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Abstract
Purpose of Review Cardiac fibrosis is a crucial juncture following cardiac injury and a precursor for many clinical heart 
disease manifestations. Epigenetic modulators, particularly non-coding RNAs (ncRNAs), are gaining prominence as diag-
nostic and therapeutic tools.
Recent Findings miRNAs are short linear RNA molecules involved in post-transcriptional regulation; lncRNAs and circR-
NAs are RNA sequences greater than 200 nucleotides that also play roles in regulating gene expression through a variety of 
mechanisms including miRNA sponging, direct interaction with mRNA, providing protein scaffolding, and encoding their 
own products. NcRNAs have the capacity to regulate one another and form sophisticated regulatory networks. The individual 
roles and disease relevance of miRNAs, lncRNAs, and circRNAs to cardiac fibrosis have been increasingly well described, 
though the complexity of their interrelationships, regulatory dynamics, and context-specific roles needs further elucidation.
Summary This review provides an overview of select ncRNAs relevant in cardiac fibrosis as a surrogate for many cardiac 
disease states with a focus on crosstalk and regulatory networks, variable actions among different disease states, and the 
clinical implications thereof. Further, the clinical feasibility of diagnostic and therapeutic applications as well as the strate-
gies underway to advance ncRNA theranostics is explored.

Keywords Cardiac fibrosis · Epigenetic modulation · Non-coding RNAs · microRNA (miRNA) · Long non-coding RNA 
(lncRNA) · Circular RNA (circRNA) · Regulatory networks

Introduction

Following cardiac insult, fibrosis develops by excessive 
extracellular matrix (ECM) accumulation that creates tissue 
microenvironments affected by inflammation and oxidative 
stress, enhancing profibrotic signaling cascades responsible 
for tissue disruption and clinically detectable pathologic 
derangements [1, 2]. Fibrosis is an important adaptive pro-
cess, but excessive fibrosis leads to organ dysfunction such 

as that seen in heart failure [3]. Thus, there is a strong impe-
tus for the development of clinical tools to address fibrosis. 
Heart disease remains the most common cause of death in 
the United States, with deaths from heart disease rising from 
596,577 in 2011 to 696,962 in 2020 [4]. Therapies targeting 
fibrosis have shown potential in preclinical research; how-
ever, many challenges remain in the translation of this work 
to patient care such as drug delivery and off-target effects [5].

Epigenetic regulators, which traditionally modify the 
expression of DNA and RNA without altering the original 
nucleotide sequence, have emerged as novel targets for the 
treatment of cardiac fibrosis and heart failure (HF) [6, 7]. 
Non-coding RNAs (ncRNAs) include microRNAs (miR-
NAs), long non-coding RNAs (lncRNAs), and circular 
RNAs (circRNAs), each with specific and nuanced regula-
tory roles [8]. MiRNAs, small 20–24 nucleotide sequences, 
regulate genes post-transcriptionally, typically by repressing 
the translation of messenger RNAs (mRNAs) [9]. MiRNA 
dysregulation is seen in a myriad of cardiovascular diseases, 
making them valuable as diagnostic and therapeutic targets 
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[10]. LncRNAs are 200 or more nucleotide RNAs serv-
ing as key regulators of gene expression in cardiac fibro-
sis [11]. There are thousands of lncRNAs encoded in the 
human genome with a diversity of roles including direct 
gene enhancement or silencing, trafficking of nuclear factors, 
DNA repair, protein binding, sponging miRNAs, and others 
[12]. Like lncRNAs, circRNAs are 200 or more nucleotide-
long sequences with high regulatory versatility and a unique, 
highly stable closed-loop structure [13]. CircRNAs also 
express a broad range of regulatory capabilities, often by 
sponging miRNAs, but also by acting as reservoirs, binding 
proteins directly, recruiting proteins to specific cellular sites, 
encoding micropeptides, and producing daughter ncRNAs 
[14, 15]. Importantly, many miRNAs, lncRNAs, and circR-
NAs have been observed to exhibit differential regulation 
patterns across disease states often with promiscuous target-
ing of mRNA, DNA, proteins, and other ncRNAs, forming 
sophisticated regulatory networks with high context depend-
ence [16]. These features of ncRNAs establish the regula-
tory prowess foundational to their potential in diagnostic and 
therapeutic applications but also present cardinal challenges 
for clinical development.

In this review, we will examine the signaling 
mediators central to cardiac fibrosis and HF and define 
how ncRNAs interact among these pathways while also 
highlighting ncRNAs as potential biomarkers and future 
pharmacotherapies for the evaluation and treatment of 
fibrotic cardiac disease.

Micro‑RNAs’ Importance to Cardiac Fibrosis

There is an expanding catalog of miRNAs differentially 
expressed in cardiac tissues [17]. In the context of 
cardiac fibrosis and HF, miRNAs are crucial regulators 
of transforming growth factor beta (TGFβ)-signaling 
networks [18]. MiRNAs may bind to mRNA targets at 
multiple different coding or non-coding sites to silence or 
induce degradation, but they can also act as promoters of 
translation [19]. MiRNAs may be conceptualized as primary 
or direct epigenomic effectors themselves, regulated by 
secondary epitranscriptomic regulators including lncRNAs 
and circRNAs. However, miRNAs can also act to regulate 
target lncRNAs or circRNAs. For example, miR-22 and 
the lncRNA metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT1) were shown to have a reciprocal 
relationship in endothelial cells, where inhibition of miR-
22 increased lncRNA MALAT1 levels, while inhibition of 
lncRNA MALAT1 increased miR-22 levels [20].

As therapeutic targets, miRNAs are attractive due to their 
linear, single-strand structure, making them highly druggable 
by specific oligonucleotide inhibitors [21]. Challenges facing 
miRNA therapies include the tendency for a single miRNA 

to have multiple targets, including mRNA, DNA, proteins, 
or other ncRNAs, as well as the fact that perfect miRNA-
target complementarity is not functionally requisite [22]. As 
biomarkers, circulating miRNAs have shown potential to 
inform diagnosis, progression, and prognosis across various 
cardiac disease states, including heart failure, myocardial 
infarction, and myocarditis [23]. Biomarker applications face 
challenges given that structurally, miRNAs are vulnerable 
to RNAse enzymes in circulation and therefore require 
transport either within exosomes or bound to stabilizing 
proteins like argonaute 2, an endogenous component of the 
functional miRNA complex [24]. Further, many miRNAs 
are conserved across tissue types, which raises challenges for 
the establishment of disease specificity in some cases [25].

Altogether, confidence in miRNA clinical applications 
remains high, although much work remains to establish 
feasibility in patient care. Here, we will review the 
mechanisms and clinical potential of select miRNAs well-
studied in cardiovascular disease.

MiR‑29

MiR-29 is a central regulator of cardiac fibrosis and HF, 
representing a family of three miRNAs, miR-29a, miR-29b, 
and miR-29c [26]. Dozens of direct and indirect targets 
of miR-29 have been identified in cardiac fibroblasts, 
most importantly those for ECM components including 
collagen, fibrillin, and matrix metalloproteinases involved 
in ECM degradation [27]. The miR-29 family are high-
level regulators of TGFβ signaling relevant to all fibrotic 
cardiovascular diseases (Table 1).

The apparent specificity of miR-29 for fibrosis makes it an 
attractive target for diagnostic and therapeutic applications. 
MiR-29a has been described as the only biomarker specific 
to fibrosis in the setting of hypertrophic cardiomyopathy 
[35]. Similarly, miR-29b has been shown as a viable 
biomarker indicating fibrosis in dilated cardiomyopathy and 
diabetes-associated cardiac fibrosis [36, 37].

Therapeutic applications of miR-29 have been explored 
in preclinical studies. In a model of chronic coronary ath-
erosclerosis, inhibition of all miR-29 isoforms resulted in a 
profibrotic effect; however, this was ultimately beneficial to 
plaque stability and the size of atherosclerotic lesions, sug-
gesting miR-29 therapies could benefit patients with vulner-
able atherosclerotic lesions by reducing coronary events and 
lessening the severity of ischemic cardiomyopathy [30]. In 
heart failure, there have been conflicting data on the role of 
miR-29. One study inhibited the miR-29 family using locked 
nucleotide antimiR-29, showing a potential therapeutic ben-
efit to the inhibition of miR-29 by way of reduced hyper-
trophy and fibrosis [38]. In contrast, a similarly modeled 
study targeting miR-29 via cholesterol-conjugated antimiR-
29b resulted in increased fibrosis [31]. So, while miR-29 
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represents a promising target, the specific clinical scenarios 
in which a clinical benefit may be achieved need to be fur-
ther defined.

MiR‑21

MiR-21 has been studied as both a biomarker and therapeutic 
target due to its prominent expression in multiple cardiac cell 
types and its importance to fibrosis and heart failure (Table 2) 
[39]. Numerous mechanisms have been described, primar-
ily relating to the regulation of apoptosis and the promotion 
of fibrosis. After myocardial infarction, miR-21 is overex-
pressed in cardiomyocytes at the border zone surrounding 
infarcted tissue and confers a protective effect by inhibition 
of apoptosis which may mitigate the development of ischemic 
cardiomyopathy [40, 41]. In heart failure, miR-21 acts to 
prevent apoptosis and promotes fibrosis and hypertrophy via 
the TGFβ-associated Smad7 and sprouty homolog (Spry1/2) 
proteins [42]. Acting in a profibrotic manner in a model of 
hypertensive cardiomyopathy, miR-21 has been shown to 

mediate the activation of fibroblasts and deposition of ECM 
via its action upon ERK-MAPK signaling, again, through 
the inhibition of Spry1 [43]. MiR-21 is increased in chronic 
atrial fibrillation and interestingly, in a non-fibrotic role, has 
been shown to be involved in the control of L-type calcium 
channels via the regulation of subunit expressions [44].

MiR-21 has achieved an accuracy (AUC) of 0.76 (CI 
0.71–0.82) for the diagnosis of acute myocardial infarction, 
but when combined with miR-1 and miR-499, accuracy 
has improved to 0.89 (CI 0.85–0.94); adding high-sensitiv-
ity troponin T to this panel of miRNAs further increased 
diagnostic accuracy to 0.94 (CI 0.92–0.97) [50]. Addition-
ally, miR-21 has been shown to display context-dependent 
expression patterns in heart failure patients. Circulating 
miR-21 is elevated in heart failures, with particularly high 
levels seen during symptomatic phases [42]. Another study 
showed circulating miR-21 was elevated in patients with 
heart failure regardless of the underlying etiology and was 
associated with mortality and rehospitalization [48]. While 
circulating miR-21 is detectable with differential expression 

Table 1  Proposed roles of miR-29 family across common cardiac disease states

PI3K phosphoinositide 3-kinase, mTOR mammalian target of rapamycin, HIF1α hypoxia-inducible factor 1-alpha, VEGF vascular endothelial 
growth factor, SH2B3 Src homology 2B3, COL1A1 collagen type I alpha 1 chain, COL1A2 collagen type I alpha 2 chain, COL3A1 collagen 
type III alpha 1 chain, COL4A1 collagen type IV alpha 1 chain, COL5A2 collagen type V alpha 2 chain, FBN1 fibrillin 1, MMP2 matrix 
metalloproteinase 2, GSK3B glycogen synthase kinase 3 beta, ICAT/CTNNBIP1 inhibitor of beta-catenin, TCF transcription factor, HBP1 
high mobility group AT-Hook 1, GLIS2 GLIS family zinc finger 2, Cx43 connexin 43, PDGF-B platelet-derived growth factor-B, TGFβ-R1 
transforming growth factor-beta receptor 1, MMP9 matrix metalloproteinase 9

Disease state Target(s) Effects of targeting miR-29 Ref

Myocardial Infarction PI3K/mTOR/HIF1α/VEGF; SH2B3 Inhibition via lentiviral antimir-29 led to a favorable 
increase in VEGF expression, while induced 
overexpression of miR-29 increased fibrosis

[28, 29]

Coronary atherosclerosis COL1A1, COL1A2, COL3A1, COL4A1, COL5A2, 
FBN1, MMP2

Inhibition via antimir-29 decreased plaque stability [30]

Congestive heart failure GSK3B, ICAT/CTNNBIP1, HBP1 and GLIS2 Inhibition of miR-29 decreased hypertrophy and 
fibrosis

[31]

Atrial fibrillation Cx43, PDGF-B; TGFβ-R1 Overexpression via AAV-miR-29b-3p decreased 
fibrosis

[32, 33]

Aortic aneurysm COL1A1, COL2A1, COL3A1, COL5A1, Elastin, 
MMP2, MMP9

Inhibition via antimir-29b increased fibrosis by 
promoting ECM expression

[34]

Table 2  MiR-21 differential expression and role in various disease states

AMI acute myocardial infarction, LVEF left ventricular ejection fraction, BNP B-type natriuretic peptide.

Disease context Expression change and role in disease Ref

Myocardial infarction Early upregulation in infarct region and downregulation in border zone; impact on localized cellular response 
in early AMI; antifibrotic

[45]

Time-dependent change: increased 1st and 2nd weeks, unchanged 4th week; time-dependent cardioprotective 
effect

[46]

Atrial fibrillation Increased expression; correlated with atrial collagen content [47]
Increased expression in human atrial myocytes; profibrotic, also involved in L-type calcium channel regulation [44]

Heart failure Increased expression with utility in predicting rehospitalization; correlates with LVEF, BNP, and galectin-3 [48, 49]
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in cardiovascular disease, miR-21 has also been described 
across many non-cardiac pathologies which may limit its 
future clinical utility [51].

MiR-21 stereotypes miRNAs in cardiovascular disease 
as complex and enigmatic targets. MiR-21 expression is 
increased in multiple processes and displays multiple regu-
latory targets that may lead to either protective or harmful 
effects on overall cardiac function, making it a complex can-
didate for diagnostic and therapeutic use.

MiR‑133

MiR-133, an antifibrotic regulator, is among the most 
abundant miRNAs expressed in the heart [52]. There are 
three isoforms of miR-133 (miR-133a, 133b, and 133c); 
miR-133a has particular importance in apoptosis, fibrosis, 
hypertrophy, electrical conduction, and other processes [53].

In ischemic cardiomyopathy, miR-133a is involved in both 
early pathogenesis and late remodeling by way of reducing 
cardiomyocyte apoptosis, regulating angiogenesis, inhibiting 
TGFβ-dependent fibrosis, and repressing inflammatory cell 
infiltration [54]. MiR-133a may be downregulated in the 
ischemic myocardium to the detriment of the surviving 
tissue [55]. Post-mortem tissue expression of miR-133a 
has been shown to be significantly lower compared to that 
from surviving adult hearts after myocardial infarction, 
suggesting that miR-133a expression levels relate to survival 
outcomes, and lower levels are associated with increased 
mortality [56]. Patients with acute myocardial infarction 
have detectable circulating exosomal miR-133a even before 
troponin T elevation [57]. Further studies have also shown 
a time-dependent rise in serum concentrations of miR-133a, 
trending similarly to troponin I in the same samples [58]. 
The sensitivity and specificity of miR-133a for myocardial 
infarction are reviewed in Table 3.

As a therapy, synthetic miR-133a has shown the poten-
tial to counteract ventricular remodeling and prevent heart 
failure in a model of pressure overload [60]. In a model of 
ischemic heart disease, the administration of miR-133a 
decreased apoptosis [61]. Interestingly, existing medica-
tions have been shown to affect miR-133a activity; the mixed 
β-adrenergic antagonist carvedilol reduces caspase-depend-
ent cardiomyocyte apoptosis related to oxidative stress by 

increasing miR-133a expression [62]. Ivabradine, an inhibi-
tor of sinoatrial pacemaker activity used in heart failure has 
also been shown to increase expression of miR-133a [63].

MiR-29, miR-21, and miR-133a do well to show both the 
high potential of miRNAs as drug targets and biomarkers, 
demonstrating the potential to detect and inhibit pathologic 
fibrosis at the very first steps. However, the lack of target and 
disease specificity is equally well-exemplified.

Long Non‑Coding RNAs in Cardiac Disease 
and Fibrosis

LncRNAs commonly act to sponge miRNAs for direct 
repression but also recruit proteins to cellular sites of 
interest, regulate mRNA splicing, control protein translation, 
express micropeptides, and form microcompartments to 
concentrate effector proteins [64, 65]. Scaffolding is one 
notable role; the lncRNA ANRIL antisense noncoding 
RNA in the INK4 locus attaches to its target gene and as 
a scaffold for the WDR5 (WD repeat-containing protein 
5) and HDAC3 (histone deacetylase 3) proteins, leading 
to phenotype switching in vascular smooth muscle cells 
in a model of atherosclerotic heart disease [66]. Encoding 
micropeptides is another interesting function of lncRNAs; 
myoregulin, endoregulin, and another-regulin are lncRNA-
encoded peptides that function as negative regulators of the 
sarcoplasmic reticulum  Ca2+-ATPase (SERCA) critical for 
contractile function in the heart [67]. Like the other ncRNA 
classes, certain lncRNAs are differentially expressed in 
cardiac tissues such as lncRNA MIAT, lncRNA H19, and 
lncRNA MALAT1.

LncRNA MALAT1 (Metastasis‑Associated Lung 
Adenocarcinoma Transcript 1)

LncRNA MALAT1 has been described across a variety of 
cancers and cardiovascular disease states as a high-level 
mediator of cell migration, fibrosis, and inflammation 
(Table 4) [68]. After myocardial infarction (MI), lncRNA 
MALAT1 sponges miR-26b, restoring mitochondrial-
dependent apoptosis and ultimately attenuating the progres-
sion of ischemic cardiomyopathy [69]. A tRNA-like product 

Table 3  Sensitivity and specificity of circulating miRNAs as biomarkers in myocardial infarction

*Formatted for clarity with comma-separated values where the 1st value is ref. [50] and the 2nd value is ref. [59]

miRNA Sensitivity [50, 59] Specificity [50, 59]

miR-499 0.88 (95% CI, 0.86–0.90; P = 0.0000), 0.84 (95% CI, 0.70–0.92) 0.87 (95% CI, 0.84–0.90; P = 0.0000), 0.97 (95% CI, 0.87–0.99)
miR-1 0.63 (95% CI, 0.59–0.66; P = 0.0000), 0.72 (95% CI, 0.61–0.81) 0.76 (95% CI, 0.71–0.80; P = 0.0000), 0.88 (95% CI, 0.79–0.94)
miR-133a 0.89 (95% CI, 0.83–0.94; P = 0.0047), 0.73 (95% CI, 0.55–0.85) 0.87 (95% CI, 0.79–0.92; P = 0.0262), 0.88 (95% CI, 0.74–0.95)
miR-208 0.78 (95% CI, 0.76–0.81; P = 0.0581), 0.83 (95% CI, 0.74–0.89) 0.88 (95% CI, 0.84–0.91; P = 0.0000), 0.96 (95% CI, 0.82–0.99)
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encoded by lncRNA MALAT1 has been described, named 
MALAT1-associated small cytoplasmic RNA (mascRNA). 
MascRNA has important immunoregulatory roles in car-
diac tissue via actions upon monocyte-macrophage function, 
notably working in ways that are separate from its parent 
lncRNA MALAT1 transcripts, such as modulating expres-
sion of the Fas ligand, tumor necrosis factor-alpha (TNF-α), 
and interleukin-6 (IL-6) [70].

Exemplifying the reciprocal relationship between miR-
NAs and lncRNAs, miR-144 has been shown to directly 
target lncRNA MALAT1 in the setting of MI, reducing its 
expression and thereby inhibiting apoptosis [84]. Reduc-
ing lncRNA MALAT1 expression may improve myocardial 
ischemia–reperfusion injury [85]. Known biomolecules have 
been hypothesized to affect lncRNA MALAT1; for example, 
the pineal gland hormone and common sleep aid melatonin 
were shown to have an antifibrotic effect in a model of dia-
betic cardiomyopathy by inhibiting lncRNA MALAT1 and 
miR-141-dependent NLRP3 inflammasome activation [78].

During intervention for acute MI, lncRNA MALAT1 
was shown to be an effective biomarker for successful coro-
nary “reflow” to reestablish myocardial perfusion, versus 
unsuccessful “no-reflow” in patients undergoing left heart 
catheterization; lncRNA MALAT1 expression was markedly 

increased in “no-reflow” patients [86•]. Circulating serum 
lncRNA MALAT1 performed poorly in detecting acute MI 
compared to other ncRNAs; it did, however, positively cor-
relate with inflammatory cytokine levels including TNF‐α, 
IL‐6, and IL‐17A reiterating its importance as an inflamma-
tory mediator in early ischemic heart disease [87].

LncRNA MIAT (Myocardial Infarction–Associated 
Transcript)

LncRNA MIAT is a profibrotic regulator in the context of 
ischemic, hypertrophic, and other cardiomyopathies [88]. 
After MI, lncRNA MIAT has been shown to sponge miR-24 
resulting in disinhibition of a Furin-TGFβ1 signaling cas-
cade leading to fibrosis; when lncRNA MIAT was inhib-
ited by a small inhibitory RNA (siRNA), cardiac function 
improved, supporting lncRNA MIAT as a potential drug 
target [89]. In another model of angiotensin-II-induced car-
diac hypertrophy, targeting lncRNA MIAT with a siRNA 
also showed a potential to attenuate disease development 
by preventing lncRNA MIAT sponging of miR-150 [79].

As a biomarker, lncRNA MIAT positively correlates with 
acute myocardial injury and interestingly has been shown to be 

Table 4  Selected LncRNAs and circRNAs and their roles in cardiac pathologies

N1ICD Notch1 intracellular domain, EZH2 enhancer of zeste homolog 2, Ang-II angiotensin-II, a-SMA alpha-smooth muscle actin, COL1A1 
collagen 1A1 gene, COL3A1 collagen 3A1 gene, SRF serum response factor, CTGF connective tissue growth factor, Adrb1 adrenoceptor beta 1 
Adcy6 adenylate cyclase 6, IGF-1 insulin-like growth factor 1, IL-17 interleukin 17, PDCD4 programmed cell death 4

ncRNA Model Role Target(s) Effect Ref

circRNA HIPK3 Fetal mouse cardiomyocytes Inhibits proliferation N1ICD, miR-133a Stabilizes N1ICD, promotes 
CTGF expression

[71]

Human cardiomyocytes, 
ischemia–reperfusion

Profibrotic miR-124-3p Upregulates Bax and 
downregulates Bcl-2, 
increasing apoptosis

[72]

Cardiac fibroblasts, Ang-II-
induced fibrosis

Profibrotic miR-29b-3p Upregulates a-SMA, COL1A1, 
COL3A1

[73]

Cardiac fibroblasts, hypoxia Profibrotic miR-152-3p Upregulates TGFβ2 [74]
circRNA Slc8a1 Pressure-overload-induced 

cardiac hypertrophy, neonatal 
mouse cardiomyocytes

Profibrotic miR-133a Upregulates SRF, CTGF, Adrb1, 
Adcy6

[75]

Pressure overload, mouse Cardioprotective Unknown Increases mitochondrial ATP 
synthesis

[76•]

circRNA ACTA2 Vascular smooth muscle cells Inhibits hyperplasia 
and inflammation

p50 subunit of NF-κB Downregulates NLRP3, ASC, 
caspase 1

[77]

lncRNA MALAT1 Myocardial infarction, mouse Promotes apoptosis miR-26b-5p [69]
Diabetic cardiomyopathy, mouse Profibrotic miR-141 Downregulates NLRP3 [78]

lncRNA MIAT Angiotensin-II-induced cardiac 
hypertrophy

Profibrotic miR-150 Upregulates TGFβ [79]

Hypertrophic cardiomyopathy Profibrotic miR-29a-3p Disinhibits TGFβ-driven fibrosis [80]
Diabetic cardiomyopathy Profibrotic miR-214-3p Upregulates IL-17 [81]

lncRNA H19 Hypoxia Profibrotic YB-1 Upregulates COL1A1 [82•]
Profibrotic miR-29a-3p/miR-29b-3p Upregulates TGFβ2 [83]
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relatively depressed in patients with signs of transmural myo-
cardial infarction compared to non-transmural infarction rep-
resented by the absence of ST segment elevations on electro-
cardiography (NSTEMI) [90]. LncRNA MIAT was proposed 
as an independent predictor for the development of ischemic 
cardiomyopathy with systolic dysfunction in the same study. 
Additionally, lncRNA MIAT displayed lower expression levels 
in patients with hypertrophic cardiomyopathy (HCM) express-
ing a fibrotic phenotype versus those with HCM without a 
fibrotic phenotype, suggesting that lncRNA MIAT may be a 
useful biomarker to determine the onset of fibrosis in HCM 
[80].

LncRNA NEAT1 (Nuclear Paraspeckle Assembly 
Transcript 1)

LncRNA NEAT1 regulates inflammatory signaling cascades in 
cardiac fibroblasts often through the facilitation of protein–pro-
tein interactions [91]. In heart failure, lncRNA NEAT1 was 
found to provide scaffolding between the enhancer of zeste 
homolog 2 (EZH2) and the Smad7 promotor region similar 
to lncRNA MALAT1, thereby decreasing the expression of 
Smad7 and leading to unbalanced TGFβ–driven fibrosis [92]. 
LncRNA NEAT1 also acts traditionally via the sponging of 
miRNAs. Sponging miR-144 in sepsis-induced myocardial 
injury promoted inflammation and apoptosis [93]. Spong-
ing miR-19a in a pressure-overload-model-induced cardiac 
hypertrophy [94]. Interestingly, extracellular vesicles with 
lncRNA NEAT1 have been shown to be involved in crosstalk 
between cardiomyocytes and cardiac fibroblasts in response 
to hypoxia; where, in this setting, lncRNA NEAT1 is silenced 
thereby inducing caspase-mediated apoptosis in cardiac fibro-
blasts [95]. These mechanisms support the potential for future 
lncRNA NEAT1-related therapies in HF. Finally, in one study 
evaluating lncRNA NEAT1 as a biomarker for heart failure, 
serum lncRNA NEAT1 was diagnostic, and low circulating 
levels were able to predict overall survival [96].

LncRNAs have a wide repertoire of regulatory functions 
extending beyond those seen with miRNAs. Therapeutic 
applications for lncRNAs offer the potential to influence 
many pathologic junctures in sophisticated disease states. 
LncRNA biomarkers may allow more specific and detailed 
insights. Like miRNAs, identifying the unique scenarios in 
which lncRNAs might be utilized is pivotal.

Circular RNAs in Cardiac Disease and Fibrosis

The unique attribute of circRNAs is a continuous closed-
loop structure, allowing for circulatory stability with 
resistance to nucleases that degrade linear RNAs [97, 98]. 
CircRNAs function as sponges to miRNAs, bind proteins 
directly, and like lncRNAs, can encode their own proteins 

[99]. CircRNAs can contain 200–2000 base pairs, giving 
each a massive array of potential regulatory functions with 
many potential targets and binding sites [100, 101]. The 
relationship between circRNAs and other ncRNAs has been 
predominantly described in terms of miRNA inhibition by 
sponging; however, both positive and negative regulatory 
mechanisms have been displayed. For example, circRNA 
Cdr1as, also termed ciRS-7 (circular RNA sponge for miR-
7), contains many identical binding sites for miR-7, making 
it a potent sponge but also enabling action as a storage 
reservoir for miR-7 [102•]. This reservoir function has been 
observed in the context of ischemic cerebrovascular disease, 
where forced upregulation of circRNA Cdr1as resulted in 
the binding between circCdr1as-miR-7 with a subsequent 
increase in the activity of miR-7, implying that circCdr1as 
was acting in a protective manner toward miR-7 resulting 
in neuroprotection after stroke. Alternatively, in the setting 
of MI, circRNA Cdr1as has been shown to simultaneously 
sponge miR-7 and directly target its transcription factor SP1 
(specificity protein 1) to promote apoptosis and increase 
infarct size [103].

CircRNAs are large ncRNA regulators with unique 
architecture and regulatory functions; their expression can 
be tissue- and species-specific, and taken together, these 
traits have garnered strong interest in the research and 
development of circRNA-based therapeutic and diagnostic 
tools. In Table 4, circRNA functions in disease development 
are reviewed, and in Table 5 proposed circRNA biomarkers 
are listed.

CircRNA Slc8a1 (Solute Carrier Family 8 Member A1)

The Slc8a1 gene encodes the circRNA Slc8a1 (circSlc8a1), 
highly expressed in cardiomyocytes and implicated in a 
variety of cardiac disease states including ischemic cardio-
myopathy and pressure-overload-induced heart failure [75, 
118]. CircSlc8a1 may have pro- or anti-fibrotic actions. In 
heart failure, circRNA Slc8a1 sponges and inhibits miR-
133a, disallowing its antifibrotic actions on TGFβ signaling, 
specifically the regulation of serum response factor (SRF) 
and connective tissue growth factor (CTGF) expression as 
well as components of the β1-adrenergic receptor transduc-
tion cascade [76•]. Exemplifying its therapeutic potential, 
this study deployed a short-hairpin RNA to target and inhibit 
endogenous circRNA Slc8a1, which in turn resulted in the 
disinhibition of miR-133a and reduction of pathological 
hypertrophy and fibrosis in the model of pressure-overload-
induced heart failure. In contrast to these proposed profi-
brotic functions, a study by Wu et al. [76•] showed that 
induced overexpression of circRNA Slc8a1 was in fact car-
dioprotective in a pressure-overload model via promotion 
of mitochondrial ATP synthesis. In their study, for the first 
time, an antisense circRNA was developed (cA-circSlc8a1) 
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to silence circRNA Slc8a1, leading to severe congestive 
heart failure in this model. Endogenous antisense circR-
NAs have been described in various disease states, though 
the proposal of artificial antisense circRNAs in drug devel-
opment has not been deeply explored and may be a future 
avenue for circRNA therapeutic applications [119].

CircRNA HIPK3 (Homeodomain‑Interacting Protein 
Kinase 3 Gene)

Like circRNA Slc8a1, circRNA HIPK3 has been shown to 
sponge miR-133a in a model of MI, enhancing Notch1 and 
connective tissue growth factor (CTGF) expression thereby 
driving proliferation, migration, and fibrosis in a manner 
protective against heart failure [120, 121]. These regulatory 
functions of circRNA HIPK3 involving CTGF and Notch1 
have been shown to culminate in a decreased fibrotic area 
after MI which may attenuate the development of ischemic 
cardiomyopathy [71, 122]. Drugs targeting circRNA HIPK3 
could be potent modulators of TGFβ-driven fibrosis and 
heart failure; however, its context dependence may not be 
completely understood. In a study of human-derived car-
diomyocytes, circRNA HIPK3 expression was seen to be 
detrimental after stimulation of ischemia–reperfusion injury 
by sponging miR-124-3p, where the proapoptotic Bax (apop-
tosis regulator BAX) was disinhibited, and the antiapoptotic 
Bcl-2 (B-cell lymphoma 2) was inhibited [72]. This effect 
on cardiomyocyte apoptosis reiterates findings in another 
ischemia–reperfusion model, where miR-29a was shown 
to be a target of circRNA HIPK3, resulting in increased 
apoptosis of cultured human cardiomyocytes via the dis-
inhibition of insulin-like growth factor 1 (IGF-1) signaling 

[73]. Altogether, the potential clinical benefit of targeting 
circRNA HIPK3 remains to be seen.

CircACTA2 (Alpha‑Smooth Muscle Actin)

CircRNA ACTA2 regulates vascular smooth muscle cells 
via alpha-smooth muscle actin (α-SMA), a hallmark product 
of activated fibroblasts functioning in cellular motility and 
smooth muscle contraction [123]. Dysregulation of α-SMA 
has been observed in multiple cardiovascular disease states 
including HF, coronary atherosclerosis, and stroke [124].

Similar to the lncRNA MALAT1-miR-141 network, 
circACTA2 has been shown to inhibit the activation of 
the NLRP3 inflammasome in vascular smooth muscle 
cells [125]. In this study, an artificial circRNA ACTA2 
was able to attenuate the expression of NLRP3, ASC, and 
caspase 1, exposing the axis as a potential drug target in 
vascular disease. Chronically elevated angiotensin-II, seen 
in hypertension and hypertrophic cardiomyopathy, results in 
senescence of VSMCs mediated by circACTA2 actions upon 
interleukin enhancer-binding factor 3 (ILF3) [77]. CircRNA 
ACTA2 acts as a competing endogenous RNA against the 
mRNA for cyclin-dependent kinase 4 (CDK4), preventing 
what would be a CDK4 mRNA-ILF3 gene interaction, 
thereby leading to cell senescence due to obsoletion of 
the CDK4 mRNA. The therapeutic candidacy of circRNA 
ACTA2 was also demonstrated in these mechanistic studies; 
however, there has not yet been any investigation of circRNA 
ACTA2 as a biomarker for cardiac fibrosis or heart disease.

In summary, circRNAs, characterized by their closed-
loop structure, exhibit unique and significant regulatory 

Table 5  Circulating RNA 
proposed as biomarkers in 
cardiac disease

*No specific biomarker exists currently for coronary artery disease, compensated heart failure, aortic 
dissection, Kawasaki disease, or atrial fibrillation, thereby establishing these circRNAs as first-in-class

Disease state circRNA Expression Ref

Acute myocardial infarction circRNA 104761 Downregulated [104]
circRNA Slc8a1 Upregulated [105]
circRNA NFIX Downregulated [105]

Coronary artery disease* circRNA 0001946 Upregulated [106]
circRNA ZNF609 Downregulated [107]
circRNA 0005540 Upregulated [108]
circRNA NPHP4 Upregulated [109]
circRNA 0124644 Upregulated [110]
circRNA 0001879 Upregulated [111]
circRNA 0001445 Upregulated [112]
circRNA YOD1 Upregulated [113]

Compensated heart failure* circRNA 0062960 Upregulated [114]
Aortic dissection (Stanford type A)* circRNA MARK3 Upregulated [115]
Kawasaki disease* circRNA ANRIL Downregulated [116]
Atrial fibrillation* circRNA 025016 Upregulated [117]
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roles in heart failure and fibrosis. Notable examples include 
circRNA Slc8a1 modulation of miR-133a in fibrosis, cir-
cRNA HIPK3 in MI and apoptosis, and circRNA ACTA2 
impact on vascular inflammation. These circRNAs demon-
strate complex, context-dependent regulatory capabilities, 
highlighting their potential as both biomarkers and thera-
peutic targets in cardiac pathology.

Clinical Diagnostic Applications 
of Non‑Coding RNAs

Non-coding RNAs hold promise as next-generation 
biomarkers. With high disease-, tissue-, or cell-type 
dependence, ncRNAs could offer not only superior sensitivity 
and specificity but also use across a wide range of cardiac 
diseases, identifying not only the presence or absence 
of a disease process, but also reflecting stages in disease 
development, the severity of disease, and underlying tissue 
processes, i.e., fibrosis.

Linear single-stranded ncRNAs such as miRNAs are intrin-
sically vulnerable to degradation and can only exist in circula-
tion by vesicular transit or binding to stabilizing proteins [126]. 
Another challenge facing the development of ncRNA biomark-
ers is specificity; miR-21 has been described as a biomarker 
for at least 29 different pathologies [51]. Further, splicing of 
ncRNAs creates high heterogeneity, and while this expands 
their potential functions, it also adds another layer of complex-
ity to the development of clinical tools [127].

Many ncRNAs have detectable changes in expression 
patterns in the setting of ischemic cardiomyopathy and MI 
(Table 3). Current troponin-based assays represent the stand-
ard of care for the diagnosis of acute myocardial ischemia, but 
interest remains for biomarkers offering superior sensitivity 
and specificity [59, 128]. In MI, miR-137 and miR-106b-5p 
are released within 5 min by ischemic myocardium before the 
onset of necrosis offering an advantage over traditional tro-
ponin biomarker assays [129]. Some circRNAs are expressed 
in the chronic dormant phase of coronary atherosclerotic dis-
ease, such as circYOD1 [113]. A biomarker for chronic coro-
nary atherosclerosis would be a significant milestone as there 

is no available biomarker to diagnose chronic coronary dis-
ease today and could have implications for the detection and 
prevention of ischemic cardiomyopathy. Utilizing the context-
dependent expression of ncRNAs is also of interest in heart 
failures, for example, in the observation of differential expres-
sion of miR-21 during decompensated HF [48]. There are an 
increasing number of potential ncRNA candidates for cardiac 
disease states that presently lack any specific biomarker, such 
as heart failure with preserved ejection fraction, myocarditis, 
atrial fibrillation, and aortic dissection (Table 5 and 6). Alto-
gether, the future diagnostic applications of ncRNAs are an 
exciting prospect in the context of cardiac disease.

Clinical Therapeutic Applications 
of Non‑Coding RNAs

No miRNA drugs have yet advanced to late-stage clinical 
development for cardiac disease, though other gene therapies 
have entered the market, perhaps as forerunners to miRNA 
and other ncRNA drugs. Like miRNAs, small interfering 
RNAs (siRNAs) are ncRNAs that target specific mRNA 
sequences [135]. Vutrisiran and patisiran are two siRNA 
drugs that suppress amyloid transthyretin (aTTR) mRNA 
in the liver, currently approved for the treatment of poly-
neuropathy related to hereditary aTTR amyloidosis [136, 
137]. Both siRNAs have come under investigation for the 
treatment of aTTR cardiac amyloidosis, a rare but important 
cause of HF [138, 139]. Unlike the other ncRNAs, siRNAs 
have especially high specificity and are designed to display 
total complementarity to their targets. SiRNAs target a sin-
gle mRNA with minimal risk of off-target binding, whereas 
miRNAs can be synthesized to mimic the effect of any other 
ncRNA with multiple mRNA or non-mRNA targets, or, in 
theory, to inhibit any target miRNA, lncRNA, or circRNA 
all while lacking perfect complementarity.

Drug delivery is a challenge with gene therapies. Studies in 
this review utilized various delivery vectors such as viral vectors, 
antagomirs, and stable oligonucleotides. Numerous strategies 
remain under investigation to improve delivery in vivo. Lipid 

Table 6  Novel miRNA biomarkers for orphaned cardiac disease states

Disease state miRNA(s) Ref

Myocarditis miR-Chr8:96 [130]
miR-155 [131]
miR-206 [132]

Atrial fibrillation miRNA-328, miRNA-223-3p, miRNA-21, miRNA-29b, miRNA-1-5p [133]
Heart failure with reduced 

ejection fraction
miR-18b-3p, miR-21-5p, miR-22-3p, miR-92b-3p, miR-129-5p, miR-320a-5p, miR-423-5p, miR-

675-5p
[134]

Heart failure with preserved 
ejection fraction

miR-19b-3p, miR-30c-5p, miR-206, miR-221-3p, miR-328-5p, miR-375-3p, miR-424-5p [134]
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nanoparticle systems can readily store and carry RNAs, and 
PEGylation of liposomes—conjugation of polyethylene glycol 
(PEG) to prevent degradation—may reduce potential toxicity 
and nonspecific uptake; patisiran is one example of this deliv-
ery system [140]. Exosomal delivery systems have also been of 
interest, as endogenous exosomal ncRNA regulatory networks 
have been described in vivo, supporting the hypothesis that 
artificial exosomes for ncRNA delivery may offer advantages 
to transfection efficacy, stability, and carrying capacity [141].

Unlike siRNAs, miRNAs, circRNAs, and lncRNAs have 
multiple targets and perform far more complex and context-
dependent regulatory functions. NcRNAs may regulate any 
level of transcription or translation, epigenetic modification, 
or proteins directly. While indeed this presents a risk for 
unintended consequences, it also offers the potential for 
far more potent suppression of the complex maladaptive 
signaling pathways seen in cardiovascular fibrosis and heart 
failure, should these challenges be overcome.

Conclusion

Cardiac fibrosis is the greatest commonality in acquired 
cardiovascular diseases and will eventually lead to heart 
failure. MiRNAs, lncRNAs, and circRNAs have emerged 
as pivotal regulators at nearly all levels of pathologic 
fibrosis, and modulating their expression has shown 
great potential for reversing pathologic disease states. 
As described, miRNAs not only target specific mRNA 
sequences but also regulate other ncRNAs within complex 
networks. LncRNAs can sponge many different RNA 
targets and their roles as recruiters, scaffolds for other 
biomolecular interactions, or protein encoders continue 
to emerge. CircRNAs are increasingly recognized as 
critical diagnostic and therapeutic targets given their 
stability in addition to high-level regulatory functions 
in cardiovascular disease, and their structure enables a 
huge variety of functional capabilities while also vastly 
increasing the regulatory potency of any given circRNA.

Many ncRNAs have emerged as circulating biomarkers 
in different cardiac diseases, and clinical detection of these 
biomarkers has become increasingly realistic. In addition to 
improving upon existing clinical assays, ncRNAs offer the 
potential to emerge as biomarkers for cardiac diseases that 
have none today such as heart failure with preserved ejection 
fraction, atrial fibrillation, or myocarditis. Further, specific 
ncRNAs have the potential to inform the stage of disease and 
the underlying cellular processes such as whether fibrosis is 
currently occurring in the tissue. Methods to detect these cir-
culating ncRNAs continue to evolve to overcome challenges 
such as speed, availability, and labor requirements.

As therapeutics targeting cardiac fibrosis, miRNAs, 
lncRNAs, and circRNAs may be the next gene therapies 

following the budding class of siRNA drugs. Fibrosis is a 
sophisticated and multifactorial process in cardiac disease. 
We reviewed some of the intricacies of fibrogenesis among 
TGFβ pathways, where miRNAs, lncRNAs, and circRNAs 
show the ability to target many different biomolecules to 
inhibit profibrotic signaling at multiple stages and with 
potent effects. Further work is needed toward mitigating 
the risks of off-target effects and degradation in circulation 
for these ncRNAs.

Regulatory interrelationships and the contextual variance 
of ncRNAs have emerged as areas of paramount importance, 
carrying implications for both disease descriptions and 
therapeutic interventions. Looking forward, the potential 
for targeted ncRNA therapies and diagnostic tools specific 
for cardiac fibrosis and diseases thereof seems promising. As 
the nuances of ncRNA functions and regulatory interactions 
among fibrotic signaling continue to be unraveled, so will 
progress be made for their clinical development.
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