survival signatures in infected T cell reservoirs. Nature, 2023.

  153. Clark, I.C., et al., Identification of astrocyte regulators by nucleic acid cytometry. Nature, 2023.

Download references

Funding

This work was supported by the Shanghai Municipal Healthy Commission (GWV-10.1-XK2); Shanghai Shenkang Hospital Development Center (SHDC2020RC6025); Shanghai Public Health Clinical Center, Fudan University (KY-GW-2021-45).

Author information

Authors and Affiliations

Authors

Contributions

Xinyu Zhang performed the literature search, prepared the figures, and wrote the manuscript. Chen Jun provided manuscript guidance and revision. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, J. HIV Reservoir: How to Measure It?. Curr HIV/AIDS Rep 20, 29–41 (2023). https://doi.org/10.1007/s11904-023-00653-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-023-00653-1

Keywords

Navigation