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Abstract
Purpose of the Review This review aims to introduce animal models of portal hypertension in which targets and drugs can be
tested and presents current advances in the field of preclinical and early clinical settings.
Recent Findings The interest in this field has risen in recent years and many promising targets and potential drugs have been
tested in preclinical and early clinical studies. Most of these targets are intrahepatic and aim to decrease hepatic stellate cell
activity, as this cell type mediates both fibrosis and portal hypertension.
Summary Liver cirrhosis with portal hypertension is a global health burden due to their complications. Besides that, there are
only a few therapies available, those are ineffective in a large part of the patients. Therefore, novel targets and treatment options
are vastly needed.
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Introduction

Liver cirrhosis is a global health care burden with more than
1.2 million death per year [1]. The main etiologies of cirrhosis
are viral, alcoholic and non-alcoholic hepatitis. Even though
the etiologies are diverse, the resulting hepatic pathophysiol-
ogy is the same. Due to liver injury, damaged hepatocytes
induce inflammation leading to activation of hepatic stellate
cells (HSC). As a repair mechanism, activated HSC produce
collagen to replace the damaged cells. In chronic liver injury,
processes are uncontrolled and excessive amount of extracel-
lular matrix is deposited in the liver. Activated HSCs prolifer-
ate and increase contractility [2, 3•]. Together with dysfunc-
tion of the liver sinusoidal endothelial cells (LSEC), pro-
nounced HSC activity is responsible for increased liver

stiffness resulting in augmentation of intrahepatic resistance.
A hallmark in cirrhosis progression is then the onset of portal
hypertension. The hepatic blood flow due to increased resis-
tance leading to portal venous congestion and consequent in-
creased portal pressure. Portal hypertension induces splanch-
nic angiogenesis impairing microcirculation and intestinal
barrier permeability further aggravating the syndrome [4•].
This is associated with severe complications of cirrhosis,
namely variceal bleeding, ascites, and infections [5], which
increases the risk for decompensation of cirrhosis and progres-
sion towards acute-on-chronic liver failure (ACLF) [6•].
Especially ACLF shows high short-term mortality [7].
Therefore, not only understanding the mechanisms of portal
hypertension but discovering targets and development and
testing of drugs is important in this field [8].

Currently, mainly nonselective beta-blockers (NSBB) are
used to reduce portal pressure. However, many patients do not
respond to NSBBs. Therefore, novel targets and drugs have
been investigated and some show promising results preclinical
and early clinical studies. To guide this process, the portal
hypertension special interest group of the AASLD recently
proposed a framework to design preclinical studies and clini-
cal trials to prioritize novel targets and pharmacological ther-
apies [9•].

This review focuses on a few selected current concepts and
novel targets or potential drugs to treat portal hypertension.
Since the approaches are too diverse to include them all in one
review, we have chosen to present the most promising
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approaches according to our experience. Additionally, this
review introduces the key models for preclinical studies on
portal hypertension.

Animal Models to Test Targets and Potential
Drugs in Portal Hypertension

Most potential targets and drugs have not yet made their way
into the clinic and others could not be translated into the hu-
man situation. Therefore, reliable models to reflect either cir-
rhotic or non-cirrhotic portal hypertension are of importance
to discover and test targets and drugs. Even though targets and
potential drugs can be tested in cell culture in initial experi-
ments, animal models are relatively fast to test the complex
interactions between different cells, organs, and side effects in
the system and a large enough sample size can be easily gen-
erated to deliver reliable results.

Bile duct ligation is a well-established fast obstructive jaun-
dice model of cholestatic cirrhosis and can be performed in
mice and rats. Following the invasive ligation of the bile duct,
mice and rats develop advanced fibrosis and portal hyperten-
sion after 14 days or 4 to 6 weeks, respectively [10•]. The
model can be used to investigate advanced stages of chronic
liver disease with hepatic inflammation, fibrosis, and portal
hypertension. Thereby, the model is fast and highly
reproducible.

Carbon tetrachloride (CCl4) intoxication mimics the toxic
genesis of chronic liver disease and is especially used as a
model for alcoholic liver disease. CCl4 is metabolized by he-
patocytes deploy its hepatotoxic properties by the resulting
toxic radicals, which initiate membrane degradation and in-
duce inflammation leading to fibrogenesis in chronic experi-
ments [11]. Effects of CCl4 intoxication can be potentiated by
additional oral administration of barbiturates. Intoxication can
be performed either by injection in a solution with oil or by
inhalation and duration until advanced fibrosis and portal hy-
pertension develops average 10 to 16 weeks depending on the
method of administration [10•, 12]. Due to frequent subcuta-
neous or intraperitoneal injections during the initialization of
liver fibrosis and portal hypertension, intoxication by injec-
tions entails higher risks of tissue necrosis and mortality than
intoxication by inhalation, which is therefore preferred with
respect to animal welfare. Intoxication by inhalation, however,
needs to be performed in a protected setting due to the risks for
the operator (effects on the central nervous system and carci-
nogenic properties) and nature (ozone-depleting).

Intoxication with thioacetamide (TAA) is another model of
toxic liver disease. Hepatotoxic effects of TAA are caused by
production of reactive oxygen species [13]. Similar to CCl4,
TAA can be administered using different techniques, either by
intraperitoneal injections or orally in the drinking water with
weight adopted doses. Advanced fibrosis and portal

hypertension develop in a comparable timeframe to CCl4 after
6 to 18 weeks. In later stages, however, the risk to develop
cholangiocarcinoma increases. The main advantage of this
model is the restriction of toxicity to the liver [12]. Similar
to CCl4, it has to be handled carefully due to its carcinogenic
properties.

Idiopathic portal hypertension is a non-cirrhotic vascular
cause of portal hypertension affecting mainly young adults
and histologically characterized by micro-thrombotic lesions
in small portal venules [12, 14]. This syndrome can be imitat-
ed in rats by repetitive injection of microspheres in the
ileocecal vein. The procedure needs to be performed weekly
for 3 weeks and requires a laparotomy each time, which rep-
resents also one of its biggest disadvantages since only very
skilled persons can perform this procedure. The microspheres
cause micro-thrombotic insults in the liver, which lead to por-
tal hypertension with hyperdynamic circulation [15].

The partial portal vein ligation (PPVL) is a model for non-
cirrhotic portal hypertension and is usually performed in rats.
A ligature is placed around the portal vein and a blunt needle.
Thereby, the degree of portal hypertension can be adjusted by
the used diameter of the needle. Removal of the needle leads
to a calibrated stenosis of the portal vein. Distinct portal hy-
pertension develops almost immediately after the procedure.
In the following days, portal pressure slightly decreases due to
the formation of portosystemic collaterals. Experiments using
this model are usually performed 2 weeks after PPVL. This
model can be used to study angiogenesis and hemodynamics
independent of cirrhosis. Detailed step-by-step instruction has
been published by us and others [10•, 12].

The gradual occlusion of the inferior vena cava (IVC) is a
model for post-hepatic portal hypertension and leads to fea-
tures that are comparable with Budd-Chiari syndrome. The
occlusion is achieved by a hygroscopic ring that is placed
around the IVC. The ring successively constricts by body fluid
uptake leading to almost full constriction of the IVC after
4 weeks. The blockade of hepatic outflow leads to ascites
formation and hepatomegaly [12, 16].

In all of these animals, hemodynamics can be assessed to
identify the degree of portal hypertension and test the effects
of treatment. While portal pressure can be measured directly
and serves as the primary output, additional hemodynamic
parameters can be assessed using the microsphere technique.
Thereby, colored microspheres should be favored over radio-
active ones, since they are less harmful. Using this technique,
the blood flow in and the resistance of different organs can be
calculated [10•].

Current Concepts in the Clinics

Inflammation not only contributes to the development of liver
fibrosis and cirrhosis but also manipulates intra- and
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extrahepatic vascular function and thereby aggravates portal
hypertension [17]. Strong correlations of inflammatory
markers with hepatic venous pressure gradient (HVPG) have
been demonstrated [18] besides an association of systemic
inflammation with increased portal hypertension in cirrhosis
[19]. Inhibition of caspase-mediated inflammation by
emricasan improved MELD score by more than 2 points in
half of the patients of a total of 74 patients as demonstrated
recently in an open-label placebo-controlled trial [20•].
Furthermore, in 23 patients in an open-label uncontrolled trial,
it was also well tolerated and decreased portal pressure in 12
of the patients with severe portal hypertension. The decrease
was rather moderate (4 of 8 patients with more than 20%)
[21•]. Overall, the effect of emricasan is modest and more data
are necessary.

In cirrhosis, portal hypertension is linked to systemic in-
flammation caused by bacterial translocation facilitated from
the impaired gut barrier [22]. Therefore, the microbiome is
one potential target to reduce portal pressure and manipulation
of the microbiome by antibiotic, probiotics, and prebiotics is
investigated by several studies. However, so far, results are
contradictory with regard to portal hypertension. Cirrhotic pa-
tients systemically receive antibiotics to improve overall sur-
vival [23, 24] and often NSBBs. NSSBs, besides their primary
function to prevent rebleeding, have been shown to improve
intestinal permeability in cirrhosis and consequently de-
creased bacterial translocation [25]. In several unblinded and
non-randomized control trials treatment with Rifaximin, a
semisynthetic broad-spectrum antibiotic approved for the
treatment of hepatic encephalopathy improved HVPG and
systemic hemodynamics and lowered the risk of decompen-
sation. These studies included 30, 13, and 23 patients, respec-
tively, and only the last study with 23 patients included non-
randomized historical controls [26–28]. Of note, a double-
blinded randomized control trial with 54 patients could not
confirm these beneficial effects [29••]. Furthermore,
Rifaximin seems to have only minor effects on bacterial com-
position, inflammation, and bacterial translocation [30].
Nevertheless, a combination of Rifaximin and Propanolol
seem to be promising, probably due to additive effects of
Rifaximin compared with NSBBmonotherapy with decreased
incidence of side effects due to lower NSBB dose than used
normally as shown by an open-label randomized (2:1) trial in
73 patients [31]. Treatment with Norfloxacin, a synthetic
broad-spectrum antibiotic active against Gram-positive and
Gram-negative bacteria, reversed the hyperdynamic state,
but effects on portal pressure were neglectable [32, 33].
However, Norfloxacin seems to improve survival in some
cirrhotic patients, especially those with low ascitic fluid pro-
tein concentrations, probably due to decreased incidence of
bacterial infection [34••].

Another approach could be to support the restoration of the
bacterial composition in the intestine by probiotics.

Supplementation with VSL#3, a live formulation of lyophi-
lized of eight bacterial species, reduced the severity of liver
disease by lowering the rate of hospitalization for hepatic en-
cephalopathy or other complications of cirrhosis [35].
Additionally, one study could demonstrate the improvement
of HVPG in 17 patients [36], while another study, again in-
cluding 17 patients, found no effect [37]. Thereafter, the com-
bination therapy seems more promising, adjunctive VSL#3
improved the response rate of propranolol with respect to
HVPG and was safe and well tolerated in cirrhotic patients
in a large randomized controlled trial with 94 patients [38].

Fecal transplantation could be a further approach. In a ro-
dent model of non-alcoholic steatohepatitis with portal hyper-
tension, transplantation of stool from healthy animals signifi-
cantly decreased the portal pressure [39]. Furthermore, this
concept has proven successful in a randomized controlled trial
with 20 patients [40••].

Cirrhotic patients often develop coagulatory disorders and
thrombocytopenia in advanced stages of cirrhosis [41, 42].
Anticoagulation therapy could be beneficial in cirrhosis with
portal hypertension and indeed there are some recent hints
showing improvement in portal hypertension. A few years
ago, a non-blinded randomized controlled trial was performed
in 70 outpatients with cirrhosis to investigate the effects of
enoxaparin, a low–molecular weight heparin. Treatment for
12 months was safe and was efficient to prevent decompensa-
tion and improve survival [43]. Direct oral coagulants
(DOAC) require less monitoring with similar bleeding risk
as conventional coagulants [44]. A retrospective analysis
demonstrated that anticoagulant therapy with DOACs in cir-
rhosis is safe and effective [45•]. Mechanistically, enoxaparin
has been shown to decrease hepatic vascular resistance and
portal pressure in experimental cirrhosis, mainly by decreas-
ing HSC activity [46]. Similar results have been achieved
using rivaroxaban in two experimental models of cirrhosis
with portal hypertension [47]. Furthermore, vasodilatory ef-
fects may support these effects by increased eNOS activity
[48, 49]. However, a recent study could not support the pre-
vious findings and could not show beneficial effects of
enoxaparin on liver function, hepatic fibrosis, endothelial dys-
function, and portal hypertension [50]. Therefore, more data
and future studies are needed to evaluate the potential of anti-
coagulant therapy in cirrhosis with portal hypertension.

Another approach targeting portal hypertension are phos-
phodiesterase type 5 (PDE5) inhibitors, which are in clinical
use for erectile dysfunction, and clinical testing in portal and
pulmonary hypertension [51]. In cirrhosis, PDE5 is upregulat-
ed in hepatic tissue, especially in perisinusoidal cells and the
fibrotic septae [52]. Initial studies on PDE5 inhibition in ex-
perimental fibrosis showed beneficial effects on fibrosis and
portal hypertension via decreased HSC activity [53–55].
Therefore, PDE5 inhibitors have been tested in the clinical
setting in a phase-II study in compensated cirrhotic patients.
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A dose of 75-100 mg administered for 1 week decreased por-
tal pressure without systemic side effects in an open-label trial
with 30 patients [56].

β3-Adrenoceptor Agonists

β3-adrenoceptors participate in the regulation of vascular tone
and are upregulated in hepatic and splanchnic tissue in cirrhot-
ic patients with portal hypertension, as well as in animal
models and therefore represent a potential therapeutic target.
Stimulation of the β3-adrenoceptors by selective agonists de-
creased intrahepatic resistance and portal pressure in cirrhotic
animals with only minor systemic effects [57, 58].

Statins

Statins are used for prevention and treatment of cardiovascular
diseases in patients with high blood lipid levels. The primary
mechanism of action is the interruption of cholesterol synthe-
sis by inhibition of HMG-CoA reductase. They feature also
additional effects, which make them potential drugs for the
treatment of portal hypertension [59].

One of the so-called pleiotropic effects is the inhibition of
small GTPase activity. Impaired HMG-CoA activity results in
lower isoprenoid levels, pivotal components of cell membrane
lipid anchors for small GTPases, such as RhoA and Ras, and
thus decreased the activity of small GTPases due to hampered
membrane binding [60–62]. Statins inhibit RhoA-dependent
HSC activation and activity via Rho-kinase. Furthermore,
statins improve hepatic endothelial dysfunction and thereby
the communication between HSC and LSEC via Krüppel-like
factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS).
Taken together, this leads to decreased fibrosis accumulation
and intrahepatic resistance resulting in attenuation of portal
pressure [63–68]. In cirrhotic rats with a single LPS injection,
a vague approximate of ACLF, statins increased survival and
prevented complications. Statin treatment reduced hepatic in-
flammation, improved liver function, and decreased portal
pressure in these rats [69].

Recently, NCX 6560, a nitric oxide-releasing atorvastatin,
was evaluated and compared with conventional atorvastatin.
NCX 6550 decreased the incidence of hepatic and muscular
toxicity, while the antifibrotic profile and improvement of
portal hypertension were similar to conventional statins [70].
Approaches like this one may be promising to finally establish
statins in the clinic for the treatment of portal hypertension in
cirrhotic patients.

Additionally, statins improve portal hypertension by
antiangiogenic extrahepatic effects. These effects are associ-
ated with RhoA and are mediated by the non-canonical hedge-
hog, which in turn leads to reduced vessel formation and

accordingly decreases portal venous inflow [71]. This, how-
ever, applies only in the context of cirrhosis, while in non-
cirrhotic portal hypertension, statin treatment aggravates the
syndrome [71–73].

Due to potential hepatotoxic side effects of statins, evi-
dence of their benefits in portal hypertension was primarily
generated in experimental settings. In recent years, however,
these concerns fade away since more and more studies prove
their safety and overall tolerance in cirrhotic patients with
portal hypertension, especially in those with concomitant car-
diovascular diseases [74•, 75]. The first prospective study elu-
cidating acute effects of statins in two small cohorts of cirrhot-
ic patients (30 patients in total) was performed more than a
decade ago. Although HVPG was not modified in these acute
experiments, the authors could describe a decrease in hepatic
resistance (around 14%) accompanied by the increased avail-
ability of hepatic nitric oxide (NO) products consequently
increasing hepatic blood flow. Furthermore, no systemic side
effects were identified in these patients [76]. More recently, in
a triple-blinded randomized trial with 24 patients, simvastatin
decreased portal pressure in patients receiving the drug for
3 months, while placebo did not. Interestingly, the response
rate to simvastatin (55% of patients responded) was higher in
patients with oesophageal varices and history of variceal
bleeding. Again, no adverse events after statin treatment were
recorded [77]. A larger double-blinded randomized control
trial with patients receiving the standard prophylaxis to pre-
vent variceal bleeding investigated the effects of additional
statin administration for 24 months. Here, statins could not
be related to decreased risk of rebleeding, but improved sur-
vival by decreasing the relative risk by 61%. In this trial,
adverse events were reported in some patients [78••]. Two
other independent trials investigating the effects of statins ad-
ditionally administered to beta-blockers could confirm bene-
ficial effects. In both trials combined, the therapy with statins
and beta-blockers showed higher response and a stronger de-
crease in HVPG than single treatment with beta-blockers, es-
pecially in patients who did not respond to beta-blockers
statins could improve HVPG. Therefore, the authors conclud-
ed that a combined therapy of beta-blockers and statins is
promising in patients with portal hypertension [79, 80•].

Until now, however, most published studies are either retro-
spective or trials with small patient cohorts and need to be sub-
stantiated by larger randomized controlled studies, with some of
those studies already started recruiting patients [81, 82]. For
more detailed review of the literature, we recommend to read
the publications by Abraldes et al. and Pose et al. [9•, 74].

Renin-Angiotensin System

The renin-angiotensin system (RAS) is a systemic regulatory
circuit that regulates blood pressure, splanchnic vasodilation,
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and sodium retention. However, local RAS systems can be
found in several tissues with functions that are independent
of the systemic RAS.

In general, angiotensinogen, mainly produced by the liver,
is converted to angiotensin I by renin and further cleaved by
the angiotensin-converting enzyme I (ACE I) into angiotensin
II. Angiotensin II is the regulatory peptide of the RAS and
agonist of the angiotensin II receptor type 1 (AT1R). In chron-
ic liver disease, angiotensin II and the AT1R are highly upreg-
ulated and contribute to liver fibrosis and portal hypertension
[83, 84]. Therefore, those two components are historically the
main targets for anti-hypertensive treatment and are already in
clinical use for non-liver related diseases. Inhibitors of angio-
tensin II formation (ACE inhibitors) and AT1R antagonists
(“sartans”) are in use for the treatment of arterial hypertension
and chronic heart failure and were extensively investigated for
their potential in chronic liver diseases. However, the effects
on fibrosis are not more than modest with several systemic
side effects [85, 86], especially shown in a placebo-controlled
randomized double-blinded trial including 36 patients [87].
Even in combination with beta-blockers, the use of RAS in-
hibitors may still be not safe enough due to the high risk of
side effects. This was confirmed in meta-analyses including
three studies with 90 patients [88]. Genetic predisposition also
seems to play a role in RAS-mediated portal hypertension.
Patients with ACE I allele were found to have a higher
HVPG and higher risk for variceal bleeding than patients with
ACE D allele [89]. Additionally, the role of the angiotensin II
receptor type II, another agonist of angiotensin II, to whom
opposing effects to the AT1R are attributed has not been in-
vestigated so far in liver cirrhosis with portal hypertension.
Therefore, manipulation of this classic RAS components has
not yet found its way into the clinic.

Nevertheless, there is also an alternative RAS inwhichAng1–
7 is the key regulatory peptide. Substrates for Ang1–7 can be
angiotensin I cleaved by NEP or angiotensin II cleaved by ACE
II. Ang1–7 is the agonist of the mas proto-oncogene receptor
(MasR) and features vasodilatory properties. In cirrhotic patients,
Ang1–7 and the MasR are upregulated in the liver, as well as in
splanchnic vessels. In extrahepatic vessels, Ang1–7 antagonizes
AT1R signaling potently [90, 91]. Experimental manipulation of
the system by MasR inhibition increased the portal pressure. On
the other side, MasR stimulation induces eNOS release and
thereby counteracts the pro-contractile AT1R [92]. Stimulation
of the Ang1–7 agonist by the non-peptidic mimic AVE0991
decreased portal pressure without systemic side effects. Of note,
AVE0991 had no effect on hepatic fibrosis [93].

Kinase Inhibitors

Since ACE inhibitors and AT1R blockers seem to be ineffec-
tive or cause severe side effects, downstream targets of the

RAS may be potential targets to treat portal hypertension.
Janus-kinase 2 (JAK2) links the RAS via the AT1R to the
pro-fibrotic and pro-contractile RhoA/Rho-kinase pathway
[94, 95]. JAK2 is highly upregulated in human cirrhosis, es-
pecially in HSC, and correlates with the severity of liver dis-
ease [95, 96]. Inhibition of JAK2 by the chemical compound
AG490 successfully decreased hepatic vascular resistance and
portal pressure in cirrhotic animals [96, 97]. Additionally,
JAK2 inhibition decreases hepatic inflammation, angiogene-
sis, fibrosis, and activation of HSC,mainly via the RhoA/Rho-
kinase pathway [95, 97]. This data was independently con-
firmed [97]. Due to its important role in fibrosis and portal
hypertension, JAK2 inhibitors are in development for clinical
use, especially since existing inhibitors like AG490 also have
a high affinity to block other tyrosine kinases. The multikinase
inhibitor ruxolitinib is approved in the USA and Europe for
treatment of myelofibrosis and first studies in two experimen-
tal fibrosis models showed beneficial effects especially on
inflammation and oxidative stress, both drivers of fibrogenesis
and development of portal hypertension [98–100]. Due to the
poor availability of data, so far, no clinical trials have been
published. However, JAK2 inhibition seems promising and
more studies need to be performed.

Multikinase Inhibitors

Since most of the JAK2 effects are mediated via the
RhoA/Rho-kinase pathway, targeting this pathway directly is
another approach to treat portal hypertension. The multikinase
inhibitor sorafenib has been investigated in this regard and is
approved for the treatment of advanced HCC, which shares
several mechanisms with cirrhosis. In experimental models of
portal hypertension, sorafenib decreased angiogenesis and va-
soconstriction of splanchnic vessels [101–103]. However, in a
small cohort of 13 cirrhotic patients, sorafenib (400 mg b.d.)
showed only limited effects; only in 4 patients, HVPG de-
creased [104]. Regorafenib is a more potent multikinase in-
hibitor than sorafenib and may improve portal hypertension.
In experimental models of cirrhotic and non-cirrhotic portal
hypertension, acute and long-term treatment with regorafenib
was able to blunt angiogenesis and improve portal hyperten-
sion. However, in long term–treated fibrotic animals, hepato-
toxic side effects were observed [105].

FXR

The farnesoid X receptor (FXR) is also a promising target in
chronic liver disease with portal hypertension. It is a transcrip-
tional regulator of bile acid homeostasis and highly expressed
in the liver and small intestine [106]. Previous studies have
demonstrated its role in inflammation, liver fibrosis, and
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vascular homeostasis [107, 108]. Treatment with the selective
semisynthetic FXR agonist obeticholic acid (OCA) reduced
the hepatic resistance and portal pressure without systemic
effects. This was related to increased intrahepatic eNOS activ-
ity [109] and mediated by dimethylaminohydrolase-1 which
metabolizes the eNOS inhibitor asymmetric-dimethylarginine
[110]. Furthermore, OCA has also anti-inflammatory proper-
ties as shown by in vitro experiments in Kupffer cells and
LSEC, where it inhibits pro-inflammatory pathways via
NF-κB. These anti-inflammatory properties downregulated
HSC activity in experimental toxic fibrosis [111]. Several
agonists and regulators of FXR have been tested in exper-
imental models to demonstrate the impact of this pathway
on portal hypertension, either by direct action on HSC or
using the communication between HSC and LSEC.
Dihydroartemisinin, a regulator of FXR expression, de-
creased HSC contraction in vivo and improved portal pres-
sure in vitro [112, 113]. In another study, the non-steroidal
FXR agonist PX20606 improved portal pressure, by reduc-
ing vascular remodeling and sinusoidal dysfunction, while
hepatic fibrosis was also decreased [114]. Further, FXR
and the bile acid receptor G protein bile acid receptor 1
were targeted in LSEC to improve endothelial dysfunction
and as a consequence portal hypertension [115, 116].

So far, the only multicenter double-blinded placebo-
controlled randomized clinical trial assessing obeticholic
acid was performed in a cohort of 283 non-cirrhotic, non-
alcoholic steatohepatitis patients, where it improved liver
function and slightly decreased fibrosis after 72 weeks of
treatment. Hemodynamics, however, were not assessed in
this trial [117].

Targeted Approach

Since the mechanisms of contractility are contrary regu-
lated in the liver and the splanchnic vascular region, more
specific effects are desirable. Side effects may lay in the
nature of kinase inhibitors since they have several targets
and are often expressed in various tissues, where inhibi-
tion could cause unwanted effects. Cell-specific kinase
inhibition might avoid those side effects. The Rho-
kinase inhibitor Y-27632 decreased hepatic resistance in
experimental cirrhosis, but showed also massive systemic
side effects, since Rho-kinases are widely expressed in
other organs too [67, 118]. Bound to a cell-specific carrier
targeting activated HSC, Y-27632 was able to have the
same beneficial effects, but without systemic side effects.
Cell-targeted administration decreased hepatic fibrosis
and portal pressure while it increased renal perfusion.
These effects were associated with decreased contractility
and collagen production by HSC [68, 119, 120].

Conclusions

Promising targets and potential drugs have been discovered in
recent years. However, many drugs have failed after encour-
aging preclinical results due to extrahepatic side effects.
Therefore, cell-targeted therapy could avoid unwanted side
effects in the treatment of portal hypertension. These promis-
ing approaches have to demonstrate their beneficial potential
in large randomized controlled clinical trials to find their way
into the clinical routine treatment and to improve survival and
quality of life of cirrhotic patients with portal hypertension.
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