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Generation of memory T cells, which mediate immunity 
against microbes and cancers, relies, for optimal activity, 
on the interactions of multiple cell types that are highly 
regulated through the expression of soluble factors and 
negative and positive receptors. Their disruption will 
lead to aberrant immune responses, which can result in 
the invasion of the host by foreign pathogens. In chronic 
viral infections including HIV and hepatitis C virus, per-
sistence of antigen and lack of CD4 help (HIV) disrupt 
memory T-cell function and induce defects in memory 
T-cell responses, which have been defined as T-cell 
exhaustion. In this review, we examine the molecular 
mechanisms involved in such T-cell dysfunction. Better 
understanding of these mechanisms will assist in the 
development of novel therapies to prevent the immune 
damage mediated by HIV infection.

Introduction
A hallmark of the immune system is protection of the host 
against microbial pathogens through the coordination of 
its two major arms, namely the innate and the adaptive 
immune systems. Proper recognition, processing, and 
presentation of antigens will lead to the activation of a 
specific adaptive immune response, which plays a major 
role in controlling the infection. T lymphocytes, upon 
recognition of cognate pathogenic antigen (Ag), enter 
an activation phase during which they undergo clonal 
expansion, secrete cytokines, and enhance their cytolytic 
activity. Once Ag has been cleared, most effector cells die 
via activation-induced cell death and apoptosis. However, 
a small proportion of Ag-specific T cells survive the con-

traction phase and mature to become memory T cells with 
the capacity to react to previously encountered Ags with 
enhanced strength, efficiency, and speed [1]. Memory T 
cells are able to self renew by undergoing homeostatic 
proliferation and can persist for many years after the 
initial antigenic exposure and even, in some cases, in the 
absence of re-exposure to Ag [2,3]. However, T cells lose 
this characteristic control under chronic exposure to Ags. 
This functional impairment has been defined as exhaus-
tion [4••]. Herein, much focus will be paid to two major 
negative regulators of T-cell activation: programmed 
cell death (PD-1) and cytotoxic T-lymphocyte antigen-4 
(CTLA-4). These factors play a central role in driving T 
cells into dysfunction so far in HIV, simian immunode-
ficiency virus (SIV), lymphocytic choriomeningitis virus 
(LCMV) and in HCV infections. Such mechanisms that 
interfere with the function of memory T cells or induce 
their dysfunction constitute a major impediment to con-
trol viral infections, thereby allowing viral dissemination 
and persistence. 

T-cell Exhaustion
T-cell exhaustion was initially described in the murine 
LCMV model [5]. Barber et al. [4••] showed that in the 
context of chronic LCMV infection, LCMV-specific CD8 
T cells were unable to kill virally infected target cells. 
They further showed that CD4 T cells played a major 
role in augmenting CD8 T-cell function [4••]. It was 
later shown that antigen persistence is directly associated 
with CD8 T-cell exhaustion and that CD4 T cells can 
partially rescue its exhaustion [6]. A gradient of exhaus-
tion of CD8 function was demonstrated with interleukin 
(IL)-2 production, cytotoxicity, and proliferation being 
the first functions to disappear during chronic LCMV 
infection, whereas interferon (IFN)-  production is the 
last function to be lost [7]. Exhausted T cells finally 
die by apoptosis. As CD4 T cells play a critical role in 
preventing the establishment of CD8 T-cell dysfunc-
tion, this study strongly suggested that under conditions 
of lack of CD4 T-cell help, as in HIV infection, CD8 
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T-cell dysfunction would be more pronounced. In fact, 
during HIV infection, HIV-specific CD8 T cells display 
an overall dysfunctional phenotype characterized by 
loss of IL-2 production, proliferation, and effector func-
tions [8]. This dysfunction can be significantly, although 
not completely, rescued by blocking the PD-1 pathway, 
suggesting that CD4 T-cell–associated factors can con-
tribute in the rescue of CD8 T-cell dysfunction. 

Interestingly CD4 T cells are exhausted during chronic 
viral infections, show impairment of cytokine production, 
and decrease in their proliferative potential [9••]. CD4 T-
cell exhaustion paralyzes the immune system and renders 
it unable to control viral replication, thereby leading to 
disease progression. In that overall context, efforts should 
be directed at investigating the molecular mechanisms 
involved in this exhaustion with the aim of restoring both 
CD4 and CD8 functions in infected patients. 

Exhausted CD8 and CD4 T cells in 
HIV Infection
HIV-specific T-cell impairment has been extensively stud-
ied over the past few years in the chronic phase of infection. 
These studies did not provide answers for whether the 
described defects are a consequence of chronic infection 
and chronicity of Ag presentation or if they were the result 
of molecular interaction of the negative regulators of T-cell 
activation that took place during acute infection. Studies 
using Ki67 expression as a marker of T-cell proliferation 
have indicated that CD4 and CD8 T-cell turnover increases 
in both naïve and memory subsets during HIV infection. 
This hyperimmune activation, which compromises the 
homeostatic process, has been suggested to be respon-
sible for the slow depletion of CD4 T cells and the clonal 
senescence of CD8 T cells [10,11]. The critical question 
that remains to be answered is how early in acute infection 
T-cell exhaustion starts. For CD4 T cells, studies have been 
conducted in acute HIV infection and seem to propose that 
HIV-specific CD4 T cells expand at high frequency during 
the early phase of HIV infection but are lost subsequently, 
either physically through direct or indirect cytopathic 
effects of the virus or functionally through mechanisms, 
which will be described in this review [12,13]. A recent SIV 
model suggests that loss of functional CD4 T cells during 
primary infection is associated with both selective deple-
tion of memory CD4 T cells and a loss of the functional 
capacity of the memory T lymphocytes that escape virus-
associated destruction [14].

For CD8 T cells, several studies have documented 
an impaired immune response in primary HIV infec-
tion; these cells become non-cytolytic [15], exhibit a 
lower breadth of the functional response as they produce 
mostly IFN-  and express lower levels of perforin in 
lymphoid tissues [16]. The phenotypic analysis of HIV-
specific and total CD8 T-cell responses in acute infection 
showed highly activated T cells susceptible to apoptosis 

(CD38hi, Bcl-2lo, CD95hi). Another study showed the loss 
of HIV-1–specific CD8 T-cell proliferation after acute 
HIV-1 infection and the restoration of this proliferation 
in the presence of vaccine-induced HIV-1–specific CD4 
T cells [17]. More recently, SIV-specific CD8 T cells were 
shown to present a survival defect and a skewed pheno-
type—both established early within the first few weeks 
of infection [18]. Altogether, these studies do not give a 
complete picture of the events that take place in the acute 
phase of infection and do not define the mechanisms that 
lead to the establishment of HIV-specific T-cell dysfunc-
tion. In that context, more work should be performed at 
the beginning of the infection to provide a more thor-
ough understanding of the fate of HIV-specific T cells 
from the onset of infection and identify the mechanisms 
leading to T-cell exhaustion which has been described in 
chronic infection. 

Several groups have characterized distinct memory sub-
sets based on different surface marker expression. Sallusto 
et al. [19] reported two subsets of memory T cells based 
on CCR7 expression: the CCR7- subset, effector memory 
T cells (TEM cells), and the CCR7+ subset, central memory 
T cells (TCM cells) [19]. Whereas TEM cells respond rapidly 
to Ag by differentiating into effector cells, TCM cells produce 
a small number of cytokines, show weak effector function, 
and serve as precursors for the generation of TEM subset. We 
and others [4••,9••,20•,21] have examined whether chronic 
viral infections, such as HIV, impact the maturation of 
memory T cells. We have found that HIV infection induces 
HIV-specific CD8 T cells to arrest at a late differentiated 
memory phenotype (RA-, CCR7-) which is not seen in cyto-
megalovirus (CMV)-specific CD8 T cells. These terminally 
differentiated memory T cells express low levels of perforin 
and are unable to mount a cytolytic response [22].

Another memory phenotype that has also been 
shown to accumulate during HIV infection has been 
described by Appay et al. [23]. Based on the expression 
of CD27 and CD28, they proposed a second model of 
Ag-specific memory CD8 T-cell differentiation [23]. In 
this model, Ag-experienced cells could be CD28+CD27+

(early), CD28-CD27+ (intermediate), or CD28-CD27-

(late). Although no phenotypic changes were observed 
among different viruses in acute infection, striking 
differences were obvious in the chronic phase for dif-
ferent infections. Mainly, HIV-specific CD8 T cells 
had an intermediate phenotype (CD28-CD27+) whereas 
CMV- and Epstein-Barr virus–specific CD8 T cells 
populated in the late and early phases of differentiation, 
respectively. Moreover, intermediate-differentiated 
HIV-specific T cells exhibited limited cytotoxic and 
proliferative ability in contrast to the late differentiated 
CMV-specific CD8 T cells. However, there was no cor-
relation between the phenotype of HIV-specific CD8 T 
cells in these two models. Hence, future studies should 
characterize memory responses based on functional 
and surface markers.
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The dysfunction of HIV-specific CD4 T cells during 
disease progression is a multifactorial process that leads 
to the impairment of the immune response. HIV disease 
state and dysfunction have been associated with several 
markers on HIV-specific CD4 T cells, including CTLA-4, 
CD57, and PD-1. Several studies have focused on some of 
these molecules in order to understand their role in disease 
progression. However, most studies focused on chronic 
infection, and few studies exist on acute infection. There-
fore, it seems conceivable that profound phenotyping 
characterization of CD4 and CD8 in the acute infection 
would help understanding the early impairment of T-cell 
functions. Consequently, early therapeutic intervention 
may prevent the depletion of Ag-specific T cells or their 
dysfunction, thereby allowing a better control of viremia. 

Factors and Mechanisms Mediating 
T-cell Dysfunction
The T-cell response to Ag is largely dependent on the bal-
ance between positive and negative costimulatory signals. 
The net outcome following T-cell receptor (TCR) engage-
ment depends on the relative expressions of positive and 
negative costimulatory receptors on T cells and their 
ligands on Ag-presenting cells (APCs). The heightened 
expression of positive costimulatory receptors would 
enhance TCR-induced proliferation, cytokine production, 
and cell migration. On the other hand, heightened expres-
sion of negative receptors would dampen T-cell function. 
Several cell-surface molecules are well known for their 
negative regulation on T-cell function, such as Fas, tumor 
necrosis factor (TNF)-  receptor, CTLA-4, and PD-1. 
Although these negative regulators are critical for control-
ling immune responses quantitatively and qualitatively, 
their persistent expression, as is the case in chronic viral 
infections, would lead to aberrant immune responses, T-
cell dysfunction, and exhaustion. 

Recently, we and others [4••,9••,20•,21] have shown 
that, during chronic viral infections, CD8 T-cell exhaus-
tion is directly associated with the heightened expression 
of the negative regulator of T-cell activation, namely 
PD-1. Signaling pathways initiated upon the interaction of 
PD-1 with its ligands (PDL-1/PDL-2) negatively regulate 
signals downstream of TCR and dampen TCR-induced 
cytokine production and proliferation. As Ag persistence 
is a hallmark of chronic infections, we have shown that 
PD-1 expression levels in HIV-1 infection were correlated 
with both viral load and the reduced capacity of HIV-spe-
cific CD8 T cells to produce cytokines and to proliferate. 
CTLA-4 is another inhibitory molecule belonging to the 
B7-CD28 family that correlated with disease progression 
during HIV infection. The increase of CTLA-4 on the sur-
face of HIV-specific CD4 T cells has also been shown in 
acute and chronic HIV infection. In chronic infection, the 
blockade of CTLA-4 in vitro increased the HIV-specific 
T-cell production of IFN-  and IL-2 [24•]. 

What Is Known About the Signaling Pathways 
of These Negative Regulators?
CTLA-4 interacts with the same ligands of the co-stimu-
latory receptor, namely CD28 B7.1 and B7.2 [25]. Its 
expression on the cell surface is tightly regulated by the 
phosphorylation of its tyrosine motifs within the cytoplas-
mic tail. The function of this receptor is primarily regulated 
by its rapid endocytosis and by the phosphorylation of its 
cytoplasmic tail. In fact, phosphorylation of CTLA-4 cyto-
plasmic tail by the Src kinases Lck and Fyn stabilizes and 
increases its expression on the cell surface [26].

Although PD-1 and CTLA-4 are similar in function, 
they differ with respect to their ligands and in the signal-
ing pathways involved. PD-1 lacks the dimerization motif 
in the extracellular part of the receptor whereas it is con-
served in CTLA-4, which is known to be expressed as a 
homodimer. The cytoplasmic tails of these two proteins 
are also different. PD-1 contains two conserved motifs, 
immunoreceptor tyrosine-based inhibitory motif and 
immunoreceptor tyrosine-based switch motif, both of 
which are important to the interaction with Src phospha-
tases SHP-1 and SHP-2 [27]. These motifs are absent from 
the cytoplasmic tail of CTLA-4, which contains two tyro-
sine motifs which regulate its surface expression, YVKM 
(Y201) and YFIP (Y218).

CTLA-4 also impedes TCR downstream signals by 
interfering with the extracellular signal-regulated kinase 
and Jun N-terminal kinase activation as well as with CD28-
induced nuclear factor B activity. The third mechanism 
involves proximal TCR signaling where it has been shown 
that CTLA-4 coligation with the TCR  chain prevents its 
phosphorylation leading to abortion of the signal transduc-
tion [28]. Moreover, recent evidence also points to the role 
of CTLA-4 in modulating the threshold of T-cell activation 
by preventing the stop signal of TCR and increasing cell 
motility. Consequently, the reduction of the contact time 
between T cells and APCs leads to the decrease in cytokine 
production and cell proliferation [29]. 

As in the case of CTLA-4, PD-1–deficient mice dis-
play multiple autoimmune defects and a breakdown in 
peripheral tolerance [30]. Upon ligation of PD-1 to PDL-1 
and PDL-2 [31], cells show reduced profiles of the breadth 
of cytokine production as well as proliferation [32]. These 
negative effects of PD-1 are mediated, in part, through 
the inhibition of downstream TCR-positive signals by 
abolishing TCR-mediated phosphorylation of ZAP70 
and association with CD3 . In addition, and similarly 
to CTLA-4, PD-1 ligation inhibits CD3/CD28-induced 
glucose metabolism and Akt activity. However, PD-1 
achieves this effect by preventing CD28-mediated activa-
tion of phosphatidylinositol 3-kinase.

T-cell dysfunction can also be regulated by cytokines 
such as IL-10. The natural role of IL-10 is to balance the 
cytokine network, particularly during the differentiation 
of helper T cell (Th)-1 and Th2. IL-10 knockout mice 
showed polarized Th1 responses and developed severe 
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colitis. Therefore, IL-10 is known to inhibit a wide array 
of immune factors in vitro. These include proinflammatory 
cytokine production by macrophages, Ag presentation, Ag-
specific T-cell proliferation, and type 1 cytokine production 
by T cells [33,34]. The impact of IL-10 on Ag presentation 
involves the inhibition of dendritic cell (DC) maturation. 
McBride et al. [35] have shown that IL-10 desensitizes DCs 
to lipopolysaccharide-induced expression of costimulatory 
molecules, major histocompatibility complex class II, and 
the secretion of IL-12, TNF- , IL-6, and IL-1 . Moreover, 
it has also been shown in vitro and in vivo that IL-10 can 
induce anergy [36]. Interestingly, using a LCMV model in 
mice, Brooks et al. [36] showed that viral persistence drives 
higher levels of IL-10 by APCs leading to impaired T-cell 
function. These effects raise IL-10 as a potent inhibitor of 
T-cell activation and an important inducer of tolerance, a 
mechanism exploited by viral infections. 

Another important player in the dysfunction of T 
cells is indoleamine 2,3-dioxygenase (IDO). This enzyme 
plays a regulatory role in the mechanisms that limit 
T-cell proliferation through its catabolism of tryptophan, 
an essential amino acid for T-cell proliferation. In HIV/
AIDS, it has recently been shown that HIV-1 infection 
induces the expression of IDO in plasmacytoid dendritic 
cells (pDCs), which impair T-cell function [37]. 

Therefore, during chronic viral infections, T cells 
are exposed to continuous Ag presentation that leads to 
hyperimmune activation (Fig. 1). This activation upregu-
lates the expression of the negative receptors CTLA-4 and 
PD-1, which drive T-cell dysfunction. IL-10 and IDO, 

both secreted by APCs, can highly participate in this 
impairment of T-cell function. The blockade of all these 
factors can readily rescue T cells from dysfunction. 

Role of the Innate Immune System in T-cell 
Exhaustion During HIV Infection
The presence of a competent innate immune response is 
essential for the induction and regulation of an efficient 
adaptive immune response. It is very likely that T-cell 
exhaustion may result from defects in the innate immune 
system in HIV infection. Monocytes/macrophages and 
DCs, two major components of the innate immune sys-
tem, impact T-cell responses during HIV infection. 

Impairment in the Ag presentation and stimulation 
capacity of DCs and monocytes/macrophages
The capacity of both DCs and monocytes/macrophages to 
present APCs is damaged during HIV infection. On one 
hand, several studies have shown that myeloid DCs (mDCs) 
and pDCs absolute numbers in the blood are reduced dur-
ing HIV infection and that this loss of DCs correlates with 
the viral load [38]. Similarly, loss of DCs has also been 
observed in lymph nodes of individuals with HIV infection 
[39]. In addition to the significant loss in the number of 
DCs, the functions of DCs obtained from individuals with 
HIV infection are also impaired [40]. For example, both 
mDCs and pDCs of individuals with HIV infection have 
reduced capacity to stimulate allogeneic T-cell proliferation 
[38]. Other phenotypic defects have also been observed in 
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DCs obtained from the lymph nodes of patients with HIV 
infection as these cells express low levels of CD80 and 
CD86 indicating a costimulatory defect [39]. In addition, 
HIV-associated DC dysfunction has been demonstrated 
in DC matured with HIV peptides. It was reported that 
pDCs isolated from healthy donors displayed reduced 
capacity to produce IFN-  production when matured with 
HIV peptides and not with peptides obtained from herpes 
simplex virus [41]. The reasons for the DC loss and DC 
dysfunction during HIV infection are poorly understood. 
Some could be explained by the fact that mDCs and pDCs 
from individuals with HIV infection were found to contain 
proviral DNA. Accordingly, it has been shown that follow-
ing the infection of monocyte-derived DCs by HIV, their 
maturation can be blocked reducing the efficacy of Ag pre-
sentation, and their capacity to prime functional T cells. 
Moreover, HIV envelope glycoprotein, gp120, induced 
abnormal maturation of DCs which might lead to profound 
suppression of their activities. Also, HIV Nef protein was 
shown to inhibit the capacity of DCs to prime alloreactive 
CD8 T-cell responses downregulating their proliferation 
and functional competence.

During HIV infection monocyte/macrophage func-
tions are also impaired, as they are unable to present Ags, 
phagocytosis, intracellular killing, chemotaxis, and cyto-
kine production, such as the production of IL10. Actually, 
Polyak et al. [42] described an impaired class II expression 
and Ag uptake in monocytes after HIV-1 infection. Fur-
thermore, the altered capacity of HIV-infected monocytes 
to stimulate and present Ag to CD4 T cells was related 
to downmodulation of CD4 expression on T cells and 
appeared to occur via membrane-associated cellular fac-
tors on HIV-infected monocytes [42,43].

Deregulation of cytokine production by DCs and 
monocytes/macrophages
The impairment in the regulation of cytokine production 
by monocytes and DCs contributes to immunologic defi-
ciencies occurring in patients with HIV infection [44]. 
IL-10, a regulatory cytokine that inhibits T-cell prolifera-
tion and activation, is increased during HIV infection and 
was reported to be associated with impaired CD4 and CD8 
T-cell responses [45,46]. Moreover, monocytes were iden-
tified as the major source of IL-10 during HIV infection. 
Also, an in vitro study has shown that HIV-infected DCs 
interact with T cells from patients with HIV-1 infection to 
stimulate IL-10 production and immune suppression. How-
ever, whereas DCs have the potential to produce IL-10, but 
HIV-1–infected DCs produce less of this cytokine. 

Upregulation of Immune-suppressor 
Molecule Expression
The upregulation of immune-suppressor molecules, such 
as PDL-1 and the immunoglobulin-like transcript 4 (ILT4), 
on APCs in HIV infection was documented. The PD-1/

PDL-1 pathway appears to be involved in downregulating 
T-cell functionality. Trabattoni et al. [47] has shown that 
PDL-1 expression was upregulated on monocytes dur-
ing HIV infection. Increased levels of PDL-1 were found 
in aviremic chronically infected patients who were HIV-
1 positive. This possibly contributed to an incomplete 
immune reconstitution after highly active antiretroviral 
therapy. Moreover, ILT4, a tolerogenic molecule expressed 
on APCs, could also impair regulation of the adaptive 
immune system. In fact, it has been shown that monocytes 
from individuals with HIV infection have a tolerogenic 
phenotype (ILT4hi), which is induced by elevated levels of 
serum IL-10 and may account, in part, for their impaired 
capacity to present Ags and stimulate T cells [48].

In Vitro Restoration of T-cell functions by 
Blockade of Negative Regulators of 
T-cell Function
Although negative signals are required to downregulate 
the activity of T cells following acute infection, block-
ading these pathways in mice chronically infected with 
LCMV or in peripheral blood mononuclear cells from 
patients with chronic HIV infection has been shown to 
restore the capacity of these cells to proliferate, secrete 
cytokines and to kill viral-infected cells [4••,9••,20•,21]. 
Interestingly, in HIV-1 infection, blocking PD-1 signal 
by soluble anti–PDL-1 leads to a potent restoration of 
HIV-specific CD8 T cells and secretion of TNF-  and 
IFN-  as well as increasing the proliferation in response 
to HIV peptides. Similar results were also reported for 
hepatitis C virus as well as SIV-specific T cells upon in 
vitro blocking of PD-1/PDL-1 interactions. The implica-
tion of IL-10 triggering in T-cell exhaustion during HIV 
infection is also demonstrated by some in vitro studies, 
which show that the defective Ag-specific CD4 T cells in 
patients who are HIV positive can be reversed by anti–
IL-10 antibody, including the response to HIV envelope 
synthetic peptides. In addition, defective functions of 
T cells in individuals who are HIV positive can be 
restored in vitro after negative modulation of the CTLA-
4–mediated pathway. Indeed, in vitro blockade of 
CTLA-4 was associated with an increase in the effector 
function of CD4 and CD8 T cells in both SIV macaque 
and HIV human model [24•,49]. Finally, in vitro inhi-
bition of IDO with the competitive blocker 1-methyl 
tryptophan results in increased CD4 T-cell proliferative 
responses in peripheral blood mononuclear cells from 
patients with HIV infection [37].

Conclusions
Converging evidence suggests that T-cell exhaustion plays 
a primary role in the pathogenesis of multiple diseases, 
such as chronic viral infections, tumors, and autoim-
mune diseases. Understanding the mechanisms by which 
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these immune factors influence the competence of T cells 
may pave the way for therapeutic intervention capable of 
blocking or neutralizing their effect.
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