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Abstract
Purpose of Review The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global pan-
demic that affect the health of hundreds of millions worldwide. In particular, SARS-CoV-2 infection in people with chronic 
human immune deficiency virus (HIV) infection is of concern, due to their already immunocompromised status. Yet, whether 
and how the immunological changes brought about by HIV will affect the immune responses against SARS-CoV-2 acute 
infection and impact the effectiveness of vaccines remain unclear. We discuss the intersection of COVID-19 in HIV-infected 
individuals.
Recent Findings People living with HIV (PLWH) may be at increased risk of severe SARS-CoV-2 mediated disease com-
plication due to functional impairment of the immune system and persistent inflammation, which can be ameliorated by 
antiretroviral therapy. Importantly, limited data suggest that current approved vaccines may be safe and efficacious in PLWH.
Summary To address remaining questions and supplement limited experimental evidence, more studies examining the 
interplay between HIV and SARS-CoV-2 through their impact on the host immune system are required.

Keywords SARS-CoV-2 infection · HIV chronic infection · COVID-19 · Vaccines

Introduction

The emergence of severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) was first reported in December 
2019. Since then, it has put profound stress over the health-
care systems globally and caused over 175 million corona-
virus disease 2019 (COVID-19) reported cases with over 
3.7 million cumulative deaths as of June 15, 2021 [1]. Vac-
cines are developed at an unprecedented speed and serve as 
the key countermeasure against the COVID-19 pandemic. 
With vaccines being rolled out efficiently, marked declines 
in the number of weekly reported cases are seen across the 

globe. While slowing down of the COVID-19 pandemic was 
reported worldwide, African and South-East Asia regions 
are suffering from high COVID-19 mortality because of the 
lack of vaccines, the circulation of new SARS-CoV-2 vari-
ants overburdening the healthcare system. Especially, the 
African region has reported 44% increase in weekly case 
incidence and 20% increase in new deaths as compared to 
the previous week [1].

The broad clinical spectrum of COVID-19 was inten-
sively studied soon after the pandemic began. While in most 
cases, SARS-CoV-2 infection results in mild respiratory 
symptoms and self-limiting disease, about 15% of patients 
develop severe clinical manifestations including severe res-
piratory syndrome and multisystemic failure that require 
oxygen support and intensive care units (ICU) admission 
[2–4]. Clinical observations and COVID-19 cohort studies 
have revealed that age, sex, and body mass index (BMI) 
are associated with COVID-19 disease course and severity 
[5–8]. Certain underlying comorbidities, including diabe-
tes, hypertension, cardiovascular disease, and chronic kidney 
disease, are shown to be associated with severe disease man-
ifestation [5, 6, 9]. Concerns arose in the beginning of the 
COVID-19 pandemic that immunocompromised patients are 
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at higher risk of more severe SARS-CoV-2 infection because 
evidence of other respiratory viral infections suggested an 
association between immunosuppressive condition and 
high frequencies of superinfection, pneumonia, and death 
[10, 11]. However, whether compromised immune defense 
increases the risk of SARS-CoV-2 infection or exacerbates 
disease progression remains obscure.

African countries are facing a surging wave of COVID-
19 pandemics with reporting cases increased for three con-
secutive weeks [1]. In addition to the COVID-19 pandemic, 
human immune deficiency virus (HIV) global epidemic 
has long been a burden of the Sub-Saharan Africa region 
as it carries 70% of the global HIV infection [12]. Current 
COVID-19 pandemic has aggravated the situation of peo-
ple living with HIV (PLWH) worldwide. Medical facilities 
and physicians previously dedicated for HIV care were par-
tially or fully engaged in fighting the COVID-19 pandemic 
[13]. In the interim guidance for COVID-19 and persons 
with HIV issued by the Centers for Disease Control and 
Prevention (CDC), PLWH are identified to be included in 
the category of high-risk medical conditions and should 
weigh the risks and benefits of attending in-person clini-
cal visit related to HIV [14]. Due to shortage of medical 
resources, quarantine measures, and fears of exposure to 
SARS-CoV-2, HIV patients were unable to acquire refills 
of their antiretroviral therapy (ART) medication [15–18]. 
Several questions regarding the intersection of the rapidly 
emerged COVID-19 pandemic and long-term HIV epidemic 
remain to be addressed, which is crucial in mitigating the 
unintended consequences over PLWH caused by the out-
break of SARS-CoV-2. Here, we review the emerging litera-
ture on SARS-CoV-2 infections and some focused studies on 
SARS-CoV-2 and HIV coinfection and summarize what we 
know so far about the impact of chronic HIV infection upon 
SARS-CoV-2 infection and disease outcome. We also review 
the impact of existing HIV infection status on the COVID-
19 vaccine responses. We seek to break down the changes 
in immunological landscape caused by HIV infection and 
ART medication and to evaluate the impact of such factors 
on SARS-CoV-2 infection and pathogenesis.

Diverse Outcomes in Cohort Studies

Despite the significant heterogeneity and limitation in sam-
ple size in case series studies on COVID-19 among solid-
organ transplantation (SOT) recipients and people with can-
cer, many have led to similar conclusions that these patients 
with immunocompromised condition are at higher risk of 
developing clinical complication caused by SARS-CoV-2 
infection [19••]. Limited case studies of SARS-CoV and 
Middle East respiratory syndrome (MERS) suggested that 
PLWH may have lower risk of severe disease progression 

[20, 21], yet conclusions drawn from focused cohort studies 
on COVID-19 among PLWH remains controversial.

In a study characterizing 5,700 COVID-19 patients with 
various predisposed medical conditions, HIV infection 
accounts for only 0.8% of patients hospitalized with COVID-
19 in New York City area, as compared to hypertension and 
diabetes that represent 56.6% and 33.8% of hospitalized 
COVID-19 cases in the same cohort [22]. This number was 
in fact lower than the rate of PLWH in the general popula-
tion living in the New York City area (1.46%) [23]. Similar 
results were seen in a cohort study of 20,133 hospitalized 
COVID-19 patients in the UK [24]. These studies based on 
large population scale did not reveal a unfavorable effect 
of HIV infection on COVID-19 disease course. Limitation 
remains for these studies in that multiple factors that contrib-
ute to HIV population heterogeneity including ART adher-
ence, viremia control, and immune reconstitution, were not 
explicitly examined.

Focused studies comparing COVID-19 disease outcome 
in patients with or without HIV infection were carried 
out worldwide. These studies have led to a different con-
clusion. Comparison analysis performed on samples col-
lected by the International Severe Acute Respiratory and 
emerging Infections Consortium (ISARIC) World Health 
Organization (WHO) Clinical Characterization Protocol 
UK (CCP-UK) study reported an adjusted hazard ratio of 
1.69 (95% CI 1.15–2.48; p = 0·008) on COVID-19 mor-
tality among PLWH compared to the general population 
[25]. A higher adjusted hazardous ratio of 2.59 (95% CI 
1.74–3.84; p < 0·0001) was reported in an analysis based on 
openSAFELY, the UK primary care database of 1.73 million 
people and 27.48 thousand HIV infected individuals [26••]. 
These large databases can achieve great sample size of HIV 
and SARS-CoV-2 coinfection cases. Nevertheless, neither 
analysis was able to adjust for confounders including other 
comorbidities, HIV treatment, and HIV disease progression.

Diverse outcomes are found in other cohort studies 
focused on studying COVID-19 disease outcome among 
PLWH, in which patients are further stratified based on 
therapy, viral burden, immune constitution, and comorbidi-
ties. A population cohort study conducted in Sub-Saharan 
Africa suggested that chronic HIV infection was indepen-
dently associated with increased COVID-19 mortality simi-
larly across strata of viral load [27••]. In a cohort study on 
2,988 HIV and SARS-CoV-2 coinfection cases in New York 
State, elevated hospitalization and mortality rate were iden-
tified in PLWH, and the increase was associated with HIV 
disease progression stratified by the level of immunosup-
pression [28]. Yet, another case series of 2,159 hospitalized 
COVID-19 patients with 31 subjects diagnosed with HIV 
but were all virologically suppressed on ART showed similar 
risk of hospitalization among PLWH compared to general 
population [29].
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Whether HIV infected individuals are at higher risk of 
COVID-19 diagnosis, hospitalization, and mortality remains 
inconclusive from statistical analysis due to variable results 
found in the population studies, cohort studies, and case 
series. It is important to acknowledge that the limitations 
brought by multiple residual confounders should be taken 
into consideration when interpreting the results. In addition 
to rapidly accumulating observational studies reporting the 
interplay between HIV infection and SARS-CoV-2 patho-
genesis based on statistical analysis, comprehensive studies 
investigating the impact of chronic HIV infection on immune 
response against SARS-CoV-2 infection experimentally are 
required to supplement our gap of knowledge.

Correlates of Immune Protection Against 
COVID‑19

The broad spectrum of COVID-19 disease presentation has 
been greatly appreciated since the early stage of the current 
pandemic. Soon after the outbreak began, abundant obser-
vational and experimental studies have identified multiple 
immune biomarkers predicting viral control and disease 
recovery versus severe disease complications. Our under-
standings on the immune responses against SARS-CoV-2 
infection and immune correlates associated with disease 
progression have provided insights for development of ther-
apeutic intervention, evaluation of vaccines, and a crucial 
hint on studying how chronic HIV may affect COVID-19 
disease course by modulating the immune system of co-
infected patients.

The host immune system is known to be a double-edge-
sword in SARS-CoV-2 pathogenesis. On one hand, early 
evidence suggested that exaggerated host immune response 
led to increased level of proinflammatory cytokines which 
induce inflammatory sepsis and acute respiratory distress 
syndrome (ARDS) [30]. On the other hand, induction of 
protective immune response leads to control of viral replica-
tion and facilitates viral clearance and disease recovery, first 
suggested by a case study in which the patients with mild 
symptoms of COVID-19 had normal lymphocyte count, 
synergetic increase of antibodies and plasma cells, and acti-
vation of  CD4+ and  CD8+ T cells after onset of symptoms 
[31].

Lymphopenia was identified as a prominent clinical fea-
ture in hospitalized COVID-19 patients. The reduction of 
blood lymphocyte percentage strongly associates with dis-
ease severity and exhibits correlation with disease progres-
sion in severely ill patients [32]. The lymphocyte count of 
 CD4+ T cells,  CD8+ T cells, and B cells decreased along 
with increased severity, suggesting that impaired immune 
function may play a role in disease progression, while hyper-
activated interferon-γ (IFN-γ) producing Th1 cells were 

increased in severe cases [33]. In a study characterizing 
SARS-CoV-2 specific T cells, viral spike (S) glycoprotein 
specific functional  CD4+ T cells correlate with viral spe-
cific IgG and IgA titers [34]. In acute phase of the infection, 
many of these SARS-CoV-2 specific T cells express activa-
tion marker which correlate with early SARS-CoV-2 specific 
IgG. Viral specific  CD8+ T cells expressing granzyme B 
and perforin identified in acute phase were skewed toward 
memory phenotype in convalescent phase, which are posi-
tively associated with disease recovery [35].

Humoral response, as another critical arm of the host 
adaptive immunity, was successfully targeted by multi-
ple effective vaccines to confer prophylactic intervention 
of infectious diseases. Most COVID-19 patients develop 
SARS-CoV-2 specific neutralizing antibodies [36, 37]. 
Although viral specific antibody titers were found to be 
elevated in patients with severe disease compared to mild 
disease, neutralizing antibodies targeting receptor binding 
domain (RBD) have been shown to be protective rather 
than being detrimental [37]. In fact, receptor profiling of B 
cell repertoire in severe COVID-19 patients revealed that 
extrafollicular responses and clonal expansion of germline 
clonotypes dominate the COVID-19 antibody secreting cells 
(ASC) repertoire [38]. While in patients with mild COVID-
19, marked increase in the affinity of antibodies targeting 
prefusion SARS-CoV-2 S protein was observed in a lon-
gitudinal study. The affinity maturation of prefusion spike 
specific antibodies but not S1, S2, or RBD was shown to be 
associated with disease recovery [39].

More importantly, ample evidence is emerging to indi-
cate that immunological memory is established by SARS-
CoV-2 natural infection and vaccination [40–43]. In a study 
called the SARS-CoV-2 Immunity and Reinfection Evalu-
ation (SIREN) study, 8,278 out of 25,661 enrolled health-
care workers were previously diagnosed with COVID-19 
and were seropositive at enrollment. The risk of reinfection 
of this seropositive group was reduced by 84% compared 
to the seronegative counterpart [40]. The development of 
robust neutralizing antibodies is associated with T helper 
type 1 (Th1) immune response and expansion of RBD spe-
cific  CD4+ and  CD8+ T cells [42, 44]. These studies collec-
tively emphasized the critical roles of  CD4+ T cells,  CD8+ T 
cells, and B cells in the protective immune response against 
SARS-Co-2 infection and immunological memory.

Impact of Chronic HIV Infection 
on SARS‑CoV‑2 Susceptibility and COVID‑19 
Disease Outcome

Despite prevalent concern regarding the risk of SARS-
CoV-2 and disease complication in PLWH, the actual 
impact of chronic HIV infection on COVID-19 is not well 
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characterized. Mixed results were presented by statistical 
analysis, yet experimental evidence is lacking regarding 
the mechanism of immune defense against SARS-CoV-2 in 
PLWH. PLWH are indeed at higher risk of serious influenza-
associated complication [45, 46] and bacterial and fungal 
infection [47, 48], which raises similar concerns in this pop-
ulation at risk of severe COVID-19. By reviewing relevant 
literature of the immune profile of PLWH and immune cor-
relates of SARS-CoV-2 protection versus immunopathology, 
we are seeking to learn how HIV chronic infection, HIV 
associated comorbidities, and ART as prophylactic medica-
tion may modulate COVID-19.

Impact of Immunological Landscape Changes

People with chronic HIV infection have very distinct 
immune profiles. In the absence of ART, HIV can estab-
lish a progressive infection of human immune cells leading 
to eventual loss of the  CD4+ T cells [49] over the course 
of HIV disease progression (stage 1,  CD4+ cell count is 
above 500 cells/μL; stage 2,  CD4+ cell count is between 
350 and 500 cells/μL; stage 3,  CD4+ cell count is between 
200 and 350 cells/μL; stage 4,  CD4+ cell count is less than 
200 cells/μL). Critical loss in CD4 T cell count is a key 

parameter for defining acquired immunodeficiency syn-
drome (AIDS). As depletion of  CD4+ T cells was shown 
to be associated with worse COVID-19 disease outcome 
[33], PLWH with low  CD4+ cell count could have aggra-
vated COVID-19 disease progression due to synergic 
effect of the two viruses. In a multicenter registry-based 
cohort reported in the USA, PLWH with  CD4+ cell count 
less than 200 cells/μL was associated with increased risk 
of COVID-19 related mortality and hospitalization com-
pared to those who have higher  CD4+ cell count [50••]. 
Although transient lymphopenia is common in many res-
piratory viral infections [51], SARS-CoV-2 induced lym-
phopenia appears to be prolonged and more biased towards 
T cell linage [32, 52, 53]. How exactly low  CD4+ cell 
count of people diagnosed with AIDS (stage 4) at onset 
of COVID-19 disease could contribute to disease progres-
sion remains unclear. However, we speculate that progres-
sive loss of  CD4+ T cells in AIDS patients can potentially 
impede clearance of SARS-CoV-2 through its effect on 
antibody production (Fig. 1). One case report of a patient 
infected with SARS-CoV-2 and HIV whose  CD4+ cell 
count was 34 cell/μL showed much delayed SARS-CoV-2 
specific IgG and IgM response and prolonged disease 
course [54]. In a cohort study of 2,017 COVID-19 patients 
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Fig. 1  Potential impact of chronic HIV infection on immune response 
to SARS-CoV-2 infection and immunity. Proposed mechanism of a 
protective immune response to SARS-CoV-2 and b potential impact 
of HIV infection on immune response to SARS-CoV-2. a Proper 
induction of type I IFN stimulate expression of ISGs that mediate 
antiviral activity in host cells.  CD4+ T cells are essential in the induc-
tion of cellular immune response and humoral immune response, pro-
viding  CD8+ T cells and B cells with help for proper activation and 
proliferation. IFN-γ secreting  CD8+ T cells facilitate viral clearance 
through cell-mediated cytotoxicity. Concurrently, B cell differenti-
ated into ASC which secrete SARS-CoV-2 specific antibodies with 

neutralizing activity. b Chronic HIV infection attenuated type I IFN 
secretion and lead to chronic inflammation, changing the cytokine 
milieu that might exacerbate immunopathology. Loss of  CD4+ T 
cells, exhaustion of  CD8+ T cells and B cells occurred in chronic 
HIV infection, impeding the induction of protective cellular and 
humoral immune response against SARS-CoV-2 infection. IFN, inter-
feron; ISG, interferon-stimulated genes; Th1, T helper 1 cell; Tfh, T 
follicular helper cell; LN-Th1, lymph node T helper 1 cell; ASC, anti-
body secreting cell; SARS-CoV-2, severe acute respiratory syndrome 
coronavirus 2; Ab, antibody; DC, dendritic cell; HIV, human immune 
deficiency virus; IL, interleukin; TNF, tumor necrosis factor
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(955 patients with HIV) comparing SARS-CoV-2 specific 
antibody titers among people with or without HIV, lower 
anti-RBD IgG (percentage change -53%) and pseudovi-
rus neutralizing antibody titers (percentage change -67%) 
were observed in HIV infected group (median  CD4+ cell 
count = 452 cell/μL) compared to patients without HIV 
infection [55••]. Depletion of  CD4+ T cells in a SARS-
CoV-2 acute infection model led to diminished antibody 
response and retarded viral clearance [56••]. Although 
high-affinity neutralizing antibodies against SARS-CoV-2 
can be generated without T follicular helper  (TFH) cells 
during infection, lymph node (LN)-Th1 cells was shown 
to provide complementary help to generate SARS-CoV-2 
specific antibodies through interaction with B cells outside 
of the germinal center (GC) [57].

Additionally, the major target cells of HIV are 
chemokine receptor (CCR)5 expressing T cells—which 
represent mucosal memory T cells with preferential 
expression of CCR5 were greatly targeted for destruction, 
resulting in a different T cell memory pool in PLWH [58]. 
Researchers surprisingly found T cells that  CD4+ memory 
T cells that cross-react with SARS-CoV-2 in individuals 
who are naïve to SARS-CoV-2, presumably generated 
when related human endemic coronavirus were encoun-
tered [34]. Whether depletion of pre-existing cross-reac-
tive memory T cells in AIDS patients affect SARS-CoV-2 
susceptibility are the remaining important unanswered 
questions. In fact, cohort studies suggested similar risk 
of SARS-CoV-2 infection (clinical diagnosis) in PLWH 
compared to general population, while increased risk of 
severe disease was reported [28, 59].

Besides progressive depletion of  CD4+ T cell, chronic 
HIV infection can also induce qualitative changes in various 
components of the host immune system. Chronic infection 
of HIV in which viremia and antigen stimulation persist, 
 CD8+ T cells become exhausted [60, 61]. Exhausted  CD8+ 
T cells exhibit defects in tumor necrosis factor (TNF) and 
IFN-γ production, leading to impaired cytotoxic function 
[62, 63]. Potential exhausted  CD8+ T cells with expres-
sion of inhibitory receptors were found to be associated 
with severe COVID-19 in early reports [64, 65]. However, 
these  CD8+ T cells characterized as terminal exhaustion 
by expression of inhibitory receptor could be function-
ally competent for IFN-γ production [66]. Indeed, elevated 
expression of exhaustion marker could be found on activated 
 CD8+ cells and could be beneficial in preventing hyperac-
tivation induced immunopathology, supported by evidence 
that SARS-CoV-2 specific hyperactivated  CD8+ T cells 
in severe illness display impaired exhaustion [67••, 68]. 
Although the “exhaustion” of  CD8+ T cells in COVID-19 
remains debatable, exhausted lymphocytes in chronic HIV 
infection were found to be dysfunctional with impaired cyto-
toxicity [69], which could potentially hamper viral clearance 

of SARS-CoV-2 during acute infection, when cell mediated 
immunity coordinate with humoral immunity [56••].

As several reports have shown, marked increases in 
autoantibodies in severe COVID-19 patients have functional 
impact over the host immune defense against SARS-CoV-2 
and the persistent of inflammation [70–72]. Similarly, these 
signs of humoral immunity dysregulation are widely appre-
ciated as a hallmark of HIV pathogenesis, characterized by 
exaggerated B-cell activation and increased production of 
autoantibodies [73–75]. Another overlapping abnormality 
of the humoral immune response is the progressive exhaus-
tion of B cells found in both chronic HIV infection [76] and 
severe COVID-19 disease [77], which could have synergic 
and undesired effect on antibody-mediated viral clearance 
and memory establishment.

In addition to changes at the cellular level, HIV infected 
individuals exhibit local and systemic inflammation; even 
individuals on ART and viral suppression have chronic 
inflammation. This likely results from HIV-mediated 
destruction of mucosal barrier, leading to microbial trans-
location and dissemination of innate immune stimulus, 
which was reviewed elsewhere [48, 78]. Of note, inflamma-
tory cytokine milieu characterized in chronic HIV infection 
[79, 80] shares overlapping targets that are also identified 
in severe COVID-19 [53, 81], featuring increased level of 
interleukin-6 (IL-6), IL-10 and tumor necrosis factor (TNF). 
This argues against the assumption that PLWH might be 
protected from hyperactivation mediated immunopathol-
ogy because their immune systems are compromised. On 
the contrary, a key player of the innate immune system to 
defend against SARS-CoV-2 acute infection, type I interfer-
ons (IFN) [82], is blunted in HIV chronic infection. Several 
mechanisms by which HIV can suppress the host type I IFN 
response have been reported. HIV accessory protein Vpr 
and Vif can target interferon regulatory factors-3 (IRF-3) 
for degradation [83]. Moreover, HIV gp120 can suppress 
IFN-α secretion from plasmacytoid dendritic cells, which is 
the major source of IFN production upon viral recognition 
[84]. Diminished type I IFN induction is observed in severe 
COVID-19 cases, and increasing evidence for detrimental 
effect of blunted IFN response at the onset of disease has 
been reported in clinical data and mouse model [70, 71, 85].

Impact of Comorbidities Associated with Chronic 
HIV

A noteworthy point when discussing COVID-19 disease 
progression in PLWH is that the clinical spectrum of HIV 
infection itself is broadly ranging from viral suppression and 
reconstituted immune system to viremia, immunosuppres-
sion, and multiple associated comorbidities. Specific non-
infectious comorbidities such as diabetes, cardiovascular 
disease, and renal failure are significantly more common 
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among PLWH compared to the general population [86••]. 
Notably, in HIV and SARS-CoV-2 co-infection cases, the 
most common morbidities are hypertension, diabetes, res-
piratory disease, liver disease, and renal disease [87]. In 
a cohort study comparing COVID-19 disease outcome in 
22,308 patients with and without HIV (17.8% were HIV 
infected), a substantial portion of COVID-19 deceased cases 
in PLWH had diabetes (50%) and hypertension (42%) which 
were in fact more common in deceased case in patients with-
out HIV (62% for diabetes and 62% for hypertension) [27••]. 
Therefore, it is possible that the increased risk of hospitali-
zation and worse disease complication may be partially due 
to a combined effect of HIV-related comorbidities, instead 
of HIV infection per se. However, HIV infection might con-
tribute to COVID-19 related death that is not associated with 
such comorbidities.

Effect of Antiretroviral Therapy

Several case studies have revealed potential beneficial effect 
of ART on COVID-19 disease outcome among PLWH 
[88••, 89]. The speculation that ART might act as a pre-
exposure prophylactic treatment for SARS-CoV-2 acute 
infection originated from the fact that several ART drugs 
have in vitro inhibitory activity against SARS-CoV-2 repli-
cation. Tenofovir is a nucleotide analogue that is included in 
some ART regimen. In vitro molecular docking studies have 
found that Tenofovir tightly binds SARS-CoV-2 polymer-
ase, suggesting potential effect on blocking viral replication. 
A multicenter cohort study in Spain reported that tenofo-
vir disoproxil fumarate (TDF)-based ART was associated 
with lower rate of COVID-19 diagnosis and hospitalization 
[88••]. However, this association was not found in another 
cohort study [90]. Another component of ART regimen 
that is well studied in the setting of SARS-CoV-2 infec-
tion is Lopinavir, a protease inhibitor that has been proved 
to inhibit replication of SARS-CoV [91], MERS-CoV [92], 
and SARS-CoV-2 [93] in vitro. Yet randomized clinical trial 
evaluating the effect of lopinavir-ritonavir regimen shows 
no beneficial outcome in improving clinical outcome or 
decreasing mortality of COVID-19 [94].

Although the direct effect of ART on restricting SARS-
CoV-2 replication remains debatable, it is widely accepted 
that ART can mitigate HIV-associated immune suppression. 
Administration of ART can achieve viral suppression and 
restore  CD4+ cells count in most HIV infected patients [95]. 
B cells abnormalities due to persistent antigen stimulation in 
viremic individuals were restored in the presence of effective 
ART that decreases HIV viremia [96, 97]. Nevertheless, the 
persistent hyperactivation of  CD8+ T cells is still observed 
in individuals on ART who achieve effective viral suppres-
sion but have lower  CD4+ T cells recovery [98]. Patients on 
ART could benefit from its effect on restoring a functional 

immune system rather than by direct suppression of SARS-
CoV-2 replication.

Impact of Chronic HIV Infection on COVID‑19 
Vaccines

The hope of going back to normal life is brought by the 
development of several COVID-19 vaccines that achieved 
profound efficacy and have been rolled out widely in most 
high-income countries. However, many parts of the world 
are still suffering from the surging waves of new COVID-19 
cases, as a result of vaccines shortage and prevalence of the 
more transmissible variant strains. With current vaccines 
production and storage, the allocation of vaccines based on 
priority is still needed in some developing countries where 
the pandemic is not under control. In the USA, PLWH was 
categorized in the group with high-risk health condition by 
CDC, and according to the guideline, they may receive a 
COVID-19 vaccine but should be aware of the limited safety 
data [14]. According to an informal poll from WHO, 24 out 
of 52 countries have an immunization policy that prioritized 
PLWH to get the vaccines [99]. However, patients with HIV 
infection have expressed hesitancy to be immunized with 
the vaccines that are being rolled out [100, 101]. Here, we 
discuss what we know so far regarding the safety and effi-
cacy of COVID-19 vaccine among HIV infected individuals.

Vaccine Safety

Currently approved COVID-19 vaccines are not live attenu-
ated vaccines that can minimally replicate in the recipients. 
The mRNA vaccines and adenovirus vector-based vaccines 
all include only the Spike protein gene from SARS-CoV-2 
that stimulates antibodies and T cell responses. Vaccine tri-
als from Moderna [102], Pfizer [103••], and Janssen [104] 
all included patients who were diagnosed with HIV, yet 
safety data specific for this sub-group have not been pub-
lished. In a published report of 143 HIV-positive people 
who received the Pfizer/BioNTech vaccine, the majority of 
participants have undetectable HIV viral load and an aver-
age  CD4+ cell count of 700 cells/μL, among whom vaccine 
side effects were reported to be mild [105••]. Another report 
of 12 people with HIV who received SARS-CoV-2 mRNA 
vaccines also found only mild side effects [106]. Current 
studies have not observed higher risk of severe side effects 
in PLWH, though more focused studies with larger sample 
size are still required.

Concerns were raised about potential association of HIV 
acquisition and adenovirus vector-based vaccines [107]. In 
2008, a phase II clinical trial of Ad5 vectored HIV vaccines 
was conducted on 3,000 HIV-1-seronegative participants. 
Increased risk of HIV infection in Ad5 seropositive men 
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of vaccine group compared to placebo group was reported. 
Follow-up studies on potential mechanism of Ad5 associated 
increased susceptibility to HIV infection suggested that pre-
existing immunity against the Ad5 vector might facilitate 
HIV infection and replication in  CD4+ T cells [108, 109]. 
Pre-existing immunity against Ad5 characterized by Ad5 
neutralizing antibodies was found to be prevalent and of high 
titers in pediatric and adult population particularly of Sub-
Saharan Africa [110]. Therefore, whether the Ad5 vector 
based CanSino vaccine and the Sputnik V that use Ad5 in 
the boost dose could result in increased HIV susceptibility 
may need to be further assessed concerning higher burden of 
HIV infection in Africa. As HIV infection being the exclu-
sion criteria for clinical trials of these two vaccines [111, 
112••], safety evaluation in PLWH were unfortunately not 
available. The Janssen vaccine uses Ad26 as the adenovirus 
vector, the pre-existing immunity to which in the population 
across all regions is markedly lower than Ad5 [110].

Vaccine Efficacy

The Moderna vaccine trial has recruited 176 people diag-
nosed with HIV. Zero out of 80 subjects in vaccine group and 
1 out of 76 in the placebo group were infected with SARS-
CoV-2 during the trial [102]. The Pfizer study recruited 120 
HIV-positive participants, who are not included in the phase 
2/3 efficacy analysis [103••]. The Janssen studies enrolled 
1218 HIV-positive participants. During the follow-up time, 
there were two COVID-19 cases reported in the vaccine 
group and four cases reported in the placebo group [104]. 
Vaccine efficacy was unable to be evaluated according to 
these trial data due to small number of participants in this 
sub-group.

Vaccine trials were conducted in South Africa, where 
B.1.351 variant was dominant, in which PLWH would 
account for larger percentage of enrolled participants. The 
Janssen vaccine reported 57% of efficacy in South Africa 
as compared to 72% in the USA, which might be due to 
the immune evasion of the B.1.351 variant dominating in 
South Africa. However, the vaccine is effective in prevent-
ing severe cases and death in all regions [113]. Novavax 
vaccine trial has recruited 2,684 participants (6% of the trial 
population were HIV-positive) without prior infection with 
SARS-CoV-2 in South Africa, which showed efficacy of 
60.1% among HIV-negative participants and 49.4% efficacy 
among a mixed group of HIV-positive and HIV-negative 
participants. Severe COVID-19 cases were not captured in 
this trial study [114••].

Concerns exist that the dysfunction of the immune system 
caused by chronic HIV might impair the immune response 
and establishment of immunological memory after COVID-
19 vaccination. The immune protection against secondary 
SARS-CoV-2 challenge after immunization was found to 

be largely mediated by humoral immune response but not 
cellular immunity [56••]. Encouraging result was shown by 
a study of PLWH who received COVID-19 mRNA vaccine 
based on small number. Production of SARS-CoV-2 specific 
antibodies was found in 98% of HIV-positive participants 
including 12 participants with  CD4+ cell count less than 350 
cell/μl, who are fully vaccinated with the Pfizer/BioNTech 
vaccine. However, longitudinal study to examine the dura-
tion of immunity in this group is required to further evaluate 
the efficacy of COVID-19 vaccines in PLWH.

Conclusion

As COVID-19 pandemic still being a huge burden over the 
healthcare system in Africa, where HIV epidemic has long 
been a challenge, SARS-CoV-2 and HIV coinfection cases 
will accumulate. To better protect people suffering from 
HIV in the current pandemic and potential future threats, 
we need to continue seeking answers to questions regarding 
the interaction of these two viruses, which remains largely 
unaddressed. Current evidence, although inconclusive, 
suggests that people with chronic HIV infection might be 
at higher risk of COVID-19 related clinical complication, 
especially in the setting of viremia and immunosuppression. 
Though limitations exist in the safety and efficacy evaluation 
of COVID-19 vaccine in PLWH, weighing risk and benefit, 
PLWH may still be prioritized in COVID-19 vaccination in 
the future.
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