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Abstract
Purpose of Review Observations of differing bacterial, intestinal microbiomes in people living with HIV have propelled 
interest in contributions of the microbiome to HIV disease. Non-human primate (NHP) models of HIV infection provide a 
controlled setting for assessing contributions of the microbiome by standardizing environmental confounders. We provide 
an overview of the findings of microbiome contributions to aspects of HIV disease derived from these animal models.
Recent Findings Observations of differing bacterial, intestinal microbiomes are inconsistently observed in the NHP model 
following SIV infection. Differences in lentiviral susceptibility and vaccine efficacy have been attributed to variations in the 
intestinal microbiome; however, by-and-large, these differences have not been experimentally assessed.
Summary Although compelling associations exist, clearly defined contributions of the microbiome to HIV and SIV disease 
are lacking. The empirical use of comprehensive multi-omics assessments and longitudinal and interventional study designs 
in NHP models is necessary to define this contribution more clearly.
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Introduction

The commensal microbiome plays an essential role in the 
development and maintenance of systemic health through 
antagonism of pathobionts and the production of metabolites 
which tune immunity and epithelial integrity [1, 2]. In turn, 
perturbations of the commensal microbiome are associated 
with systemic shifts in immune homeostasis and contribute 
to disease susceptibility and outcome. Observations of dif-
fering bacterial, intestinal microbiomes in people living with 
HIV (PLWH) compared to population controls have led to 
extensive interest regarding the contribution of the micro-
biome to HIV disease, susceptibility, and vaccine respon-
siveness [3–14]. In PLWH, dysbiosis — an imbalance of 
the microbiome favoring an expansion of pathobionts rela-
tive to commensal species — correlates with viral load and 
markers of inflammation [3, 5, 6]. These observations are 

particularly intriguing given the documented contribution of 
microbial translocation to persistent inflammation in disease 
progression [15–17]. Indeed, dysbiotic taxa have been iden-
tified to preferentially translocate [18–20]. It remains unclear 
whether observations of intestinal dysbiosis are a cause or a 
consequence of the immunopathologies associated with HIV 
disease, or how confounding variables contribute.

Non-human primates (NHPs) share ~ 90% sequence 
homology with humans and SIV-infection of Asian 
macaques with  SIVmac isolates recapitulates key aspects of 
HIV-1 infection [21–23]. Macaques and humans too share 
several dominant, gastrointestinal bacterial taxa, though dif-
fering at the species level [24, 25]. Herein we review recent 
published data describing potential contributions of the 
microbiome to various aspects of SIV disease. These stud-
ies have provided new insights and highlight experimental 
considerations that can be taken moving forward.

What’s Dysbiosis Got to Do with It?

The contribution of intestinal microbial dysbiosis to 
HIV disease progression has emerged as a highly con-
tentious specialty in HIV research. Several publications 
have reported the presence of a definable dysbiosis in 
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PLWH — an enrichment of Proteobacteria at the expense 
of Firmicutes (Gammaproteobacteria and Clostridia, in 
particular) and among Bacteroidetes, an increase in the 
Prevotella:Bacteroides ratio [3–6]. This dysbiosis has been 
shown to correlate with biomarkers of disease progression 
— including CD4 + T-cell depletion, microbial transloca-
tion, and inflammation — and to persist after initiation of 
antiretroviral therapy (ART) [3–6, 26–29]. These observa-
tions are not universal, however. Several publications have 
demonstrated that these microbial signatures are prevalent 
among HIV-uninfected men who have sex with men, and 
that failure to balance cohorts by sexual practice biases 
study outcomes [30–33]. Efforts to assess the presence of 
dysbiosis in the SIV NHP model have led to similarly con-
flicting results [20, 25, 34–41, 42••]. As shown in Table 1, 
variations in anatomic sites sampled, study design, infection 
stage, NHP species, and viral clone may contribute to differ-
ing outcomes. Where the microbiome is concerned, cross-
sectional sampling can lead to drastically differing outcomes 
[43, 44••, 45]. Importantly, whereas studies in PLWH where 
dysbiosis has been observed have identified sweeping and 
largely consistent changes in the microbiome, reported SIV-
associated changes to the microbiome are disparate and lim-
ited and result in widely varying interpretations. For exam-
ple, whereas Klase et al. observed temporal fluctuations in 
Proteobacteria and Lactobacillus and did not interpret this to 
reflect dysbiosis, Glavan et al. observed changes to 4 genera 
and interpreted this as dysbiosis [20, 35]. Whereas dysbiosis 
itself may be ambiguous, it is clear that where taxonomic 
changes are observed, SIV infection does not recapitulate 
the changes in the intestinal microbiome reported in HIV 
studies. Data are still emerging regarding the potential of 
dysbiosis at non-intestinal sites [46–50].

Following the initiation of ART, studies agree that an 
altered intestinal microbiome in PLWH and SIV-infected 
macaques exists [4–6, 20, 26–29, 37, 39]. First described by 
Klase et al., ART initiation led to perturbations in bacterial 
phyla distribution, including a loss of Firmicutes — despite 
a specific increase of Lactobacillus — and an increase in 
Proteobacteria [20]. The ART-associated increase of Pro-
teobacteria was further observed by Siddiqui et al. and the 
Lactobacillus increase by Blum et al. [37, 39]. It remains 
unclear whether these ART-induced changes represent 
a microbial disruption or a recalibration towards the pre-
infection microbiome. Whereas neither longitudinal study 
comprehensively compared the pre-infection versus post-
therapy microbiome, Blum et  al. reported a significant 
cross-sectional difference in measures of beta-diversity [20, 
37, 39]. Supporting a novel ART-initiated disruption to the 
intestinal microbiome, we recently examined the influence 
of individual antiretrovirals on the healthy macaque intes-
tinal microbiome. In Ortiz et al., we observed that short-
term administration (1–6 weeks) of antiretrovirals led to 

instability of the fecal microbiome — no prolonged changes 
were observed in individual taxa [51]. These findings are 
in contrast to pre-exposure prophylaxis microbiome studies 
in humans, where changes in individual taxa were reported 
[52–54]. Further research is needed to understand whether 
these observed post-therapeutic differences are an effect of 
treatment longevity, route or formulation, longitudinal ver-
sus cross-sectional sampling, or host species specificity.

Irrespective of whether lentiviral infections result in a 
taxa-specific dysbiosis or microbial instability, there remains 
a question of whether dysbiosis contributes to disease. Len-
tiviral infections induce massive immunological and physi-
cal upheaval, and it is conceivable that any effect dysbiosis 
may normally have on intestinal immunity is overshadowed 
by infection. To this end, we treated rhesus macaques with 
vancomycin both prior to and throughout SIV infection in 
order to assess whether experimental dysbiosis contributes 
to SIV disease progression [42••]. Vancomycin induces a 
specific dysbiosis, inhibiting the ability of Gram + taxa to 
expand, thereby permitting Gram- taxa to flourish [55]. In 
our macaques, vancomycin treatment led to an enrichment of 
intestinal Gammaproteobacteria at the expense of Clostridia, 
an increase in Prevotella:Bacteroides, a shift in the intes-
tinal bacterial metagenome, and a decline in the integrity 
of the intestinal epithelium. Despite these, vancomycin-
treated animals did not exhibit a more rapid progression to 
AIDS. While humans and macaques are separate species, 
each harboring their own unique microbiome, the nearly 
parallel course of lentiviral disease progression in humans 
and macaques suggests that the microbiome in each species 
exerts a similar effect on disease outcome [24, 25]. While 
secondary bacterial infections — dysbioses per se — do 
complicate disease progression, antibiotic regimens to treat 
these infections are clinically indicated, with long-term use 
counter-indicated out of concern for the development of anti-
biotic resistance [56–58].

Clarity regarding the presence of intestinal bacterial dys-
biosis and its contribution to progressive lentiviral disease 
progression has largely been mired by contextual ambiguity. 
Progressive HIV and SIV infections can be roughly divided 
into multiple stages: acquisition, acute and chronic infection, 
and AIDS. Perturbations in intestinal bacterial communi-
ties may exert an outsized influence on any one of these 
stages without uniformly contributing to disease progres-
sion. Sui et al. recently observed that cohorts of rhesus 
macaques obtained from different sources had significantly 
differing susceptibilities to rectal SHIV acquisition [44••]. 
Differences in susceptibility were attributed to significantly 
higher levels of target CD4 + T-cells and rectal inflamma-
tion which in turn, correlated with a an elevated intesti-
nal Prevotella:Bacteroides ratio. Concerning established 
infection, Handley et al. observed that significant shifts in 
the bacterial microbiome were evident only in end-stage 
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animals, absent prior to AIDS progression [36]. Macaques 
that had progressed to AIDS displayed an enrichment of 
Enterobacteriaceae, Moraxellaceae, Ruminococacceae, 

and Clostridiales. A dysbiosis index in PLWH was simi-
larly associated with nadir CD4 + T-cell count, suggesting 
dysbiosis is more prominent in individuals with advanced 

Table 1  Publications that have assessed the presence of intestinal bacterial dysbiosis in SIV-infected macaques

N/A, not assessed

Publication Species Source Study design Virus Infection 
phase

α-diversity β-diversity Taxa observations as 
compared to uninfected

Allers et al. 
[34]

Macaca mulatta Colonic 
mucosa

Longitudinal SIVmac251 Acute Significant 
increase

N/A Bacteroidetes (Bacte-
roidia and Alistipes) 
increased. Firmicutes 
(Ruminococcaceae 
and Eubacteriaceae) 
increased

Glavan et al. 
[35]

Macaca mulatta Jejunal 
mucosa

Cross-sec-
tional

SIVmac251 Acute N/A N/A Proteobacteria (Actino-
bacillus) increased

Klase et al. 
[20]

Macaca nemis-
trina

Feces Longitudinal SIVmac239 Acute N/A N/A Lactobacillus decreased, 
Proteobacteria 
increased

Handley 
et al. [36]

Macaca mulatta Feces Longitudinal SIVmac251 Acute Not significant Not signifi-
cant

No significant differ-
ences observed

McKenna 
et al. [25]

Macaca mulatta Feces Longitudinal SIVmac251 Acute N/A Not signifi-
cant

Not reported

Siddiqui 
et al. [37]

Macaca mulatta Feces Cross-sec-
tional

SIVmac239 Acute Significant 
decrease

Significant 
difference

9 (unidentified) OTUs 
significantly differed

Vujkovic-
Cvijin et al. 
[38]

Macaca mulatta Feces Longitudinal SIVmac251 Acute Significant 
decrease

Significant 
difference

Lactobacillus and Strep-
tococcus genera and 
spp. decreased

Allers et al. 
[34]

Macaca mulatta Colonic 
mucosa

Longitudinal SIVmac251 Chronic Not significant N/A Bacteroidetes (Bacte-
roidia) increased

Klase et al. 
[20]

Macaca mulatta Colonic 
mucosa

Longitudinal SIVmac239 Chronic N/A N/A No significant differ-
ences observed

Glavan et al. 
[35]

Macaca mulatta Jejunal 
mucosa

Cross-sec-
tional

SIVmac251 Chronic N/A N/A 3 genera differed includ-
ing an increase in Fir-
micutes Streptococcus 
and Staphylococcus

Blum et al. 
[39]

Macaca mulatta Feces Cross-sec-
tional

SIVmac251 Chronic Not significant Significant 
difference

8 OTUs differed includ-
ing a decline of 3 
Prevotella copri

Klase et al. 
[20]

Macaca nemis-
trina

Feces Longitudinal SIVmac239 Chronic N/A N/A Lactobacillus decreased, 
Proteobacteria 
decreased

Handley 
et al. [36]

Macaca mulatta Feces Longitudinal SIVmac251 Chronic Not significant Not signifi-
cant

No significant differ-
ences observed

Handley 
et al. [40]

Macaca mulatta Feces Cross-sec-
tional

SIVmac251 Chronic N/A Not signifi-
cant

No significant differ-
ences observed

Klatt et al. 
[41]

Macaca nemis-
trina

Feces Longitudinal SIVmac239 Chronic N/A N/A No significant differ-
ences observed

Ortiz et al. 
[42••]

Macaca mulatta Feces Longitudinal SIVmac239 Chronic Not significant Not signifi-
cant

No significant differ-
ences observed

Ortiz et al. 
[42••]

Macaca mulatta Feces Longitudinal SIVmac239 AIDS Not significant Not signifi-
cant

No significant differ-
ences observed

Handley 
et al. [36]

Macaca mulatta Feces Longitudinal SIVmac251 AIDS Not significant Significant 
difference

Firmicutes (Ruminococ-
caceae and Clostridi-
ales) and Proteobacte-
ria (Moraxellaceae and 
Enterobacteriaceae) 
decreased
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disease [33, 59]. Importantly, studies in natural, non-pro-
gressing hosts of SIV infection have demonstrated micro-
biome instability in SIV-infected AGMs and chimpanzees 
as compared to uninfected counterparts, with significant 
perturbations evident only in animals displaying visible ill-
ness [60–62]. Collectively, these findings indicate that the 
presence of bacterial dysbiosis does not necessitate disease 
progression throughout acute or chronic infection though a 
causal relationship may emerge in late-stage disease.

Finally, a lack of cohesion regarding the identification 
of dysbiotic taxa may be associated with the use of phylo-
genetic determinations of dysbiosis. In humans, proteomic 
and metagenomic approaches have been used to concurrently 
identify bacterial taxa and bacterial functional capacity [29, 
63]. The use of longitudinal, multi-omics approaches to bac-
terial identification may identify core dysbiotic signatures in 
SIV-infected macaques and in turn, networks of function-
ally related bacteria or low-abundance keystone taxa that are 
associated with different aspects of progressive disease [64, 
65]. The use of empiric experimental methods will be neces-
sary to determine the relevance of any identified changes.

Vaccination and the Bugs Within

Understanding the interaction between the microbiome 
and vaccine modalities may better inform the development 
and utilization of vaccines. Certain microbiome profiles 
may negatively impact immune responses to certain vac-
cine modalities, and the microbiome may influence optimal 
prime boost time windows. Moreover, modalities to alter the 
microbiome may enhance vaccine immune responses [66].

The microbiome has been shown to calibrate anti-HIV 
immunity in response to candidate HIV vaccine administra-
tion. In humans, acute HIV-1 antibody responses are charac-
terized by non-neutralizing, anti-gp41 immunodominance, 
which was mirrored by vaccination with an HIV-1 envelope 
DNA/recombinant adenovirus virus type 5 (rAd5) strategy 
[67, 68]. This gp41-skewed response has been attributed to 
the presence of intestinal B-cells — generated in response 
to bacterial RNA polymerase and pyruvate-flavodoxin oxi-
doreductase — that produce antibodies which cross-react 
with gp41 [68, 69]. In an effort to understand the nature 
and development of this gp41-immunodominance, Han et al. 
vaccinated rhesus macaques with the HVTN 505 DNA/rAd5 
vaccine and observed that for both adults and neonates, a tier 
2 (moderate neutralization activity) gp41 immunodominant 
response was generated post-vaccination [70]. Both human 
and macaque gp41-reactive antibodies (mAbs) were cross-
reactive against macaque fecal proteins, with a candidate 
gp41-reactive bacterial polymerase epitope present both 

before and after vaccination [68, 70]. Intriguingly, 40% each 
of tested gp41-reactive and gp120-reactive macaque mAbs 
bound macaque fecal proteins. As the gp120 response lags 
behind the gp41 response, it is unlikely that microbial pro-
teins prime the gp120 response [67]. This study underscores 
the utility of the NHP model in identifying bacterial com-
ponents responsible for the development of poly-reactive 
mAbs.

Alterations to immunity by disease, diet, or pharmaceu-
ticals can reciprocally calibrate the microbiome, and vac-
cine administration is no exception. Several groups dem-
onstrated that irrespective of vaccine modality or route of 
administration, SHIV vaccination induces significant shifts 
in the rectal microbiome. In Sui et al., the assessment of 
macaques receiving adjuvanted MVA-SIV revealed that 
low-dose rectal  SHIVSF162P4 acquisition was not associated 
with anti-Env immunity [71]. Indeed, no to very low levels 
of SHIV-specific antibodies were found and neither anti-
Env nor anti-Gag CD4 + and CD8 + T-cell responses cor-
related with a delay of viral acquisition. Instead, bacterial 
richness and beta-diversity were found to differ significantly 
between the vaccinated and naive group after vaccination 
which negatively correlated with viral acquisition. Musich 
et al. similarly observed significant differences in the rec-
tal microbiome following vaccination and, intriguingly, 
observed that empty vector control animals displayed shifts 
in the rectal microbiome indistinguishable from vaccinated 
animals [72]. Here, both vaccinated and control animals 
exhibited significant shifts in measures of beta diversity, 
a loss of Bacteroidetes, and an increase in Proteobacteria. 
With both vaccinated and control animals exhibiting compa-
rable infection risk, these shifts in the microbiome were not 
associated with protection from low-dose, rectal,  SIVmac251 
challenge. However, frequencies of specific taxa correlated 
with significantly reduced peak viral load in vaccinated ani-
mals and Env-specific rectal IgA, which in turn correlated 
with acquisition risk.

A comparison of the female versus male rectal microbiome 
in Musich et al. revealed that females showed a greater magni-
tude of responsiveness following immunization and revealed 
sex-specific relationships between individual taxa and peak 
viral load and with biomarkers of protective efficacy [72]. In 
females alone, Elizaldi et al. observed that shifts in the rectal 
microbiome were not accompanied by significant or prolonged 
shifts in the vaginal microbiome following vaccination with 
plasmid-encoded SHIV Env/gp140 protein [73]. Here too, 
vaccination led to a loss of rectal Bacteroidetes, including 
Prevotella, and an increase in the Fimicute:Bacteroidetes ratio. 
Although vaccine efficacy was not assessed in this particular 
study, the pre-vaccination frequency of Prevotella predicted 
post-boost rectal HIV-1 Env IgG concentrations.
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Although these particular studies highlight the impor-
tance of understanding the interplay between the microbi-
ome and vaccine development, several outstanding questions 
remain. Vaccine components are unlikely to directly inter-
act with the intestinal microbiome in cases of non-mucosal 
administration; however, they may influence the microbiome 
in mucosal vaccine delivery. Untangling cause and effect 
may be possible with very detailed time course experiments. 
Also, particular vaccine components may influence the com-
position of the microbiome. The studies detailed above used 
differing vectors, modalities, and adjuvants and all induced 
shifts in the microbiome, with Musich et al. reporting that 
alum-adjuvanted control macaques too had demonstrable 
shifts in the rectal microbiome [72]. A thorough assess-
ment of the effects of individual vaccine components on 
the microbiome is warranted. Moreover, timing of prime/
boost vaccine strategies may influence the microbiome. The 
studies detailed here spanned 0–38 weeks but it is unclear 
if observed microbiome shifts are permanent and whether 
longevity of perturbation might correlate with vaccine effi-
cacy. Furthermore, as the composition of the microbiome 
impacts systemic health, it will be of interest to determine 
whether — weighed against the risk of contracting HIV — 
vaccine-induced shifts in the microbiome influence health 
and responsiveness to heterologous infections. Lastly, can 
one reconfigure the microbiome to improve vaccine effi-
cacy? As discussed in more detail later in this article, a more 
robust understanding of whether and what influence probiot-
ics have on lentiviral susceptibility is necessary for informed 
vaccine design.

Sex and Age Matter

The push to reduce sexual disparity in health research has led 
to a wealth of interest in determining how the microbiome 
influences aspects of HIV infection in women. Although it 
is established that frequencies of specific taxa within the 
intestinal microbiome of male and female primates differ 
and may contribute to differential vaccine efficacy, it remains 
unclear whether and how the steady-state intestinal microbi-
ome contributes to lentiviral disease in infected females [25, 
30, 72, 74–76]. However, several groups have begun to char-
acterize the role of the vaginal microbiome in HIV acquisi-
tion [77, 78]. Initial studies which have aimed to develop 
the macaque model for studying acquisition aspects of HIV 
infection have revealed that there are striking dissimilari-
ties between the human and macaque vaginal microbiomes. 
Whereas 50–80% of adult women harbor a Lactobacillus-
dominant vaginal microbiome, adult rhesus, pigtailed, 
and cynomolgous female macaques exhibit polymicrobial 

microbiomes [77, 79, 80•, 81–84]. Although it has been sug-
gested that these differences make macaques an unsuitable 
model for female microbiome-associated studies, these dif-
ferences may make the macaque an ideal model for assess-
ing interventional regimens for women with polymicrobial 
microbiomes and as such, may be of great value to the HIV 
research field.

In human females, a Lactobacillus non-dominant vaginal 
microbiome is associated with a pro-inflammatory cervi-
covaginal milieu and a significantly increased risk of HIV 
acquisition [77]. It remains unclear what biological factors 
contribute to Lactobacillus dominance and whether the 
cervicovaginal microbiome can be durably modulated by 
therapeutic intervention [85]. Hallmaier-Wacker et al. found 
that menstruation is associated with a significant increase 
in alpha diversity and shift in beta-diversity among the rhe-
sus vaginal microbiome [82]. Although vaginal community 
composition varies widely between individual macaques, 
Nugeyre et al. identified taxa that cycled with progesterone 
levels within individual cynomolgus macaques and similarly, 
Rhoades et al. observed that clinical markers of bacterial 
vaginosis differed significantly by menstrual status in rhesus 
macaques, as in women [80•, 81, 84, 86]. Menstrual-associ-
ated changes to the vaginal microbiome were not observed 
within the rhesus rectal microbiome, suggesting that men-
strual hormones do not directly influence microbiomes at 
distal sites [80•]. Importantly, for most of the animals in 
these studies, a high degree of individuality was accompa-
nied by a marked regularity to the vaginal microbiome over 
time suggesting an adaptation of the microbiome to its host. 
Efforts to colonize the female macaque microbiome with 
Lactobacillus by Lagenaur et al. have revealed that though 
robust through a single menstrual cycle, experimental colo-
nization is not universally nor durably sustained [87–89]. 
Therapeutic colonization may require adjunct therapeutics 
such as the co-administration of keystone taxa, prebiotics or 
synbiotics [90, 91].

Mother-to-child transmission rates remain at 11%, with 
transmission most likely to occur through consumption of 
biological material during birth or breastmilk in the absence 
of maternal ART [92, 93]. There have been no studies thus 
far that have evaluated the relationship between the neonate 
microbiome and susceptibility to lentiviral infection. Like 
in humans, the microbiome of neonatal macaques is dra-
matically different from that of adults [94–97]. A detailed 
assessment of the rectal, oral, penile, and vaginal micro-
biomes of female and male infants, juveniles, and young, 
mid-aged, and older macaques by Janiak et al. demonstrated 
that infants have significantly differing measures of beta-
diversity across all tissues as compared to non-infants as 
well as higher measures of alpha diversity in the non-oral 
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tissues [98•]. In non-infants, the microbiome of non-penile 
tissues did not significantly differ with age whereas the 
penile microbiome showed a great deal of plasticity.

These observations have two important implications in 
terms of HIV susceptibility. First — as juvenile macaques 
have the same microbiomes as adults — the juvenile and 
young adult microbiome composition is unlikely to uniquely 
contribute to HIV infection in young adult and adolescent 
humans. Indeed, Berard et al. observed that low-dose intra-
vaginal SIV challenges did not reveal differential outcomes 
between juvenile and adult pigtailed macaques [99]. There 
were no observed differences by age in susceptibility to 
infection, vaginal immune cell subsets or inflammatory 
markers, or the vaginal microbiome. A second implication 
of neonatal microbiome plasticity is that there may exist a 
small window in neonates and infants in which to robustly 
elicit neutralizing, gp120-reactive antibodies, prior to B-cell 
imprinting by the microbiome [69, 70, 100]. To this end, 
Han et al. observed that vaccination of neonates with HIV-1 
gp140 trimer induced more rapid gp120 neutralizing anti-
bodies responses as compared to adults and overall higher 
levels of both gp41 and gp120 plasma antibodies [101]. 
Given the close relationship between diet, the maturing 
microbiome, and immune system development in human 
and macaque infants, it will be important to determine 
whether diet contributes to the development of natural and 
vaccine-elicited anti-SIV and anti-HIV humoral immunity 
[95, 102–104].

Microbiome Therapies: Too Little or Too 
Much?

Irrespective of the presence of a definable dysbiosis, exten-
sive efforts are underway to alter the intestinal microbiome 
in progressive HIV and SIV infection. The administration 
of commensal taxa in the form of over-the-counter oral pro-
biotics has gained favor as they are easy to administer, cost-
effective, and generally well-tolerated [105]. In NHPs, these 
studies have begun to lay the groundwork for human stud-
ies. In SIV-infected macaques, probiotic therapy has largely 
been administered in the context of ART as probiotic therapy 
alone does not prevent SIV infection nor CD4 + T-cell losses 
[41, 47]. First demonstrated by Klatt et al., co-administration 
of probiotics and ART in chronically SIV-infected macaques 
led to improved CD4 + T-cell recovery and functionality, 
reduced colonic fibrosis, and increased expression of mye-
loid cell-related genes [41]. Looking to improve upon these 
results, Ortiz et al. further supplemented with IL-21 and 
observed a significant improvement in  TH17 cell recovery 
[106]. It remains unclear whether these therapeutics broadly 
altered the intestinal microbiome.

Though promising, the oral ingestion of limited commu-
nities of bacteria in commercial probiotics is unlikely to have 
durable, pervasive effects on intestinal community structure 
and does not appear to be uniformly beneficial [107, 108]. 
Fecal microbial transplantation (FMT) has risen as a more 
comprehensive, personalized approach to altering the intes-
tinal microbiome that, while having caveats of its own, has 
been shown to durably improve microbial colonization and 
to preserve intestinal community structure [108–111]. Hens-
ley-McBain et al. assessed the effect of a heterologous FMT 
on ART-treated, SIV-infected rhesus macaques and observed 
that although FMT was well-tolerated, treatment was not 
associated with significant immunological improvements 
[112]. While the colonic bacterial community composition 
quickly reverted to the pre-FMT community as assessed by 
beta-diversity, significant differences in minor taxa (uncat-
egorized) remained evident.

With an observed role for the microbiome in influenc-
ing susceptibility to HIV and SIV infection, it follows that 
purposeful alteration of the intestinal microbiome may tune 
susceptibility [44••, 77]. Manuzak et al. recently assessed 
the influence of probiotic VSL#3 on intestinal immune 
parameters in healthy male rhesus and pigtailed macaques 
[113]. After probiotic administration, the authors observed 
significant increases in colonic and lymph node myeloid 
cells, IgA + B-cells, increased LN TFH cells and intestinal 
innate lymphocyte type 3 s, and decreased activation of 
colonic CD4 + T-cells. Similarly, Klatt et al. observed that 
co-administration of probiotic Visbiome with adjuvanted 
SIV Gag and HIV Env DNA/HIV gp140 trimer protein vac-
cination strategy, decreased target cell frequency, increased 
SIV gag-specific CD4 + and CD8 + T-cell responses, and 
increased IgA + LN B-cells [114].

Though widely reported to have beneficial effects on gas-
trointestinal immunity, oral probiotic therapy in macaques 
has not been shown to extensively remodel the intestinal 
microbiome [47, 114] perhaps suggesting the potential for 
a finite number of taxa to influence susceptibility to SIV or 
HIV. In an effort to create a gastrointestinal pathogen-free 
(Campylobacter spp. and Shigella) macaque model, Bochart 
et al. treated rhesus macaques with enrofloxacin, paromomy-
cin, and fenbendazole for 10 days and observed that absent 
extensive changes to the microbiome, this therapy led to 
improved systemic immunity, including reduced microbial 
translocation, reduced colonic granulocytes, and systemi-
cally reduced frequencies of activated CD4 + T-cells [115•]. 
Furthermore, this particular therapeutic was associated with 
a significantly decreased susceptibility to low-dose, intrarec-
tal SIV challenge.

Where comprehensively analyzed, the probiotic and anti-
biotic therapies described above do not reveal an obvious 
reciprocal commensal:pathogen dichotomy suggesting that 
immunological benefits of these therapies may be associated 
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with a recalibration of the metabolic networks shaped by 
the intestinal microbial ecosystem, more so than the pres-
ence or absence of specific taxa [41, 47, 114, 115•]. Indeed, 
observational studies that have described an association 
between the macaque or human rectal microbiome and len-
tiviral acquisition did not identify the taxa utilized in the 
pre-therapeutic studies described here [30, 31, 44••]. It will 
be of interest to see which metabolic pathways are associ-
ated with protection from lentiviral acquisition and whether 
and how these pathways may be targeted by next-generation 
probiotics [116, 117].

Odds and Ends

Research into the contribution of the microbiome to len-
tiviral disease progression has largely been limited to the 
bacterial intestinal microbiome. Although necessary efforts 
to characterize the contribution of the microbiome to SIV 
disease progression at other anatomical sites have begun to 
emerge, the bacterial microbiome is not uniform throughout 
the gastrointestinal system [46, 47]. As first described by 
McKenna et al., there exist significant differences in bacte-
rial beta-diversity of rhesus macaques between the upper 
and lower tract, colonic contents, and stool [25]. Described 
in further depth by Yasuda et al., whereas rhesus macaque 
stool and luminal contents are predominantly comprised of 
Firmicute families and Prevotellaceae, both the small and 
large intestinal mucosa are highly colonized by Proteobac-
teria [118]. Proteobacterial families differed by site, with the 
small intestine exhibiting an overrepresentation of Pasteurel-
laceae and the large intestine, Helicobacteriaceae. Despite 
these differences, the stool is largely reflective of both the 
colonic mucosa and luminal contents (both small and large 
intestine), displaying 97% congruence at the operational 
taxonomic unit level. Lee et al. additionally considered a 
comparison between the stomach and colon of Japanese 
macaques (Macaca fuscata yakui) and observed significantly 
differing beta-diversity [119]. Compared to the colon, the 
stomach was enriched for Verrucomicrobia, with reduced 
abundance of Firmicutes which translated largely into meta-
bolic differences.

The microbiome is not limited to bacteria but rather, con-
sists of a complex ecosystem including bacteria, viruses, 
and eukaryotic symbionts. In both humans and macaques, 
a lentiviral-associated perturbation of the virome has been 
described [6, 36, 40, 120]. Whereas AIDS progression in 
humans is associated with expansions of Anelloviridae or 
Adenoviridae, progressive SIV infection is associated with 
expanded Adenoviridae alone [6, 36, 40, 120]. In SIV-
infected macaques, Picornaviridae showed disease-state 
fluctuations — though overall expanded during chronic 
infection, Sapelovirus frequencies correlated with protection 

from infection and a loss of both Sapelovirus, and Entero-
virus sequences accompanied AIDS progression. Although 
Adenoviridae, Adeno-associated virus, and Enterovirus 
sequences significantly correlated with the presence of gas-
trointestinal disease, causative effects of an altered virome 
remain unclear. In natural hosts of SIV infection, there are 
contradicting reports regarding the presence of an altered 
virome in chronic infection — whereas no expansion of the 
enteric microbiome was noted among captive, non-progres-
sively SIV-infected African green monkeys, a significant 
expansion in disease-associated viruses was noted in wild 
gorillas [40, 121]. Efforts to understand whether and how the 
eukaryome contribute to HIV and SIV disease progression 
are even further unstudied. Although there are reports that 
fungal respiratory communities are disturbed in PLWH, it 
is unknown whether this may be a systemic phenomenon 
and mycobiome studies in the macaques have not advanced 
beyond surveys [122–126]. There are no reports thus far 
examining whether individual eukaryotes or eukaryotic 
networks associate with aspects of HIV and SIV disease 
progression. These areas of research remain underserved 
and may provide novel insight into mechanisms of chronic 
disease and AIDS progression.

Conclusions

Studies evaluating a contribution of the intestinal microbiome 
to SIV disease progression have not yet revealed commonalities 
in bacterial taxa that contribute to SIV acquisition, disease 
progression, or ART responsiveness. A lack of consensus may 
stem from experimental variation including cross-sectional 
analyses or reliance upon a phylogenetic assessment of the 
microbiome. Further studies are required to determine whether 
lentiviral-associated variations in the microbiome contribute 
to rather than reflect disease progression, and to evaluate the 
ability of microbiome-associated therapeutics to improve 
aspects of HIV acquisition or immunodeficiency.
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