CORRECTION

Correction to: Single-Cell RNA Sequencing of the Adult Mammalian Heart – State of the Art and Future Perspectives

Monika M. Gladka, PhD^{1,2}

Published online: 2 April 2021 © Springer Science+Business Media, LLC, part of Springer Nature 2021

Correction to: Current Heart Failure Reports 2021. https://doi.org/10.1007/s11897-021-00504-3

After the publication of the original article, we noticed that we need a correction in Fig. 2. In the part of the table containing human studies, in Nomura et al. (2018), in the column indicating the type of samples, sham and TAC was now correctly replaced with healthy and DCM. Please see below the corrected version. We apologize for any inconvenience that this may have caused.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The online version of the original article can be found at https://doi.org/ 10.1007/s11897-021-00504-3

- Monika M. Gladka, PhD m.gladka@hubrecht.eu; m.m.gladka@amsterdamumc.nl
- ¹ Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre, PO Box 85164, 3508, AD Utrecht, The Netherlands
- ² Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands

mouse	study	living cells vs frozen nuclei	healthy vs diseased	platform	application
	Gladka et al.(2018) Circulation	living cells CM	sham IR	FACS	cellular heterogeneity
	Skelly et al.(2018) Cell Reports	living cells non-CM	healthy	FACS	cellular communication
	Nomura et al.(2018) Nat. Comm.	living cells CM	sham TAC	manual pickup	network and trajectory analysis
	Kretzschmar et al. (2018) PNAS	living cells	sham IR and MI	FACS	Identification of rare cells
	Ren et al. (2020) Circulation	living cells	sham TAC	ICELL8	network and trajectory analysis
	Yekelchyk et al. (2019) Basic Res. Cardiol.	living cells CM	sham TAC	ICELL8	cellular heterogeneity
Adult mammalian heart	Wang et al. (2020) Nat. Comm.	living cells	healthy	ICELL8	network and trajectory analysis
	Vidal et al. (2019) JCI Insights	nuclei	healthy and aging	10x Genomics	cellular heterogeneity
	Zhang et al. (2019) Cell Discov.	nuclei	healthy and MI	10x Genomics	Identification of rare cells
	See et al.(2017) Nat.Comm.	nuclei CM	sham TAC	IFC system	network and trajectory analysis
	Li et al. (2019) Eur. Heart J.	living cells non-CM	healthy and MI	10x Genomics	cellular heterogeneity
	Farbehi et al. (2019) Elife	living cells non-CM	healthy and MI	10x Genomics	cellular communication
humon					
human	study	living cells vs frozen nuclei	healthy vs diseased	platform	application
	Nomura et al. (2018) Nat. Comm.	living cells CM	healthy DCM	manual pickup	network and trajectory analysis
	Wang et al. (2020) Nat. Cell Biology	living cells all cells	healthy, HF and LVAD	ICELL8	cellular heterogeneity and network analysis
	Selewa et al. (2020) Sci. Rep.	nuclei CM	healthy	DropNuc-seq	cellular heterogeneity
	See et al.(2017) Nat.Comm	nuclei CM	non-failing DCM	IFC system	network and trajectory analysis
	Litvinukova et al. (2020) Nature	living cells nuclei	healthy	10x Genomics FACS	cellular heterogeneity and communication
	Tucker et al. (2020) Circulation	nuclei	healthy	10x Genomics	cellular heterogeneity

Fig. 2 Overview of single-cell sequencing studies applied to adult healthy and diseased mouse or human heart. CM cardiomyocytes, IR ischemia/ reperfusion, MI myocardial infarction, TAC transaortic constriction, HF heart failure, LVAD left ventricular assist device, DCM dilated cardiomyopathy