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Abstract
Purpose of Review The balance between inflammation and its resolution plays an important and increasingly appreciated 
role in heart failure (HF) pathogenesis. In humans, different chronic inflammatory conditions and immune-inflammatory 
responses to infection can lead to diverse HF manifestations. Reviewing the phenotypic and mechanistic diversity of these 
HF presentations offers useful clinical and scientific insights.
Recent Findings HF risk is increased in patients with chronic inflammatory and autoimmune disorders and relates to disease 
severity. Inflammatory condition–specific HF manifestations exist and underlying pathophysiologic causes may differ across 
conditions.
Summary Although inflammatory disease–specific presentations of HF differ, chronic excess in inflammation and auto-
inflammation relative to resolution of this inflammation is a common underlying contributor to HF. Further studies are 
needed to phenotypically refine inflammatory condition–specific HF pathophysiologies and prognoses, as well as potential 
targets for intervention.

Keywords Heart failure pathogenesis · Chronic inflammatory and autoimmune disorders · Persistent inflammation · 
Trained immunity · Inflammation resolution

Introduction

An increasing appreciation of heart failure (HF) phenotypic 
heterogeneity over the past decade has expanded mechanistic 
insights related to HF pathophysiology and progression [1, 
2]. Augmenting traditional understandings of HF hemody-
namics and neurohormonal modulation [3], an increasing 

body of evidence highlights the role of inflammation in the 
pathogenesis and progression of various HF phenotypes [4, 
5••]. In this context, reviewing diverse HF phenotypes in 
different chronic inflammatory and infectious conditions 
may offer insights into how distinct inflammatory path-
ways impact HF while also providing practical knowledge 
on inflammatory disease–associated HF for clinicians. We 
first review the state of the art regarding innate and adap-
tive immune responses in inflammation; we then discuss HF 
pathogenesis and presentation in various chronic inflamma-
tory and infectious conditions; finally, we explore scientific 
gaps and potential therapeutic opportunities.

Innate and Adaptive Immune Responses: 
Focused Overview for the Cardiologist

First, we will briefly provide an overview of innate and adap-
tive immune responses for the cardiologist; this overview 
informs the clinically focused discussion later in this article.
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Innate Immunity

The human immune system is generally divided into two 
major components: innate and adaptive immunity [6]. Innate 
immunity generally acts as the first line of defense and is 
largely nonspecific, mediated by neutrophils, macrophages, 
dendritic cells, natural killer cells, monocytes, eosinophils, 
basophils, and mast cells [7, 8]. Pathogen-associated molec-
ular patterns (PAMPs) or damage-associated molecular pat-
terns (DAMPs) released from damaged cells are recognized 
by pattern recognition receptors (PPRs), which in turn can 
also detect endogenous host cellular damage [9]. This trig-
gers downstream signaling cascades that activate nuclear 
factor-kB, as well as interferon regulatory factor transcrip-
tion factors, and activator protein 1, leading to transcrip-
tion of pro-inflammatory cytokines [9]. Innate immune 
cells enacting these cellular programs demonstrate func-
tional plasticity depending on local conditions and antigenic 
exposures. Indeed, whereas exposure to certain antigens and 
adverse metabolic conditions can lead to persistent inflam-
matory hyperactivation, in non-disease conditions, cells such 
as macrophages can actively resolve inflammation [10–14].

Trained Immunity: Innate Immune Memory

Recent evidence suggests that innate immune cells have 
the capacity to build memory [15], an emerging concept 
termed “trained immunity” or “innate immune memory” 
[16]. While likely intended to protect against re-infection 
or other secondary foreign agents, this memory can become 
maladaptive and harm the host. Indeed, exposure to certain 
stimuli, such as oxidized cholesterol particles, can lead to 
epigenetic reprogramming of innate immune cells [16, 17] 
and drive prolonged inflammatory hyperactivation [16, 18•, 
19]. These changes are increasingly implicated in cardiovas-
cular inflammation and, in concert with adaptive immune 
changes, may serve as important links between antigenic 
exposures (infectious and noninfectious) and atherosclerosis 
[18•].

Adaptive Immunity

Adaptive immune responses are relatively specific and medi-
ated largely by B and T cells, which can act independently, 
in concert with innate immune cells [20], and occasionally 
with one another [21] to clear pathogens. T cells mature in 
the thymus, differentiate into memory or effector cells, and 
are essential to immune memory and homeostasis; T cell 
receptors (TCRs) recognize a diverse set of environmen-
tal and infectious antigens, presented by antigen-presenting 
cells such as dendritic cells, and can subsequently enact a 

number of inflammatory and/or inflammation-resolving pro-
grams [22–24]. This balance between inflammation and its 
resolution depends on antigen- and milieu-specific triggers, 
which drive T cell differentiation (e.g., with distinct helper 
or cytotoxic functions) and related signature cytokine pro-
duction [22, 25, 26]. B cells, meanwhile, are derived from 
the bone marrow and, upon encountering antigen epitopes, 
mature into immunoglobin-secreting plasma cells or mem-
ory B cells [27, 28]. Although B cell memory is central to 
lasting immune protection against pathogens [29], failure 
of self-tolerance immune checkpoints can result in autoan-
tibody production with related auto-immune conditions such 
as systemic lupus erythematosus (SLE) and rheumatoid 
arthritis (RA) [27].

Balance Between Inflammatory Hyperactivation 
and Resolution: Implications for Myocardial Disease 
and HF

Relevant to myocardial disease pathogenesis, unresolving 
inflammation can yield adverse ventricular remodeling, dys-
function, and ultimately HF [5••, 9, 30]. The time course of 
these varies depending on the underlying pathophysiology. A 
particularly acute and overt manifestation of immune-medi-
ated HF is myocarditis, in which profound T cell activation 
plays a central role; in experimental infectious and inflam-
matory myocarditis, blunting T cell responses [31], particu-
larly  CD4+ T cells and their receptors (but perhaps not  CD8+ 
T cells), ameliorates cardiac inflammation, damage, and dys-
function [32, 33]. Apart from acute infectious and inflamma-
tory myocarditis, subtle differences in inflammation persis-
tence vs. resolution impact cardiac function following local 
injury as occurs in myocardial infarction (MI). For instance, 
tyrosine kinase receptors expressed on macrophages (such as 
AXL and MerTK) increase pro-inflammatory responses and 
result in adverse ventricular remodeling and progression to 
HF, whereas their blockade ameliorates ischemia–reperfu-
sion MI-induced HF [34]. Post-MI responses from the adap-
tive immune compartment are likewise essential to dictating 
the net-reparative vs. harmful impact on myocardial function 
and HF. T regulatory cells may provide a net-resolving effect 
related to wound healing after MI (perhaps via modulat-
ing inflammatory macrophage responses [35]), although the 
overall effect of T cells on post-MI inflammation vs. reso-
lution remains under debate [36–38]. Meanwhile, B cells 
appear to be implicated in post-MI adverse remodeling and 
HF [39], but further study is needed on myocardial-specific 
effects of B cells as well as the pathophysiologic significance 
of myocardial autoantibodies [37, 40–43]. These experi-
mental models, though largely focused on acute/subacute 
injury, have provided essential mechanistic insights into 
immune-mediated mechanisms of cardiac injury and dys-
function. Further mechanisms and related models of innate 
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and adaptive immune responses implicated in HF pathogen-
esis have been discussed in detail elsewhere and are beyond 
the scope of this review [5••, 44]. With our brief forego-
ing review of immune response elements as a foundation, 
the remainder of this review focuses on clinically relevant 
presentations and underlying pathophysiologies of HF in 
distinct chronic infectious and inflammatory conditions; an 
overview of these diverse immunopathogenic mechanisms 
in the context of other common causes of cardiac injury is 
provided in Fig. 1.

Heart Failure in Chronic Inflammatory 
Conditions: Clinical Presentations 
and Mechanistic Correlates

Chronic inflammatory and autoimmune disorders are asso-
ciated with a range of cardiovascular comorbidities includ-
ing ASCVD, conduction abnormalities, valvular disease, 
and HF [45]. The increased risks for CVDs vary depend-
ing on the condition and stem from complex interactions 
between immunity-specific factors, accelerated atheroscle-
rosis, persistent inflammation, microvascular disease, higher 
prevalence of CVD traditional risk factors, and off-target 
therapeutic effects [46–48]. Given diverse chronic inflamma-
tory disease pathophysiologies, HF manifestations in these 
conditions are likewise non-uniform. Here, we present the 
current state of the art—based on admittedly limited existing 
data—on specific chronic inflammatory disease–associated 
HF risks and presentations.

Rheumatoid Arthritis

Patients with rheumatoid arthritis (RA) are at elevated risk 
for CVDs in general [49, 50•] and HF in specific, even after 
adjustment for cardiovascular risk factors and underlying 
ischemic heart disease [49, 50•, 51•]. Regarding HF pheno-
types in RA, RA patients with HF were more likely to have 
preserved ejection fraction compared to non-RA patients 
[52, 53]. RA-associated HF risk may be particularly appar-
ent among women; women with RA are 3- to fourfold more 
likely to have diastolic dysfunction compared with women 
without RA with similar demographic and clinical profiles 
[54]. Perhaps not surprisingly, worse disease control and 
related heightened autoimmune inflammation in RA associ-
ate with adverse cardiac remodeling [55] marked by excess 
fibrosis [56], impaired diastolic function, and HF [51•]. A 
single-center electronic records–based study suggested that 
chronic methotrexate treatment is associated with lower risk 
for HF among RA patients; however, further clarification 
is needed regarding effects of specific disease-modifying 
antirheumatic drugs (DMARDs) on HF pathogenesis and 
progression in RA [51•].

Systemic Lupus Erythematosus

Patients with systemic lupus erythematosus (SLE) are at 
heightened risk for a variety of CVDs, in particular athero-
sclerosis and thrombosis; they are likewise at heightened 
risk for pericarditis, endocarditis, valvular disease, and HF 
[57]. Prevalence of HF in patients with SLE is estimated to 
be between 1 and 10% [58] and HF incidence is 3–5 times 
higher in SLE patients compared to controls [59]. Limited 
data exist regarding HF phenotype in SLE; in a single-center 
study evaluating left ventricular ejection fraction (LVEF) 
trajectory over time in patients with chronic inflammatory 
diseases, SLE was more commonly associated with heart 
failure with preserved or midrange ejection fraction (HFpEF, 
HFmrEF) rather than with reduced ejection fraction (HFrEF) 
[60•]. A diversity of mechanisms are implicated in SLE-
associated HF. These include premature athero-thrombosis 
and MI (with related myocardial damage), chronic myocar-
dial inflammation (in absence of acute ischemic injury), and 
microvascular dysfunction/ischemia [58]. Further studies 
are needed to clarify specific mechanisms underlying SLE-
associated HF [58, 59].

Systemic Sclerosis

Systemic sclerosis (SSc) is associated with significantly 
elevated risk for CVDs including pulmonary hypertension, 
valvular diseases, arrhythmias, and heart failure [61]. In a 
single-center study of patients with various chronic inflam-
matory diseases, patients with SSc had the highest incidence 
of HF of all chronic inflammatory diseases—and as much 
as 7- to eightfold higher than controls—even after adjust-
ment for demographic and clinical covariates of relevance 
[62•]. The phenotypic presentation of HF associated with 
SSc also appears to be distinct from that of other chronic 
inflammatory diseases. Isolated right-sided heart failure is 
quite common in SSc [63], which is perhaps not surprising 
given the high prevalence of pulmonary arterial hyperten-
sion in SSc [64]. Even in SSc patients without overt HF, 
abnormal cardiac tissue structure and mechanics are com-
mon: approximately 1/3rd of SSc patients have late gado-
linium enhancement on cardiac magnetic resonance imaging 
[65] and diastolic dysfunction is highly prevalent [66]. The 
pathophysiology of SSc-associated myocardial dysfunction 
and HF involves a deleterious combination of fibrosis and 
ischemia, with existing fibrosis exacerbating ischemia due 
to mechanical limitation of blood flow, resulting in further 
ischemia/injury and fibrosis; epicardial vasospastic phenom-
ena (referred to as “myocardial Raynaud’s phenomenon”) 
are also implicated [62•, 67–69]. Prognosis of SSc-associ-
ated HF is poor, and approximately 25% of deaths in patients 
with SSc are due to cardiac causes, mainly heart failure and 
arrhythmias [70].
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Fig. 1  Diversity of heart failure immunopathogenesis: infection, auto-inflammation, and impaired injury responses
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Psoriatic Disease

Psoriatic disease (PsD), which includes psoriasis and 
psoriatic arthritis, is also associated with increased risk 
of CVDs, with a considerable literature demonstrating 
PsD-associated vascular inflammation implicated in ath-
erosclerotic CVDs [71–73]. Furthermore, HF incidence 
appears to be higher among PsD patients than controls 
[74, 75], although findings have been non-uniform across 
cohorts [76] and may depend on PsD severity [77], with 
worse PsD severity conferring higher HF risk.

Despite limited mechanistic data related to PsD-
specific HF pathogenesis, there are several potential 
mechanisms that may be implicated in PsD-associated 
HF. Persistent uncontrolled inflammation appears to 
be central: tumor necrosis factor-alpha (TNF-α), pro-
foundly elevated and HF associated with worse prog-
nosis [78], is a key pro-inflammatory mediator in PsD 
[79]. Moreover, psoriasis is associated with endothelial 
dysfunction and arterial stiffness, consequently leading 
to HF by decreasing coronary f low reserve [80, 81]. 
Patients with PsD have been observed to have coronary 
microvascular dysfunction (CMVD) due to the systemic 
inflammation, with one study reporting the prevalence 
of CMVD to be 61.3% in patients with PsD compared 
to 38.4% in matched controls [82]. Another study linked 
PsD to cases of dilated cardiomyopathy (DCM) [83], 
and hypothesized that an autoimmune process may play 
a role in development of DCM, as well as cytokine-
induced collagen impairment leading to myocardial 
fibrosis and dysfunction [84].

Inflammatory Bowel Diseases

Findings related to inflammatory bowel disease (IBD) 
and HF have been inconsistent. One retrospective longitu-
dinal cohort study found that patients with inflammatory 
bowel disease (IBD) have a two-fold increase in incidence 
of HF (with ulcerative colitis patients being at higher risk 
than patients with Crohn’s disease) [85], and another 
observed an approximately 1.4-fold IBD-associated rela-
tive increase in HF hospitalization risk [86]. However, 
a separate study observed no significant IBD-associated 
HF risk [77]. Among patients with IBD, disease severity 
appears to associate with HF risk [86] and women with 
IBD may have an especially elevated relative risk for HF 
[85]. Altered collagen metabolism is thought to play a 
role in pathophysiology of HF in patients with IBD [87]; 
patients also may develop myocardial fibrosis due to vita-
min deficiencies, microvascular endothelial dysfunction, 
and altered nitric oxide–mediated vasodilation [88, 89].

Infectious Causes of Heart Failure: Role 
of Inflammation

Innate and adaptive immune responses to foreign pathogens, 
while essential for pathogen clearance and acute infection res-
olution, can lead to self-tissue damage in the setting of excess 
and mistargeted inflammation. In this context, we will discuss 
distinct infectious triggers of deleterious cardiac inflammation 
resulting in HF, which highlight both the diversity of infectious 
causes of HF and the central role of immune responses in each 
of these conditions.

Acute Infectious‑Inflammatory Myocarditis

The clinical manifestation of myocarditis is broad, ranging from 
mild and virtually asymptomatic to severe, fulminant heart 
failure resulting in cardiogenic shock. An estimated 1–5% of 
patients with acute viral infections may develop a form of myo-
carditis, ranging from asymptomatic myocardial inflammation 
to overt HF; young men have the highest risk [90, 91]. The most 
common pathogens implicated in acute myocarditis are viruses, 
including enteroviruses such as coxsackieviruses, parvovirus 
B19, Epstein-Barr virus, and human herpesvirus-6 [92], and 
more recently, SARS-CoV-2 [93–95]. Myocarditis can also be 
caused by non-viral infectious agents including bacteria, Chla-
mydia, Rickettsia, fungi, and protozoa [96].

Although pathogens may be inciting factors in myocardi-
tis, experimental models suggest that host immune responses 
to these pathogens—rather than the pathogens themselves—
are perhaps the most important determinant of myocarditis 
pathophysiology and presentation. For instance, in a model of 
coxsackievirus-induced myocarditis [97, 98•], virus-infected 
cardiomyocytes die, resulting in damage-associated molecu-
lar patterns and related innate immune activation, and after 
being phagocytosed, have their antigen epitopes presented to 
T cells and B cells, which perform key effector functions in 
cardiac injury and development of myocarditis [98•]. This 
robust immune activation may drive antigenic self-targeting; 
for instance, studies of cytomegalovirus (CMV) [99] and 
coxsackievirus [100] models of myocarditis have demon-
strated shared epitopes between viral particles and cardiac 
myosin, resulting in persistent myocardial auto-inflammation 
and myocarditis. These considerations highlight the overlap 
between infectious-inflammatory and autoimmune myocardi-
tis, as infections have the potential to generate autoimmune 
responses. This is perhaps best highlighted by rheumatic heart 
disease, discussed next.

Rheumatic Heart Disease

Rheumatic heart disease (RHD) is a relatively common 
(0.55 to 11 per thousand individuals worldwide [101]) 
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pan-carditis with prominent valvular involvement, resulting 
in heart failure in approximately one-third of affected indi-
viduals and worse outcomes in women [102, 103]. Molecu-
lar mimicry and autoantibodies are hallmarks of rheumatic 
carditis. Heart-reactive antibodies have been isolated from 
the serum of patients with RHD for decades, and RHD was 
recognized as an autoimmune sequalae of group A strep-
tococcal infection [104]. Initially, molecular mimicry was 
defined as shared identical amino acid sequences between 
host tissue and the bacterium [105]. However, studies using 
monoclonal antibodies have helped identify other types of 
molecular mimicry, such as antibody recognition of alpha-
helical coiled-coil molecules, a protein structure shared 
among different host proteins (cardiac myosin, tropomyo-
sin, vimentin, keratin, and laminin) and streptococcal M 
protein. A third type of molecular mimicry is cross reactiv-
ity between diverse molecules such as DNA, proteins, and 
carbohydrates [105]. In RHD, molecular mimicry between 
group A streptococcal protein and cardiac proteins leads to 
both humoral and cellular autoimmune reactions. Antibod-
ies recognize internal biomarkers which cross-react with 
the streptococcal antigen. These autoantibodies can then 
cause inflammation of the endothelium (in particular val-
vular endothelium), driving vulnerability to autoreactive T 
cell infiltration. Resulting inflammation causes scarring and 
damage of the valve, which can worsen with recurrent infec-
tion and make penicillin prophylaxis important to prevent 
worsening [101].

Chronic Chagas Cardiomyopathy

Chagas disease is a sequelae of infection with the intracel-
lular parasite Trypanosoma cruzi [106] that affects 6 to 8 
million people worldwide [107] and wide range of pres-
entations. Approximately one-quarter of infected patients 
progress to chronic Chagas cardiomyopathy (CCC), with 
one-quarter of these presenting with reduced left ventricular 
ejection fraction (LVEF) [108]. Parasitic persistence appears 
to be required for CCC development; a combination of direct 
parasitic damage and inflammatory T cell responses have 
been implicated, although the extent to which either is the 
primary driver of disease remains up for debate [109].

Human Immunodeficiency Virus

The epidemiology, pathogenesis, and presentation of human 
immunodeficiency virus (HIV)–associated heart failure have 
evolved considerably over the past two decades. Our group and 
others have discussed the evolving nature and immunopatho-
genesis of HIV-associated HF previously [110–114]; an in-
depth discussion is beyond the scope of this article. In the 
modern antiretroviral therapy (ART) era, proportionate CVD 
mortality [115] and the global CVD burden [116] among 

people with HIV have increased considerably. People with 
HIV have significantly higher risks for heart failure, includ-
ing HFpEF and HFrEF, than HIV-uninfected controls even 
after adjustment for demographic and clinical confounders 
[117•, 118•, 119]. Poor viral control and immune progression 
(marked by circulating viremia and lower CD4 + T cell counts) 
are associated with particularly elevated HF risk for people 
with HIV, but individuals on ART without significant immune 
progression (e.g., CD4 decline) continue to have elevated HF 
risks [117•, 118•, 119]. In the modern ART era, the putative 
pathophysiologies of HIV-associated HF are diverse and some-
what less overt/direct than other viral infections; these include 
impaired myocardial responses to ischemia [120], metabolic 
dysregulation related to both chronic infection/inflammation 
and certain antiretrovirals, autonomic dysregulation, and con-
vergence of other factors such as drug toxicity (in particu-
lar, methamphetamines and cocaine) and smoking [121]. In 
reality, multiple co-existing pathophysiologic “hits” are likely 
involved in HIV-associated HF [122], with underlying immune 
dysregulation and pro-inflammatory bias [123•] driving mala-
daptive, tissue-damaging responses to subsequent challenges 
ranging from hypertension to co-infection. Importantly, HIV-
associated HF risks are especially pronounced in women, who 
have higher rates of HF hospitalizations and CVD mortality 
[124–126].

Hepatitis C Virus

Several studies have described associations between chronic 
hepatitis C virus (HCV) infection and HF [127, 128], yet lim-
ited pathophysiologic knowledge exists regarding this asso-
ciation. Perhaps the most likely mechanism by which HCV 
contributes to CVD and HF relates to chronic inflammation 
and immune dysregulation, similar to chronic HIV infection 
[129]. Patients with HCV have been observed to have higher 
levels of pro-inflammatory cytokines, including TNF-α and 
IL-6 [130–133]. HCV infection is also associated with intes-
tinal bacterial overgrowth, which can lead to bacterial translo-
cation into the bloodstream, increasing LPS levels, triggering 
toll-like receptor (TLR) activation, and resulting in systemic 
inflammation [134, 135]. Importantly, effective treatment of 
HCV appears to decrease CVD risks [129, 136–138].

Leveraging Insights from Chronic 
Inflammatory and Infectious Conditions: 
Immune Targeting in Heart Failure

Fortunately, for most chronic inflammatory and infectious 
causes of myocardial dysfunction and HF, treatment of the 
underlying inflammatory/infectious condition decreases 
associated HF risks to some extent. Yet, HF risks remain 
elevated in many of these conditions despite effective 
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therapy; accordingly, exploring existing and potential 
therapies offers the potential to yield disease-specific and 
broader insights into immune-targeted HF therapy.

In chronic inflammatory conditions, effects of immu-
nomodulatory medications on HF risk appear to depend on 
the medication, its target(s), and the underlying population 
in which medications are used. Although corticosteroids 
reduce systemic inflammation, they can induce dyslipi-
demia, insulin resistance, and obesity, known CVD risk 
factors, and increase risk of CVDs including HF [139]. 
Immunosuppressants, such as mycophenolate mofetil, 
cyclophosphamide, and azathioprine, have shown incon-
sistent associations with ASCVD risk, without as clearly 
defined effects on HF [129, 140–143]. Perhaps the clear-
est demonstration of the barriers between inflammatory 
disease–specific efficacy and broader application is with 
TNF-α antagonists: whereas observational studies of RA 
patients suggested a benefit of TNF-α antagonists in reduc-
ing rates of HF hospitalization [144], this HF-reducing 
benefit was not replicated when TNF-α antagonists were 
tested in the general HF population without RA [145, 146]. 
Perhaps more promising are the results of a sub-analysis 
of the Canakinumab Anti-Inflammatory Thrombosis Out-
comes Study (CANTOS), in which treatment of post-MI 
patients with canakinumab, an IL-1β antagonist, led to 
a dose-dependent reduction in HF hospitalization and a 
composite of HF hospitalization and mortality [147••]. 
A separate, smaller trial of IL-1 receptor antagonist anak-
inra in post-MI patients likewise yielded a reduction in 
incident HF [148]. Effects of colchicine on HF are less 
clear, as randomized trials have focused largely on post-
MI recurrence of athero-thrombotic CVD rather than HF 
and variably suggested benefit [149] or neutrality/possible 
harm [150]. The reason behind the heterogeneous response 
to immunomodulatory agents in different HF populations 
is likely related to the unique mechanism underlying HF 
development in various diseases. Once we better define 
the pathophysiology of HF in these diseases, we will be 
able to find better targets for intervention specific to each 
population.

Several novel targets for immunomodulation in HF 
treatment are under exploration. One such proof-of-
concept example is the use of transient antifibrotic chi-
meric antigen receptor (CAR) T cells to reduce myocar-
dial fibrosis in mouse models of HF [151••]. Other novel 
approaches include engineered biomaterials used to induce 
macrophage-mediated inflammation resolution in cardiac 
injury models [152, 153], as well as engineered cardio-
protective T regulatory cell administration or induction 
[154, 155]. While these immune-targeted therapies remain 
largely in the proof-of-concept stage, considerable interest 
in further development of immunomodulatory therapies 

for HF exists with the goal of fundamentally altering prob-
lematic myocardial tissue substrates in HF.

Conclusion

Several chronic inflammatory and infectious conditions 
confer increased risks for HF. The pathophysiologies and 
clinical presentations of these condition-specific HF eti-
ologies differ; however, an imbalance between persistent 
inflammation and resolution thereof is centrally implicated 
in myocardial tissue damage, dysfunction, and resultant 
HF. Given limited clinical and mechanistic data, further 
studies are needed to define condition-specific HF patho-
physiologies. These studies offer the dual potential of 
impacting the immediate, real-world care of patients with 
HF-associated inflammatory and infectious conditions, as 
well as informing novel developmental immune-targeted 
therapies in HF.
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