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Abstract
Purpose of Review  The introduction of Artificial Intelligence into the healthcare system offers enormous opportunities for 
biomedical research, the improvement of patient care, and cost reduction in high-end medicine. Digital concepts and work-
flows are already playing an increasingly important role in cardiology. The fusion of computer science and medicine offers 
great transformative potential and enables enormous acceleration processes in cardiovascular medicine.
Recent Findings  As medical data becomes smart, it is also becoming more valuable and vulnerable to malicious actors. In 
addition, the gap between what is technically possible and what is allowed by privacy legislation is growing. Principles of 
the General Data Protection Regulation that have been in force since May 2018, such as transparency, purpose limitation, 
and data minimization, seem to hinder the development and use of Artificial Intelligence.
Summary  Concepts to secure data integrity and incorporate legal and ethical principles can help to avoid the potential 
risks of digitization and may result in an European leadership in regard to privacy protection and AI. The following review 
provides an overview of relevant aspects of Artificial Intelligence and Machine Learning, highlights selected applications 
in cardiology, and discusses central ethical and legal considerations.
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Abbreviations
AI	� Artificial Intelligence
CDC	� US Centers for Disease Control and 

Prevention
CDSS	� Clinical Decision Support System
COVID-19	� COronaVirus Disease 2019
DL	� Deep learning
FDA	� US Food and Drug Administration
GDPR	� General Data Protection Regulation
ML	� Machine Learning

NLP	� Natural language processing
SARS-CoV-2 	� Severe acute respiratory syndrome coro-

navirus 2

Introduction

Artificial Intelligence (AI) is a generic term that describes 
the ability of a machine to simulate intelligent behavior. In 
the past 10 years, significant successes in language process-
ing, object/pattern recognition, and bioinformatics have con-
tributed to the success of AI. Due to the increasing flood of 
data after the introduction of technologies such as whole-
genome sequencing and mobile devices in everyday clinical 
practice, modern cardiologists will be required to integrate 
and thus interpret information from a wide range of fields in 
biomedicine [1, 2••]. With the help of AI, the cardiologist 
should be provided with support tools to increase the effec-
tiveness and performance of clinical cardiology. In perspec-
tive, the clinician could be freed from routine tasks, so that 
core competencies such as empathy, attention, and time for 
physician–patient interaction could be strengthened.
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AI systems need to be trained with data to be able to 
associate similar groups based on characteristics and out-
come data. Demographic data, medical reports, laboratory 
findings, and imaging methods are often used for this pur-
pose. These algorithms require a large amount of training 
data to be able to adequately answer questions. Machine 
Learning (ML) as a sub-area of AI includes statistical and 
mathematical methods, which make it possible to learn 
patterns and laws based on existing data sets. Deep learn-
ing (DL) is in turn a sub-area of ML and is based on arti-
ficial simulations of neural networks. It is fascinating that 
with DL even unstructured and highly complex informa-
tion—such as images, sounds, or movie sequences—can 
be processed in a highly efficient way, in real time. Natu-
ral Language Processing (NLP) uses unstructured data 
such as medical reports or articles from medical journals. 
NLP enables machine processing of natural language. By 
extracting targeted information, NLP provides structured, 
machine-readable data, which can then further supply ML 
algorithms to support diagnosis, treatment planning, and 
risk assessment [3]. AI algorithms are already transcribing 
medical dictations with almost no errors. With the speech 
processing services such as Amazon Comprehend Medical 
(Amazon, Seattle, WA, USA) precise information such as 
illness, medication, dosage, strength, and frequency are 
claimed to be extracted from unstructured sources such 
as doctor’s notes, reports on clinical studies, and patient 
files [4]. Text mining in electronic health records is also 
increasingly being used to support clinical trials by select-
ing patients who meet inclusion and exclusion criteria [5]. 
After tidying up large volumes of unstructured text data 
present in electronic health records, such as demographic 
information, medical history, and medication, potential 
participants for clinical trials can be identified, reduc-
ing the time and cost associated with manual recruitment 
processes.

The process of gaining deep information by using AI 
algorithms is still partly unclear with AI systems. In par-
ticular, deep artificial neural networks are still referred to 
as black-box models because their information processing 
is not fully understandable for humans, and thus, decisions 
seem to be made autonomously. This also leads to the fact 
that black-box models are now recognized by many ML 
scientists as one of the main obstacles to the use of ML 
in medicine. Yet not all ML methods represent black-box 
models. Research groups focusing on “Explainable AI” or 
“Transparent AI” are looking for ways to better understand 
hidden logic and individual outputs. It is important that 
cardiologists confronted with these techniques in clinical 
decision support or in the interpretation of new research 
have a critical understanding of both their strengths and 
limitations [6•].

COVID‑19 as an Accelerator for Clinical AI 
and Digital Health

The respiratory COronaVirus Disease 2019 (COVID-19) 
triggered by SARS-CoV-2 (Severe Acute Respiratory Syn-
drome Coronavirus 2) drastically changed our everyday 
life with the global outbreak in early 2020. The pandemic 
has worrying medical, psychological, and socio-economic 
consequences. Due to the lack of evidence-based treatment 
options and the lack of vaccines at the beginning of the 
pandemic, far-reaching measures were introduced to slow 
down the unrestricted spread of SARS-CoV-2, to avoid 
overloading hospital infrastructure, and, ultimately, to pro-
tect known risk groups. Data on the COVID-19 disease is 
currently being collected and shared worldwide like never 
before. AI benefits from the amount of data generated and 
helps to gain deeper knowledge. Therefore, we need to 
figure out a well-considered balance between data privacy 
and public health concerns.

In consideration of the massive amounts of data gener-
ated by apps and wearables, AI tools are gaining a cen-
tral role in data structuring and analysis and therefore 
are providing more efficient and accurate methods for 
analyzing and interpreting patient data. With strict lock-
downs in place and a heightened fear of exposure to the 
virus, many patients with cardiovascular diseases and a 
consequent increased risk of morbidity under COVID-
19 have opted to receive virtual care instead of in-person 
appointments. This shift has pushed healthcare providers 
to rapidly implement remote monitoring systems, allow-
ing patients to send vital signs, ECG and photoplethys-
mography readings, and further disease-related data to 
their doctor from the safety of their own home. This, in 
turn, allows treating physicians to maintain care delivery 
and recommend changes in treatment, such as increasing 
the dosage of heart-failure medication or, in the event of 
deteriorating health, a recommendation for hospitalization. 
Patient surveys indicate that telemedicine has several ben-
efits, including increased comfort during virtual appoint-
ments (Teleconsultation) and the ability to carry on with 
work or leisure while receiving medical care [7]. Remote 
cardiac monitoring has a long tradition in cardiology 
allowing the exchange of digitized data from implanted 
or wearable devices especially in the fields of heart failure, 
atrial fibrillation, and ischemic heart disease [8•, 9]. In a 
concise comment Cowie and Lam indicated that COVID-
19 has changed our conversation about the value of remote 
monitoring [9]. The ubiquitous availability of smartphones 
and wearables combined with internet connectivity capa-
bilities and advances in sensor technology offers a great 
chance to fundamentally change outpatient consultation 
and treatment in a patient-centered manner. New digital 
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measures should specifically promote patient participation 
and actively involve them in the diagnosis and treatment 
process. In the future, smart devices and direct-to-con-
sumer technologies will make it easier for “e-patients” to 
access their own health data, which has so far been stored 
in data silos and only passed on to them to a limited extent. 
Smart devices and direct-to-consumer technologies ena-
ble not only continuous monitoring and a contribution to 
patient-centered health data, but also new diagnostic pro-
cedures and treatments outside the hospital. Furthermore, 
telemedicine enhances access to healthcare, especially for 
individuals residing in rural areas. One example for tel-
econsultation is the TeleCheck-AF approach, which was 
set up within an extremely short time at the beginning of 
the COVID-19 pandemic across different European centers 
to monitor patients with atrial fibrillation using on-demand 
photoplethysmography-based heart rate and rhythm moni-
toring [10•]. Despite the many clearly evident benefits of 
telemedicine in cardiology, some drawbacks should not be 
overlooked, including data security risks such as hacking 
and unauthorized access to patient data, and ethical issues 
such as inadequate physician–patient interaction, loss of 
privacy, or barriers to telemedicine in specific patient 
populations. Finally, further research is clearly needed to 
evaluate the long-term impact of telemedicine and AI on 
patient outcomes and the practice of cardiology.

Artificial Intelligence in Cardiovascular 
Medicine

AI systems can help to extract additional, often nuanced, 
information from various already established routine diag-
nostic tools such as ECG, echocardiography, MRI, CT, 
cardiac catheterization, biomarker analysis, and genetics. 
As a result, physicians are liberated from repetitive, time-
consuming tasks, allowing them to focus more on their 
core competencies such as empathy and time for physi-
cian–patient interaction. This also translates into improved 
resource utilization, optimizing the allocation of valuable 
resources within the healthcare system, ultimately leading 
to more efficient, patient-centered care. With the develop-
ment of smartphones, wearables, and the associated apps 
plenty of new possibilities were added to the asset of smart 
health data (e.g., to measure pulse frequency and blood 
pressure, upgrade smartphones to become a stethoscope, 
ECG device, or measure blood glucose, all at the ambula-
tory level and more or less continuously) [8•]. The high 
transformative potential is well illustrated by the existing 
research results in the field of cardiovascular medicine. Fig-
ure 1 shows an overview of the current applications and 
the potential of AI in cardiovascular medicine that are dis-
cussed within this review.

ECG

As early as 1998, ML found its way into cardiovascular 
medicine with automated ECG analysis [11•]. Recent study 
results have shown that astonishing additional informa-
tion can be extracted from routine ECGs with the help of 
ML. Zachi Attia and team trained a neural network with 
apparently normal 12-channel sinus rhythm ECG to detect 
whether the patient is suffering from silent atrial fibrilla-
tion [12•]. They used data from around 180,000 patients 
and 650,000 sinus rhythm ECGs. It was discussed that AI 
in patients with paroxysmal atrial fibrillation recognizes 
electrophysiological changes at the atrial level on the sinus 
rhythm ECG, which are not detectable by the human eye. 
Furthermore, deep-learning convolutional neural networks 
have been trained to detect asymptomatic left ventricu-
lar dysfunction, hypertrophic cardiomyopathy as well as 
patient’s age, sex, and race based on the ECG alone [13•]. 
These approaches may not be limited to 12-lead ECGs, but 
it is conceivable that ECG phenotyping will also become 
possible using single-lead or multilead ECG signals from 
smart devices. In the future, it will be particularly relevant 
to generate data from (randomized) prospective studies with 
patient outcomes in order to validate and verify the use of 
deep ECG phenotyping and encounter possible challenges 
and limitations.

Imaging

The ability of AI to classify and interpret image data is 
remarkable. AI promises to automate time-consuming, repet-
itive clinical tasks, reduce examiner-dependent variability, 
and predict phenotypes that are challenging or not apparent 
to the human eye in the first place. In March 2020, Ouyang 
et al. reported their AI algorithm (EchoNet-Dynamic) to be 
able to classify left ventricular ejection fraction using echo-
cardiographic recordings [14]. The algorithm was trained on 
more than 10,000 videos using a 3D DL-model. Particularly 
noteworthy is the detection and integration of both spatial 
and temporal changes in the left ventricular borders. Seah 
et al. used neural networks to automatically detect radio-
logical patterns of heart failure [15]. It should be empha-
sized here that the authors succeeded in directly visualizing 
the features that were necessary for their classification. In 
the segmentation of cine MRI images of the left ventricle, 
Ngo and team were able to surpass manual segmentation 
using DL [16]. Thus, the use of AI algorithms saves medical 
doctors valuable time and enables improved evaluation of 
radiological images. In 2016, the British computer scientist 
Geoffrey Hinton, who is best known for his contributions to 
artificial neural networks, said: “It's just completely obvi-
ous that in five years DL is going to do better than radi-
ologists” [17]. This statement refers to automated pattern 
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recognition. Clinicians and radiologists cannot be replaced 
by AI since they are needed for the integration and interpre-
tation of clinical data as well as for the interaction between 
patients and colleagues [18].

Arterys (Arterys, San Francisco, CA, USA) uses DL and 
cloud computing, which is storage space available over the 
Internet, for the automatic analysis of cardiac MRI images. 
Time-consuming routinely performed analysis can be accel-
erated and automated [19]. In addition, advanced methods, 
such as quantifying the entire delayed enhancement in the 
left ventricle, enable a more detailed observation and analy-
sis of cardiac MRI sequences. With the “AI Rad Compan-
ion,” Siemens Healthineers (Siemens Healthineers, Malvern, 
PA, USA) have also set themselves the goal of replacing 
repetitive, time-consuming tasks with AI. The Butterfly iQ 
(Butterfly Network, Guilford, CT, USA) is a new tool for 

bedside diagnostics, which has already been approved by 
the FDA (US Food and Drug Administration). In contrast to 
conventional ultrasound transducers, which generate ultra-
sound waves employing piezoelectric quartz or ceramic 
vibrators, a silicon chip is used here. The app supplied inter-
prets the resulting ultrasound images using AI [20].

Risk Analysis, Prognosis, and Personalized 
Treatment

AI-powered clinical decision support systems (CDSS) provide 
physicians with a virtual medical coach that uses compre-
hensive input from an individual, which is deep learned to 
enhance diagnostic accuracy, optimize treatment strategies, 
and improve individual patient outcomes [21]. AI-powered 
CDSS can process vast amounts of complex data, including 
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Fig. 1   Applications and potential of AI in Cardiology. (1)  Clinical 
Decision Support (CDS) enables integration of all important informa-
tion for clinical and guideline decisions. CDS is gaining significant 
importance due to increasing data accumulation; (2)  Precision Risk 
Analysis and Prognosis as well as (3)  Integration of Multidimen-
sional Data represent concepts of personalized medicine and can 
be achieved by applying different domains of AI. They describe the 
journey from population-based medicine to concepts like patient-like-
me; (4) Improved Resource Utilization can result from AI taking over 

repetitive time-consuming tasks, freeing up physician time for dedi-
cated patient care, and thus (5) enhancing the physician–patient inter-
action; (6) Continuous Remote Monitoring and Diagnostics includes 
comprehensive outpatient-centered health care with remote monitor-
ing and teleconsultations as well as mobile devices including associ-
ated apps that provide health information to patients, collect a wide 
variety of physiological parameters, and place the patient at the center 
of care



275Current Heart Failure Reports (2023) 20:271–279	

1 3

patient demographics, clinical histories, genomic data, and 
imaging results. By identifying patterns and correlations 
within this data, AI can empower clinicians with actionable 
insights to guide their decision-making. Lately, Tayal et al. 
presented a novel precision-phenotyping approach to subclas-
sify dilated cardiomyopathy into three distinct subtypes [22]. 
They applied ML on multidimensional data (demographic and 
clinical features, ECG and CMR data, sequences from 169 
genes and 276 proteomic biomarkers) to gain new insights 
into dilated cardiomyopathy. Whether the classifications rep-
resent different phenotypes or different stages of the disease 
remains unclear. Nevertheless, deep classification in patients 
with dilated cardiomyopathy will enable tailored personal-
ized diagnoses and thus more targeted therapies to be selected 
in the future. Identifying more accurate patterns of systolic 
and diastolic dysfunction in heart failure via a data-driven 
approach to phenotyping has the potential to improve risk 
assessment and treatment optimization especially within this 
heterogeneous condition. The current classification of heart 
failure, which is based on measurement of the left ventricular 
ejection fraction, is a practical but oversimplified, and there 
is growing evidence that diastolic dysfunction is composed of 
multiple subgroups with different patterns of disease mani-
festation and underlying causes, requiring individualized 
approaches [23–25]. Particularly now that the successful 
large-scale randomized trials of SGLT2 inhibitors are open-
ing up new therapeutic options, the use of ML could allow 
treatment recommendations to be tailored to more refined 
phenogroups in the future. Another application is the risk 
stratification of ventricular arrhythmias in hypertrophic car-
diomyopathy. Nevertheless, the results are not yet sufficient 
for clinical introduction [26]. In a study by Alaa et al., the 
cardiovascular risk of asymptomatic patients was analyzed 
using data from more than 400,000 patients and over 450 
variables [27]. This study identified new cardiovascular risk 
factors and reported a superior risk stratification compared to 
the Framingham Score. Clinical validation must be achieved 
through follow-up studies, preferably randomized controlled 
trials. Nevertheless, the existing studies demonstrate the 
breakthrough potential of improved prognostic applications 
through ML in cardiovascular medicine.

Digital health assumes easy access to advanced technolo-
gies such as recording digital biomarkers using advanced 
sensor technology or even whole-genome sequencing. This 
therefore makes the patient the point-of-care and allows him 
to actively participate in the diagnosis and treatment process. 
However, as the use of digital health and the collection of 
personal data continues to expand, it is crucial to consider the 
ethical principles and personal privacy risks involved. Con-
cepts to ensure data integrity and incorporate legal and ethical 
principles are clearly needed to avoid the potential risks of 
digitization and will be discussed in the following section.

Ethical Principles and Legal Framework 
for Data Protection

Responsibility

The use of AI, which can combine almost all possible data-
sets, and which is even able to generate natural looking 
images de novo, gives rise to considerable privacy risks 
and can potentially lead to job losses, discrimination, or 
social isolation [28••, 29••]. Particular attention must be 
paid to ensure responsible and ethical handling and use 
of data under the premise to protect individual’s freedom, 
personal rights, and autonomy. To turn it around: compli-
ance with ethical norms and principles must not be violated 
when developing or using AI; it must be strictly enforced. 
Personal data must be processed with the greatest care. The 
fear of losing human decision-making sovereignty through 
fully automated systems can be controlled by adhering to 
moral limits and a thorough examination. Risks of storage, 
transfer, and use must be considered at an early stage. In 
April 2019, the European Commission published its eth-
ics guidelines for a trustworthy AI use, which are based 
on the Charter of Fundamental Rights of the European 
Union [30]. The guidelines are based on principles such 
as data protection and transparency. Social scientists have 
been able to show how imperceptibly these ethical prin-
ciples can be violated. An example recently reported by 
Obermeyer et al. in Science concerns racial bias encoded 
by ML from observational health care data [31]. Black 
patients with the same risk score as White patients assessed 
by a widely used algorithm tended to be much sicker due 
to racial bias by design and choice of ground truth. The 
tool was designed to predict the cost of care as proxy for 
health needs and underestimated severity of disease in 
Black patients because of unequal access to care and less 
money spent on care for Black patients. This type of bias 
is particularly harmful because it can arise from reasonable 
choices. Encouragingly, the authors reported that this bias 
can be compensated for. Through careful selection, we can 
exploit the benefits of algorithmic predictions while mini-
mizing their risks [31]. Potential hurdles to a final AI tool 
can be addressed through the appropriate selection of ideal 
data sources, thoughtful interpretation, validation, and gen-
eralization of results, and a pervasive evaluation of safety 
and ethical concerns. In accordance with the ethical and 
moral principles described by Beauchamp and Childress 
in their book Principles of Biomedical Ethics in 1977, 
doctors are expected to use new technologies sensibly 
and only for the benefit of the patient [32]. The four basic 
moral principles include respect for autonomy (includes 
the right to refuse a treatment), non-maleficence (“primum 
non nocere”), beneficence (act in the best interest of the 
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patient), and justice. Every new, revolutionary technology 
can raise new ethical and legal questions; nevertheless, 
our fundamental values should not be questioned. Table 1 
shows relevant aspects from an ethical and legal perspec-
tive based on the concepts of the EURAT project group on 
“Ethical and Legal Aspects of whole genome sequencing 
of the human genome” [33].

Transparency

Clinical systems require strict control and supervision. There 
is a low tolerance threshold, particularly with regard to tech-
nical errors. Transparency and efficiency will have a major 
impact on medical confidence in the use of AI. A large area 
of research is currently focusing on explaining the so-called 
black-box models to address clinicians’ and users’ need for 
transparency. Current explanatory techniques have their lim-
itations (e.g., approximation of high-dimensional nonlinear 
models by linear models), which cardiologists and cardio-
vascular researchers need to be aware of in order to make 
informed decisions about when and how to use them [6•]. 
Transforming the healthcare system supported by the enor-
mous potential of AI requires a multidisciplinary approach 
with the involvement of AI developers/users, doctors, ethics 
workforce, and humanities scholars. This also requires an 
expansion of the current study plans with a focus on data 
science and AI products and services.

Data Protection and Data Security

There is a relevant risk of re-identification due to the power-
ful analysis algorithms and the enormous amount of data. 
Already established methods such as pseudonymization and 
anonymization, which are used specifically to prevent re-
identification, can thus become ineffective. Rocher, Hen-
drickx, and de Montjoye were able to correctly re-identify 
99.98% of Americans in each data set using 15 demographic 
attributes  [34]. If sufficiently large amounts of data are 
used, there is insufficient anonymity in the context of medi-
cal data, and it is inevitable that personal or person-related 
data will be worked with. Nevertheless, when using data 

acquired from daily life, mechanisms such as differential 
privacy allow to protect individuals within aggregated data 
but also within individual-level data by introducing random 
noise that is enough to protect against de-identification but 
does not harm the purpose to train algorithms. Current and 
next-generation methods for federated, secure, and privacy-
preserving AI include decentralized, distributed systems that 
allow the data to remain with its owner (containers). Central-
ized solutions (e.g., cloud computing) present several con-
cerns such as increased data volume and issues about data 
ownership, confidentiality, privacy, security, and the crea-
tion of data monopolies that favor data aggregators [35, 36]. 
Another development in decentralized learning is what is 
known as Swarm Learning [37]. Unlike federated learning, 
in which the data also remains local, but model parameters 
are exchanged centrally, there is no central command center 
in Swarm Learning. A Swarm network consist of Swarm 
edge nodes that exchange parameters for learning coopera-
tively based on rules recorded in a blockchain. Further con-
cepts to preserve confidentiality, privacy and ethics include 
cryptography (e.g., homomorphic encryption), and secure 
multi-party computation (SMPC) which prevents single par-
ties to retrieve the entire data on their own [35]. Yao’s proto-
col, a cryptographic method, has been successfully applied 
in the field of genetic sequencing and diagnostics and proved 
to preserve participant privacy in up to 99.7% [38].

Accessibility of Data, Data Avoidance, and Purpose 
Limitation

A key prerequisite for AI application is the availability and 
quality of data. Medical AI algorithms must learn from 
curated patient data to later work accurately and trustwor-
thy for the single patient. On the other hand, we must ask 
ourselves how we can protect vulnerable patient data at a 
point, where patient data becomes an increasingly valuable 
commodity and the line between innovation and exploitation 
dissolves. Since the early 1990s, the development of data 
protection law has been based on an increase in the vol-
ume of data and a growing need for privacy protection. The 
principles of data protection established with the EU GDPR 

Table 1   Aspects for regulations relating to collection, saving, usage, transfer, and publication of data records at the institutional level

Responsibility All participating scientists and institutions have to handle the data in a responsible manner. Compe-
tences are to be assigned to all parties involved to prevent conflicts and diffusion of responsibilities

Transparency The methods used must be described and explained fully and made understandable to the public
Data protection and data security Data must not be lost and must be protected from unauthorized access with measures that cannot be 

bypassed
Accessibility of data The data are to be made available to the scientific community to the greatest extent possible, on one 

hand, to enable the best possible use of the data, on the other hand for the scientific verifiability of 
results (quality of research)

Data avoidance and purpose limitation Only those data may be gathered, saved, and forwarded that serve the specific research purpose
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include transparency, lawfulness and fairness, purpose limi-
tation, data minimization, accuracy, storage limitation as 
well as integrity and confidentiality as stated in Chapter II 
Art 5 [39]. The primary goal is to protect personal data. 
However, AI is particularly characterized by the use and pro-
cessing of big data. If AI algorithms are trained on relatively 
small datasets, this will often result in limited robustness and 
potentially leads to biased results for unspecified subgroups. 
According to the GDPR’s data minimization requirement, 
a trend from Big Data to Smart Data can be observed using 
exactly the data that is required to answer a specific ques-
tion. The principle of purpose limitation also plays a major 
role here: AI tries to establish hidden relationships. When 
using existing large amounts of data, they are decoupled 
from the purposes they originally served. Ideally, the data 
that needs to be used to train AI systems originate from 
sources that guarantee privacy by design and consent. Some 
companies, for instance, do not buy available data to develop 
their algorithms in smart devices, but conduct smaller or 
larger trials on their own or together with academic partners, 
to collect the necessary information with written consent 
from the participants. While this approach is expensive and 
more laborious, the data often has “clinical trial quality” 
and can address many aspects needed to ensure provenance 
and quality of the measured data items from the beginning 
and leading to secure and ethical use of patient data. The 
PROMISE (Personal medical safe) study, for instance, 
evaluated within a controlled clinical trial new methods 
that allow patients to decide for themselves on the access to 
their genetic data [40•]. The genetic data is encrypted and 
securely stored on servers. Innovative cryptographic pro-
cesses such as functional encryption are used to only analyze 
very defined parts of the stored gene sequences. Access is 
only granted after a specific, one-time authorization from 
the patient. It can thus make an important contribution to 
self-participation of patients in the digital health era.

Conclusion

The transition toward digital medicine has been substantially 
accelerated over the last few years. With the tremendous 
progress, we risk falling behind in regulating and monitor-
ing the emerging technologies. Therefore, ethical and legal 
confrontation is of utter importance. Patient empowerment 
and consent should be emphasized more strongly in the 
regulatory process, and increasingly sophisticated meth-
ods for privacy-preserving and explainable AI are required 
while minimizing the cost to innovation. Improving access 
to healthcare through outpatient-generated data can help to 
allocate resources and decentralize patient care. This can be 
of great benefit to public health in the treatment of wide-
spread and common diseases like coronary heart disease, 

chronic heart failure, or, of topical interest, pandemics like 
COVID-19. Physicians are taking on new role in advising 
patients on digital health, which implies a duty to educate 
themselves on the safe and beneficial use of digital technolo-
gies. Thorough patient education and transparent handling of 
patient-related data are the basis for paving the way further 
for digital medicine.
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