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Abstract The persistence of human immunodeficiency virus
type 1 (HIV-1) in latent reservoirs is a major barrier to HIV
cure. Reservoir establishment depends on low viral expression
that may be related to provirus integration sites (IS). In vitro,
in cell lines and primary T cells, latency is associated with
specific IS through reduced viral expression mediated by
transcriptional interference by host cellular promoters, reverse
orientation, and the presence of specific epigenetic modifiers.
In primary T cell models of latency, specific IS are associated
with intracellular viral antigen expression that is not directly
related to cell activation. In contrast, in patient CD4+ T cells,
there is enrichment for IS in genes controlling cell cycle and
survival and in some clonally expanded Tcell subpopulations.
Multiple insertion sites within some specific genes may sug-
gest that integrated HIV can increase the host’s T cell survival.
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Introduction

Despite combination antiretroviral therapy (cART) that can
effectively control viral replication and normalize immune
function, human immunodeficiency virus (HIV) remains a
global health issue. Stopping therapy is almost invariably
associated with recurrence of HIV viremia because of HIV
persistence in latent reservoirs that remain one of the major
barriers to HIV cure [1].

The latent viral reservoir exists as an immunologically
undetected pool of infection in patients on cART [2–4]. The
latent reservoir is established early during infection [5, 6] and
latent proviruses can be found, albeit at different frequency, in
all CD4+ T cell subsets including naive (TNA), stem cell
memory (TSCM), central memory (TCM), effector memory
(TEM), and terminally differentiated (TTD) T cells [7–10] as
well as in monocyte and macrophages [11–13]. The ability of
HIV-1 to generate reservoirs in different cell subsets leads to
the formation of a heterogeneous population of infected CD4+
T cells with different life span, different frequency of viral
latency, and potentially different requirement for cellular and
viral activation [10, 14]. It is suggested that the heterogeneity
of the reservoir may play a role in stability and persistence of
latency [14–16].

Although latent HIV is defined as replication-competent
but transcriptionally silent infection, only some of the full-
length intact proviruses can be induced following cellular
stimulation [17, 18, 19•], and there is a pool of integrated
provirus that is apparently noninducible. Activation of these
pools of latent HIV-1 by latency reversing agents (LRA) that
induce viral expression is one of the cornerstones of strategies
to eliminate latency by “kick and kill.”

Study of the cellular and molecular establishment of the
latent reservoir has used in vitro models of latency in cell lines
and primary CD4+ T cells and analysis of residual HIV in
resting CD4+ Tcells fromHIV-infected patients on cART. It is
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well established that HIV-1 integration sites (IS) are not ran-
domly distributed in the genome and differ in preferred geno-
mic sites from other retroviruses [20]. The regulation of inte-
gration site selection may be critical for understanding HIV
latency and the potency of LRA in eliminating HIV, particu-
larly for those that effect epigenetic modification. In this
review, we focus on understanding the effect of HIV-1 inte-
gration in the in vitro models of latency and the recent data
identifying some IS that may directly determine the persis-
tence of latency either by favoring infected cell survival or by
maintaining low viral expression.

In Vitro HIV-1 Integration Occurs Predominantly
Within Transcriptional Units Outside Promoter Regions

Initial studies of genomic distribution of HIV-1 provirus in T
cell lines found IS in gene-rich regions [21–23] (Table 1).
Integration of provirus at sites of active transcription promotes
viral expression, while integration in the site with low level of
transcription can delay proviral transcription and promote
latency [23]. One of the major elements regulating transcrip-
tion is host cell chromatin. The fundamental structure of
chromatin is the nucleosome, which contains repeating
histone-containing units including H2A, H2B, H3, and H4
[24]. Further analysis showed that the site of HIV-1 integration
can remodel nucleosome via changes in histone acetylation at
the site of integration or via recruitment of specific chromatin
remodeling like histone deacetylase inhibitors (HDACi) in-
creasing transcription activity [24]. These suggested a corre-
lation between proviral IS and epigenetic modifications of
chromatin environment at the site of integration. This notion
was further supported by studies on molecular mechanism of
IS in host genome [25, 26]. It was shown that depletion of
chromatin reassembly factors (CRFs) like Spt6, Chd1, FACT
as well as the histone chaperons ASF1a and HIRA at the site
of integration resulted in chromatin relaxation promoting pro-
viral expression [27]. This highlighted that the presence of
these CRFs influences the accessibility of the transcription
factors to HIV promoter, blocking the elongation process lead-
ing to formation of latency through transcriptional interferences
[26, 27].

HIV-Specific Determinants of Integration Sites

Comparative studies of IS in retroviral infection with murine
leukemia virus (MLV), HIV, and avian sarcoma-leukosis virus
(ASLV) showed that the IS selection differs among retroviruses
[28, 29]. HIV-1 predominately targets transcriptional unit (TU) of
active genes, whileMLVand ASLV favor transcription start sites
(TSS), particularly regions in promoters and upstream of start
codons that are uncommon IS for HIV [20, 30]. The differences
between IS selections among retroviruses (ASLV, MLV, and
HIV) have been attributed to the interaction between viral-

associated integrase enzyme and host cellular factor LEDGF/
p75 [31]. The cellular protein lens epithelium-derived growth
factor (LEDGF) and coactivator protein p75 have shown to form
a stable tetramer structure with HIV-1 viral integrase enzyme
[31]. This structure forms at regions rich in 5′ GT (A/T) AC 3′
[32], enhancing strand transfer activity of viral integrase. In
addition, depletion of LEDGF/p75 led to loss of the preferential
integration of HIV-1 into TU of the host genome [33] and
replacing LEDGF/p75 chromatin interaction domain by fusion
proteins resulted in redirecting the HIV-1 IS in G/C-rich regions
[32, 34, 35]. The role of host cellular factor in viral integration
was further supported by substitution of LEDGF/p75 with
hepatoma-derived growth factor-related protein 2 (HRP2) [35,
36••], where the conserved pro-trp-trp-pro (PWWP) domain
common in both proteins could bind to modified histone leading
the proviral integration into active TU [37•]. In contrast, in MLV,
the association between integrase enzyme and LEDGF/p75 was
weaker, which might explain the different preferences of integra-
tion site selection in these two viruses [28]. Subsequently, the
interaction of viral integrase enzyme with several other cellular
proteins including barrier-to-autointegration factor (BAF) [38,
39] and high-mobility-group family 1 (HMG 1 Y) [40, 41] was
also described. These two cellular proteins are small DNA
binding proteins, which are able to modify DNA structure at
the site of integration and increase the probability of integration.
Collectively, these data suggested interaction between host cel-
lular proteins and HIV-1 integrase enzyme resulting in chromatin
remodeling at the site of integration and selectively favoring
proviral integration into actively transcribed genes [42, 43].
Although preferential integration of HIV-1 provirus in transcrip-
tionally active regions was supported in subsequent studies [20,
25, 44], the transcriptionally silent, but replication-competent
proviruses were also reported in regions with low level of tran-
scription including gene dessert [45] and alphoid regions in
heterochromatin [46].

HIV Integration Site Can Determine Expression In Vitro

In the Jurkat, T cell line, there is a relationship between site of
integration with viral expression and viral latency. The inte-
gration of provirus in actively transcribed gene resulted in an
efficient transcription of viral proteins, while integration in
sites with low transcriptional activity would result in delay in
viral expression or latency [24]. The critical factors appear to
be the position and the orientation of the provirus in relation-
ship to actively transcribed genes as well as the methylation of
CpG [19•, 27, 42].

Orientation of Provirus in IS

The effect of orientation of the provirus in promoting latency
was supported by subsequent studies, where HIV-1 provirus
integrated into active genes, orientation relative to the host
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genes could increase the HIV-1 transcription by >10 fold,
while integration at opposite orientation reduced the HIV-1
gene expression by 4-folds [47]. These observations
highlighted that low level of viral expression is not because
of lack of transcriptional activity at the site of proviral inte-
gration and it might be due to the presence of factors blocking
the transcription at the site of integration by transcriptional
interferences (TI) [19•, 47–49].

Transcriptional Interference

TI occurs when transcription from the host promoter prevents
the transcription of the provirus at the 5′ long terminal repeat
(LTR) region downstream of the transcribed gene [50]. The
effect of TI has been shown previously in ALV virus, when
active transcription from the 5′ LTR was able to block tran-
scription from the 3′ LTR region [51]. Therefore, in TI, there is
an ongoing transcription activity from the upstream promoter
[19•, 22, 52–54]. TI can inhibit the expression of viral provi-
ruses and promote latency through promoter competition
caused by neighboring genes. It has shown that when HIV-1
provirus integrated in a face to face position with the host gene
promoter (i.e., in a convergent position), the assembly of the
initiation complex necessary for transcription is blocked by
promoter occlusion resulting in silencing of the HIV-1 pro-
moter [50]. It is clear that the virus integrated into the gene in
the reverse orientation is transcribed at a low level via tran-
scriptional interferences [19•, 27]. Therefore, it is likely that
the relationship of the IS and the transcriptional activity of the
host gene can shift the balance from proviral expression
toward latency.

HIV Integration Site Analysis in Primary T Cells

HIV-1 latency can be generated through postactivation and
preactivation pathways. Postactivation latency refers to direct
infection of activated CD4 T cell population, where viral
production results in depletion of infected cells, but some
revert to a resting stage containing HIV-1-integrated provirus
[55]. The integrated proviruses generated through this path are
commonly replication competent; however, due to some epi-
genetic modifications at the site of integration, they become
transcriptionally silent [56]. Infection of resting cells may
result in preintegration or postintegration latency.
Preintegration latency occurs after direct infection of resting
CD4 T cells and incomplete reverse transcription or a block at
steps prior to integration [57]. This transient infection may be
rescued by TcR ligation or mitogen activation resulting in the
viral antigen expression and virus production [58, 59]. If viral
expression is blocked after integration, a postintegration form
of latency, we have called preactivation latency, can be gen-
erated. This occurs in vitro by direct infection of chemokine-

treated resting CD4 Tcells [60, 61], by spinoculation or by co-
culture with dendritic cells [62] or endothelial cells [63].

Integration in Resting and Activated T Cells

Several studies have examined integration in latently infected
cells by direct infection of resting and activated CD4+ T cells
in vitro [53, 64•, 65, 66••]. The main differences of infected
resting cells compared to productively infected activated
CD4+ T cells were an increase in defective sequences in the
LTR, and an increase in 2LTR circles (a by-product of virus
that fails to integrate) was observed in resting cells [53]. HIV
IS have been examined following spinoculation of resting
CD4+Tcells infectedwith green enhanced fluorescent protein
(EGFP) expressing HIV. In cells expressing low levels of
EGFP but not producing free virus, the IS differed from
latently infected cells that had no EGFP expression [64•]. In
the most extensive study of integration sites in silent and
productive sites in primary T cells in five different models of
latency [66••], the epigenetic modifiers at the site of HIV
integration even when in an actively transcribed gene had
only a modest effect in determining the level of expression,
and no consistent features could be demonstrated across the
different models.

HIV Integration Site Analysis in Patient-Derived Cells

One of the main difficulties with the analysis of HIV IS in
patient-derived samples is the problem to identify replication-
competent proviruses in latently infected cells. Ho et al. have
shown that only a small proportion (<1 %) of the integrated
HIV are induced following cellular reactivation [67••]. How-
ever, their analysis showed the presence of a large unmeasured
hidden population of potentially replication-competent
noninducible proviruses (11.7 %) in the latent reservoir
[67••], of which 92.9 % were found in the transcription-
active unit. These proviruses had an intact genome, with
unmethylated promoter, and the possible potential to express
infectious virus following cellular activation. How replication
competent, but transcriptionally silent provirus can persist in
patients on therapy is still unclear. Although hemostatic pro-
liferation of latently infected cells has been proposed as a
crucial factor for persistence of the viral reservoir [16], two
recent studies have highlighted the role of IS in well-
suppressed patients.

Enrichment of IS in Genes Regulating Cell Growth
and Specific Cancer-Associated Genes

In the study by Maldarelli et al., a total of 2410 IS isolated
from five patients were analyzed [68••], of which 43% (1022)
of IS were associated with more than one host gene. This
showed that a large population of infected cells was generated

Curr HIV/AIDS Rep (2015) 12:88–96 91



from expansion of a single clone. In one out of five patients
tested in this study, 20 % of integration events (i.e., 62 out of
317) were found in the same site in HORMAD2 gene (64
integrants (INT)). This analysis showed that almost 58% of IS
in patients were derived from a single HIV-1-infected cell.
Subsequent analysis showed that approximately 70 % (21 of
29) of genes targeted more than once were known to be
directly involved in cell growth (STATB5 (18 INT)) or mitosis
(MAP4 (7 INT)) (Table 2). These data suggested clonal ex-
pansion of HIV-1-infected cells as a potential mechanism for
persistence of HIV-1 reservoir in well-suppressed patients on
cART.

In a separate study by Wagner et al., a total of 534 inte-
grated proviruses isolated from three patients were analyzed
and the proviral IS was found with the same location in
multiple cells within each patient. Identical IS were derived
from ≥2 individual cells, thus highlighting the proliferation of
infected cells in these patients [69••]. Subsequent analysis on
the proviral site of integration in this population revealed
preference of integration in cancer-associated genes. Among

1332 unique genes examined for overrepresentation of IS,
12.5 % (36/288) were cancer-associated genes. In a compar-
ative analysis between IS derived from patient samples with
those from acutely infected Jurkat T cell line, a similar pattern
of integration was observed in cancer-related genes (12.70 vs
11.4 %, respectively). However, IS detected in proliferating
cells derived from patients were enriched in cancer-associated
genes compared to IS detected in Jurkat cells (i.e., 15.97 vs
11.14 %, respectively). The genes like CREBBP, STAT5B,
BACH2, C2CD3, and MKL2 (Table 2) were found in two or
three participants tested in this study, suggesting preferential
integration of HIV-1 provirus in these regions. These obser-
vations raised the possibility of the effect of integration site on
altering the function of these genes favoring long-term
survival.

Viral Gene Expression and Latent Infection In Vivo

In the early stages of HIV-1 infection, there is a high turnover
of both virus and infected cells [70] leading to activation of
adaptive immune system and subsequent clearance of the
infected cells [4]. Differential clearance of virally infected
cells will lead to accumulation of cells that do not express
viral proteins and evade immunological recognition or have
no cytopathic loss. Both pathways of loss will depend on
defective provirus or HIV latency. The in vitro models of
latency have characterized factors affecting proviral expres-
sion including orientation of the provirus [19•] with neighbor-
ing host genes as well as TI [47] and epigenetic modifiers. In
the study by Maldarelli et al., multiple proviruses were found
in MKL2 genes in a patient on suppressive antiviral therapy.
The proviruses shared the same transcriptional orientation and
located upstream of the start codon of the MKL2 genes. There
were also 15 independent IS found in the BACH2 gene. The
integrants shared the same orientation with the BACH2 gene
and located in introns 4 and 5 of the gene [68••]. A compar-
ative analysis of IS detected in the patient samples with
acutely infected HeLa cells and human CD34+-infected cells
(in vitro) showed higher frequencies of IS in bothMKL2 (7 vs
0.03 % in HeLa and CD34+ cells) and BACH2 (i.e., 1.5 vs
0.002 % in HeLa and 0.01 % in CD34+ cells) in patient
samples. The IS were found to be more widely spread and
had multiple orientation patterns in acutely infected primary
cells and cell line compared to patient samples [68••]. In the
study by Wagner et al., multiple HIV-1 proviral DNA were
found in the BACH2 gene in two out of three participants
tested in the study [69••]. Comparative analysis with previ-
ously reported reoccurrence of HIV-1 IS in BACH2 genes
in vivo [67••, 71•, 72] showed that all integration events have
occurred in intron 5 of the gene, upstream of the start codon
and in the same orientation with the BACH2 gene. The
integration patterns were distinct from the patterns reported
in clonally infected cell line (Jurkat) where they found only

Table 2 List of host genes selectively targeted by HIV-1 in vivo.Genes
are indicated by gene symbol (numbers of integrants)

Ikeda_2007a Maldarelli_2014b Wagner_2014c Imamichi_
2014d

BACH2 (44) BACH2 (25) BACH2 (16) BACH2 (4)

MKL2 (4) MKL2 (122) MKL2 (4) SMC5 (17)

STAT5B (16) STAT5B (18) SATA5B (4)

SMG1 (9) CYTH1 (7) XAF1 (13)

RARRES3 (3) RPTOR (7) ARHGP35 (7)

ZGPAT (2) TAOK1 (8) CREBBP (3)

EIF4G (3) TNRC6B (7) MOB1A (2)

SP192 (2) PRKCB (7) MGA (3)

hmRNA (8) MKL1 (9) GPC3 (2)

SPTANI (2) MAP4 (7) CBL (2)

SPATS2 (4) PAK2 (10) PHF (9)

TOP1 (2) NSD1 (7) APOBEC3C (15)

DUSP16 (2) KIAA0319L (12) MDC1 (57)

SOX5 (4) NFATC3 (7) HSF5 (10)

NRF1 (2) HORMAD2 (64) RALGPS2 (7)

BTBD9 (6) OXCT1 (5)

UBE2H (8) SMG6 (14)

TBCD (14)

Genes associated with cell growth and cell proliferation (italics), genes
associated with mitosis (bold italics), genes associated with cancer (bold)
a Longitudinal analysis of IS in seven patients on therapy (>2 years),
detected in each gene
b Longitudinal analysis of IS in five well-suppressed patients on cART
(>10 years); only genes with >5 integrants are included in the table
c Longitudinal analysis of IS in three well-suppressed patients on cART
(>10 years)
d Longitudinal analysis of IS in one patient on therapy (≥15 years)
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one integrant in intron 5 in BACH2. Although the presence of
HIV-1 proviruses in the same orientation with host genes
might result in transcriptional interferences from the host
promoter promoting latency [19•, 50, 71•], however, the ques-
tions remain whether these proviruses are truly examples of
independent insertional events and if they are replication
competent or not.

In addition, a longitudinal study of HIV-1 proviral DNA in
an infected individual on therapy revealed the presence of cell-
associated HIV-1 RNA transcripts from a replication-
incompetent provirus [71•]. The sample was collected over a
period of 17 years, and the provirus carried a premature stop
codon at position 42 (W42Stop) in HIV protease gene. Inte-
gration site analysis showed that the provirus was integrated
within the intragenic region, in opposite orientation to the
SMC5 gene. The samemutation was observed in an additional
four patients. The expression of full viral envelope proteins
was detected from all defective proviral RNA, while there was
partial, low, or no expression of Gag-Pol proteins compared to
wild-type provirus. It is unclear whether the expression of
viral proteins from a defective provirus is a result of
readthrough transcripts [19•, 47] or epigenetic modifications
associatedwith the site of integration [49]. However, detection
of low level of viral proteins from latently infected cells in
patients on long-term therapy may contribute to ongoing
immune activation and production of cytokines and chemo-
kine and promote homeostatic proliferation of infected cells
and maintenance of reservoir [16].

In order to understand the mechanisms for maintaining the
latent reservoir, further work is needed to determine whether
the latent proviruses in well-suppressed HIV-infected patients
are defective proviruses that have selectively accumulated by
survival of a particular clone or represent the large pool of
unactivatable virus that represents IS within genomic sites that
promote temporary latent state.

Integration Sites in Specific Subsets of CD4 T Cells

Several studies have shown that clonal expansion of infected
T cells in patients on long-term therapy is selective and driven
by homeostatic proliferation. In the study of 31 aviremic
patients, >50 % of cells harboring replication-competent pro-
viruses were detected in memory T cell subsets [16]. Provi-
ruses were mainly found in TCM and transitional memory T
cells (TTM) but not in TEM. Both T cell populations (i.e., TCM

and TTM) have been shown to have low level of proliferation
due to immune activation caused by long-term therapy. These
cells also have a long half-life which would help maintain
viral reservoir in these subsets [16].

In addition, replication-competent viruses have been de-
tected in CD4 Tmemory stem cell-like properties (TSCM) cells
isolated from three patients on continuous treatment with
HAART [8]. Much higher levels of HIV-1 DNA occur in

CD4 TSCM cells compared to CD4 TCM, CD4 TEM, and
CD4 TTD isolated from patients. The contribution of
CD4TSCM to the total size of the reservoir was most pro-
nounced in patients with a small reservoir size. This data
suggested HIV-1 in infected CD4 TSCM can persist as a stable
viral reservoir. Considering CD4 TSCM subsets are permissive
to the viral infection, have a low rate of apoptosis, and can
survive for a long period [73], it raises the question of whether
there is also selective targeting of this population or differ-
ences in IS.

In other T cell populations, long-term persistence may be
associated with defective provirus. Such expansion of defec-
tive DNA in CD4 TEM subsets was found in a well-suppressed
infected individual [71•]. Longitudinal analysis of the integra-
tion sites found the same site in 17 independent events, and
identical viral sequences carrying W42Stop mutation sug-
gested expansion of this particular subset over 15 years. Ef-
fector memory Tcells are terminally differentiated Tcells with
the estimation half-life of 3 to 6 days [74, 75]. Thus, survival
of the CD4 TEM in an HIV-1-infected individual over 15 years
strongly suggested that the persistence of proviruses in this
subset is selected by the lack of viral antigen expression. It
will be important now to expand studies of IS in T cell
subpopulations isolated from patients on long-term therapy
to determine how viral expression may be controlled by
particular epigenetic markers and gene-specific control mech-
anisms in the specific subpopulations that contribute most to
the size of the latent reservoir.

Conclusion

Although correlation of IS with expression in T cell lines has
provided some evidence of specific characteristics of the
genomic regions that downregulate expression and favor la-
tency and has provided tools such as latently infected cell lines
such as J-LAT [59] that can be used in screening for LRA, a
clear demonstration of similar associations in primary cells
has been more difficult. A correlation between viral antigen
expression and specific genomic markers has been shown
within different in vitro models of HIV latency, but the corre-
lations have not translated to the general features of IS that
extend across multiple models of latency in primary CD4+ T
cells. Further, correlation of epigenetic markers with antigen
expression across different states of cellular activation limits
the usefulness of IS analysis as a predictor for efficacy or
selection of LRA in reversing latency. The expansion of
specific integration sites in patient CD4+ T cells has provided
novel insights into the reservoir of latent HIV in vivo. This
expansion is the result of two mechanisms. First the clonal
expansion of cells infected with virus identical at both inser-
tion sites and by viral sequence. This follows the observations
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made with viral sequence analysis alone and raises the ques-
tion if this IS resides in a site favoring latency or if the virus is
noninducible or defective. The second possibility raised by the
recent findings of a clear enrichment for near identical or
multiple IS in specific sites of a gene is that integration in
specific genes provides a survival signal for cells carrying an
HIV provirus in specific genes in those cells. That the
enriched genes are associated with cell survival and cell cycle
raises the intriguing possibility that HIV IS may alter the
function of those genes and provide cell survival signals. It
will be important now to determine if this is a direct genomic
effect or if expression of specific HIV gene products is in-
volved. Are readthrough HIV transcripts involved in control-
ling gene expression or is this an “oncogene” effect?
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