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Twenty-five years after the emergence of HIV onto 

the global scene, multiple advancements have been 

made in the understanding of HIV pathology. Thanks 

to the development of antiretroviral therapies, growing 

numbers of individuals with HIV infection experience 

slowed or halted acceleration to AIDS. Despite this, new 

HIV infections and AIDS-related morbidity and mortal-

ity are still common in the highly active antiretroviral 

therapy era. Recently, we and others have identified 

viral replicative fitness as a major determinant of HIV 

disease progression, which could have a major impact 

in the clinical setting. Therefore, in this review, we will 

discuss host and viral factors that affect viral fitness and 

its relationship on HIV pathogenesis.

Introduction
HIV is a rapidly mutating and adaptable pathogen result-
ing in an increase in viral genetic diversity and potentially 
an evolutionary edge. This high mutation rate (3 x 10-5

substitutions/site/generation), recombinogenic properties, 
and large production of virions contribute highly to the 
pathogenesis of the virus [1–3]. Although its error-prone 
replication produces many nonviable virions, viable mis-
sense variants and recombinant viruses contribute to the 
HIV quasispecies [1,4,5]. In fact, the constant increase 
in the HIV population assists the adaptive nature of the 
virus, which positively affects HIV fitness and ultimately 
disease progression [5,6•,7]. Contrarily, immune pressure 
can counteract high genetic diversity of HIV by continu-
ally eliminating a significant proportion of virus particles 
and infected cells [8–10]. For example, a strong immune 
response is associated with slow progression to AIDS, high 
CD4 cell counts, and low viral loads [11,12]. However, 
continual evolution during this selective pressure may also 

lead to immune escape, host adaptation, altered tissue/cell 
tropism, and a net increase in replicative fitness [13]. 
Thus, diversity of intrapatient HIV quasispecies is likely 
controlled by different viral and host factors. Regard-
less of the model, HIV quasispecies will evolve from the 
founder or infecting isolate and increase in heterogene-
ity during the course of disease [14,15]. Until recently, a 
direct relationship between increasing heterogeneity and 
fitness of an RNA virus has only been characterized in in 
vitro models [6•,16–18]. 

The progression of HIV infection to AIDS is unique 
for each individual, typically ranging from 3 to more than 
14 years [19]. Although the range of progression varies, 
the molecular process does not deviate much. Immedi-
ately after transmission, the host enters the acute stage 
where viremia is high and the immune system is activated 
(Fig. 1). During this phase, the depletion of CD4+ T cells 
occurs rapidly in the gut and other mucosal sites [20–23]. 
This rapid depletion is not observed systemically and may 
be the result of coreceptor tropism and/or viral fitness. 
During the chronic stage, CD4+ T cells in the blood are 
gradually depleted and the mucosal CD4+ T cells never 
rebound (Fig. 1). This gradual decrease is often associated 
with the immune system counteracting the viral expan-
sion and diversity. During AIDS, a dramatic increase is 
observed in viremia, corresponding to a rapid decline in 
systemic CD4+ T cells [23]. 

In 1996, CCR5 and CXCR4 were identified as two 
major coreceptors for HIV entry [24]. Based upon core-
ceptor usage, viruses are classified as CCR5-tropic (R5), 
CXCR4-tropic (X4), or dual-tropic (R5/X4) [25]. Inter-
estingly, coreceptor usage may be an indication of HIV 
disease progression [25]. The R5 virus is in most cases 
responsible for the initial infection [25]. Not surprisingly, 
the majority of depleted cells in the mucosal areas are 
CD4+ CCR5+ T cells which account for the bulk of T cells 
on the mucosal surface [20–22]. Additionally, CCR5 and 
CD4 can be found on the surface of dendritic cells (DCs), 
macrophages, and natural killer (NK) cells. Presumably, 
cellular landscaping may account for the bottleneck which 
eliminates the X4 viruses during sexual transmission [25]. 
However, X4 viruses are often associated with late stages 
of disease progression.
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HIV disease progression involves strong selection 
pressure which requires the virus to adapt to survive. 
During this adaptation, changes in viral fitness are often 
observed. In this context, HIV fitness is defined as the 
replicative capacity of the virus and its ability to survive 
within a host [4,5]. Due to the complex nature of the host 
species, several studies have explored the correlation of ex 
vivo fitness and disease progression [6•,7]. Here we will 
focus on host and viral factors that affect HIV fitness and 
disease progression. 

Host Factors
CCR5 coreceptor
As described above, HIV often goes through a fitness bot-
tleneck during transmission between hosts, which reduces 
the viral population and general fitness [4,26,27]. HIV 
transmission predominately occurs at the mucosa by R5 
viruses due to the high population of CCR5+ CD4+ cells 
[20–22]. Thus, mutations and polymorphisms in the CCR5 
coreceptor may modulate viral transmission and fitness. 
The majority of subjects who were homozygous for a nat-
urally occurring deletion of CCR5 (ie, CCR5- 32) were 

found to be resistant to HIV-1 infection through sexual 
transmission [28]. Furthermore, infected individuals who 
are heterozygous for the CCR5- 32 alleles progressed at 
a slower rate toward AIDS than those lacking the dele-
tion [28]. On the contrary, a known polymorphism in the 
promoter region of the gene (ie, allele P1) increases the 
expression of CCR5, resulting in an acceleration toward 
AIDS [29]. In the context of CCR5 P1 allele, these data 
suggest that there are more viral targets thus decreasing 
the stringency of the HIV-1 genetic bottleneck introduced 
by the host. This heightened HIV diversity allows “fitter” 
viruses to enter the new host which results in the observed 
acceleration of disease.

CCR5 and CD4 are found on mucosal innate immune 
cells such as macrophages, DCs, Langerhan cells (LC), 
NK cells, and NK T cells. These cells serve several 
functions in the protection of the host such as destroy-
ing foreign invaders, secreting cytokines, recognizing 
patterns, signaling cell proliferation, and activating the 
adaptive immune system. During sexual transmission 
of HIV, mucosal innate immune cells are the first direct 
and indirect line of defense; however, these cells are early 
targets of R5 viruses. The virus infects these cells or uses 
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Figure 1. Fitness and disease progress model. Changes in replicative fitness and genetic diversity, CD4+ T-cell count in the blood and the 

mucosa, and viral loads are shown during the HIV disease progression. During acute phase, HIV encounters pressures from the innate 

immune response, resulting in a decline in replicative fitness. The virus then escapes innate immunity, and fitness, diversity, and viral load 

increase. Also, mucosal CD4+ T cells are rapidly depleted with the early weeks. Later in the acute stage, the adaptive immune system 

kicks in, and decreases are observed in viral load, fitness, and diversity. During the chronic phase, HIV adaptive immunity escape occurs, 

and replicative fitness increases. In the late chronic or AIDS stages, R5 and X4 viral tropism occurs in one half of the infected patients. All 

CD4+ T cells are depleted during the AIDS stage, and the viral load increases. Fitness remains high, but HIV diversity shrinks. Adapted from
Shankarappa et al. [15]. 
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them for transport to lymphatic centers where it can infect 
CD4+ lymphocytes [30–32]. Infection of macrophages, 
DCs, LCs, and NK cells persists for weeks to months 
unlike the rapid destruction of CD4+ cells [30,31,33,34]. 
The fitness of viruses isolated from macrophages can also 
differ greatly from those isolated from CD4+ T cells [31]. 

Chemokines
Chemokines such as macrophage inflammatory proteins 
(MIP1  and MIP1 ), regulated on activation normal 
T-cell expressed and secreted protein (RANTES), and 
stroma-derived factor (SDF- 1a) can inhibit HIV entry by 
two means: competing for coreceptor binding or downreg-
ulating the coreceptor on the surface of the cells [35–40]. 
Decreased expression of RANTES due to a polymorphism 
in the CCL5 gene (CCL5 In1.1c) accelerates HIV disease 
progression whereas the opposite effect was observed 
with RANTES upregulation [41]. More recently, it was 
shown that multiple copies of the CCL3L1 gene lead to 
higher circulating levels of CCL3L1 and slower disease 
progression [42•]. Moreover, in vitro studies indicate that 
treatment with chemokines such as MIP-1 , RANTES, 
and SDF-1  blocks infection initially [39,41]. However, 
viral escape mutant can occur quickly (Fig. 1). This selec-
tive pressure potentially leads to viral escape through 
coreceptor tropism switching (R5 to X4 or vice versa), 
continued use of the same receptor in a different manner, 
or use of entirely different coreceptor (such as Bob/GPR15 
or CXCR6) [43–47]. Karlsson et al. [48] showed that R5 
viruses isolated later during disease progression are fitter 
than those isolated earlier in the presence of RANTES, 
making it less sensitive to the chemokine interference [48]. 
These data suggest that selective pressure from RANTES 
allow the virus to escape and increased fitness in presence 
of RANTES at physiological conditions. Thus, chemo-
kines could have early effects on disease progression and 
fitness of the virus.

Major histocompatibility complex class I 
and cytotoxic T lymphocytes
A decrease in viral fitness may also be due to an active and 
effective HIV-specific immune response and a continual 
selection of escape mutants. Three human leukocyte anti-
gen (HLA) genes (HLA-A, HLA-B, HLA-C) encode the 
major histocompatibility complex (MHC) class I. MHC 
class I presents antigenic epitopes to cytotoxic T lympho-
cytes (CTLs). Polymorphic HLA alleles at these gene loci 
expand the breath of antigen presentation and can result 
in control of viremia and slowed disease progression in 
individuals with HIV infection by MHC class I interac-
tion with HIV-specific CTLs [49–51]. Homozygosity at 
these loci limits antigen presentation which in turns limits 
epitopes recognized by CTLs and results in rapid disease 
progression in individuals with HIV infection [52].

Allen et al. [53] suggest that CTL selective escape is 
a major factor in HIV sequence diversity, although with 

evolutionary constraints. Even though they observed an 
increase in HIV diversity, a little more than one half of the 
new amino acid substitutions were associated with a CTL 
response; that is, 18% of CTL escape mutations were sub-
stitutions found in common subtype consensus sequences 
although these sequences had no or weak association with 
MHC expressed by the individual [53]. In nonhuman pri-
mates, various groups have shown that rapid viral escape 
from CTL selection pressure occurs within days. However, 
when the CTL escape virus was transmitted to a MHC-
mismatched host, the mutation reverted to the wild-type 
within weeks [54–56]. Additionally, selective pressure by 
HIV-specific CTL reduces HIV-1 diversity, selects for resis-
tance mutations, and results in reductions in relative fitness 
[57,58]. However, in the case of CTL escape mutations, 
decreased fitness is short lived and rapidly compensated by 
secondary mutations [58]. These results strongly imply that 
viral escape from CTL selective pressure has a high fitness 
cost, and there are evolutionary constraints on the virus 
during the process of escape. CTL escape mutants become 
stable after a cycle of fitness loss and incremental gain 
(Fig. 1). Following CTL escape, the HIV-specific humoral 
response is possibly the second greatest threat to the 
HIV population. Many studies have shown that humoral 
response is less apt to control viremia than CTL response 
[59]. Escape from the humoral immunity is extremely rapid 
and continuous throughout disease progression [59].

Viral Factors
The HIV envelope and tropism
As described above, HIV infection in humans is generally 
established by R5 viral population during sexual activity. 
The initial establishment of infection by R5 viruses is due 
to high expression of CCR5 on the mucosa [20,21]. Even 
after parenteral exposure, R5 viruses are predominant dur-
ing early stages of disease progression [25]. The R5 virus 
phenotype usually persists throughout asymptomatic dis-
ease; however in approximately one half of late infections, 
the infecting HIV-1 isolates switch coreceptor tropism to 
X4 and utilize the CXCR4 receptor for entry [25]. This 
tropism switch from R5 to X4 often leads to rapid pro-
gression to AIDS. It has been thought this acceleration to 
AIDS is due to an increase in viral fitness; however X4 and 
R5 viruses can be equivalent in relative fitness [7]. On the 
other hand, the potential increase in X4 variant pathoge-
nicity can be attributed to its ability to infect thymocytes 
at high levels (R5 viruses do not productively infect these 
cells) and/or to the fact that X4 viruses transfer much more 
efficiently between DCs to CD4+ than R5 variants [25,60]. 
In addition to dictating viral tropism, the HIV envelope 
seems to be major determinant of HIV fitness [39,61–63].

Nef
Evidence that other HIV genetic alterations could affect 
disease progression was clearly demonstrated in a few 
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long-term nonprogressor patients who harbored HIV 
strains with nef deletions [64,65]. Interestingly, viruses 
with similar nef deletions were shown to be replication 
defective in peripheral blood mononuclear cell cultures 
[66]. Nef has been implicated in the downregulation of 
MHC class I, CD28, and CD4 resulting in viral eva-
sion of the immune system [67]. Nef from nonpathogen 
simian immunodeficiency virus (SIV) infections in nat-
ural primate hosts mediates the downregulation of the 
T-cell receptor (TCR)/CD3 complex, which suppresses 
the susceptibility of infected T cells to activation and 
activation-induced cell death [67•]. However, HIV 
and a subset of SIV nef alleles failed to downregulate 
TCR/CD3 complex and to prevent cell death [67•]. 
Thus, the nef gene is clearly linked to viral fitness and 
disease progression.

HIV recombinants
Recombination is a common feature of retroviruses which 
serves as a mutagenic strategy for rapid evolution and 
adaptation. Recombination among different members of 
HIV quasispecies occurs in individuals infected with a 
single HIV strain. However, dual-infection and/or super-
infection with additional HIV strains usually results in 
intrasubtype or intersubtype recombination [13,68]. As 
a consequence, HIV recombination can greatly increase 
genetic diversity and rapidly improve viral fitness. Often 
in the case of intersubtype recombinants, the recombinant 
form of two subtypes is relatively fitter than either paren-
tal virus [68,69]. 

Conclusions
Although the impact of HIV fitness on disease pro-
gression in vivo is not thoroughly understood, strong 
correlations between HIV disease advancement and 
fitness have been established [6•,7,70]. Studies on SIV 
pathogenesis showed that antigenic and cytopathic 
properties of the SIV strain predict fitness in the host 
[71,72]. Emerging SIV variants have increased repli-
cative capacity over the SIV strain used in the initial 
infection. Additionally, infectious dose and viral fit-
ness of the initial inoculum influences viral load during 
disease progression in SIV-infected macaques [73]. 
Decreased replicative fitness can be linked to slower 
disease progression, which could result in increased 
opportunity for transmission. The spread of such 
viruses poses practical challenges to future diagnos-
tic tests and molecular epidemiologic studies. Thus, 
monitoring HIV fitness may prove to be important for 
clinical practice due to its strong correlation with HIV 
pathogenesis. Early detection of “fitter” recombinant 
or missense viral variants could possibly improve treat-
ment to slow disease progression, ultimately providing 
clinicians with additional information and tools to 
combat the AIDS epidemic.
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