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Abstract The majority of patients with heart failure have
sleep-disordered breathing (SDB)—with central (rather than
obstructive) sleep apnoea becoming the predominant form in
those with more severe disease. Cyclical apnoeas and
hypopnoeas are associated with sleep disturbance,
hypoxaemia, haemodynamic changes, and sympathetic acti-
vation. Such patients have a worse prognosis than those with-
out SDB. Mask-based therapies of positive airway pressure
targeted at SDB can improve measures of sleep quality and
partially normalise the sleep and respiratory physiology, but
recent randomised trials of cardiovascular outcomes in central
sleep apnoea have been neutral or suggested the possibility of
harm, likely from increased sudden death. Further randomised
outcome studies (with cardiovascular mortality and
hospitalisation endpoints) are required to determine whether
mask-based treatment for SDB is appropriate for patients with
chronic systolic heart failure and obstructive sleep apnoea, for
those with heart failure with preserved ejection fraction, and
for those with decompensated heart failure. New therapies for
sleep apnoea—such as implantable phrenic nerve stimula-
tors—also require robust assessment. No longer can the sur-
rogate endpoints of improvement in respiratory and sleep met-
rics be taken as adequate therapeutic outcome measures in
patients with heart failure and sleep apnoea.
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Introduction

Sleep-disordered breathing (SDB), or sleep apnoea, is com-
mon in patients with cardiovascular disease, and its presence
is associated with a poorer prognosis and high healthcare costs
[1, 2]. International guidelines suggest that it is worthwhile to
screen for this condition. Recent evidence suggests that the
relationship between SDB and the underlying cardiovascular
condition may be complex, particularly in heart failure (HF).
Although there is a strong therapeutic rationale for the treat-
ment of daytime sleepiness due to obstructive sleep apnoea in
the non-heart failure population, the possibility exists that
central sleep apnoea may be at least partially adaptive in HF
patients and treating this may be harmful in some circum-
stances. The results of recent randomised trials are challenging
our current understanding of the pathophysiology of SDB and
the effects of currently available therapies on clinical outcome.

What Is Sleep-Disordered Breathing?

The two major phenotypes of SDB are obstructive sleep ap-
noea (OSA) and central sleep apnoea (CSA) (Fig. 1). In OSA
(the most common form of SDB in the general population),
there is collapse of the pharynx during sleep with consequent
upper airway obstruction, often with snoring [3]. Predisposing
factors include obesity, a short neck, and retrognathism.
Rostral fluid shift during sleep in HF can lead to pharyngeal
edema, which may exacerbate the tendency to obstruction [4].
CSA, the other type of SDB, is usually associated with heart
failure, although it has also been observed in patients with
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Fig. 1 Polygraph recordings a
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stroke, especially in the acute phase, and in those with renal
failure or opiate use. In CSA, the underlying abnormality is in
the regulation of breathing in the respiratory centres of the
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brainstem, with a marked reduction or cessation of respiratory
effort. Patients with HF and CSA tend to have an exaggerated
respiratory response to CO,, associated with excess
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sympathetic nervous activity and increased chemosensitivity.
A modest rise in PaCO, during sleep results in inappropriate
hyperventilation [5-7], driving PaCO, below the apnoeic
threshold, at which point the neural drive to respire is too
low to stimulate effective inspiration and an apnoea (complete
pause in breathing) or hypopnoea (partial reduction in airflow)
ensues. PaCO, subsequently rises and the cycle is repeated.
This overshoot of the homeostatic feedback loop is exacerbat-
ed by the prolonged circulation time between the alveoli and
the brainstem seen in more severe HF. In addition, pulmonary
congestion stimulates J receptors in the lungs, triggering reflex
hyperventilation. A particular form of CSA is a periodic pat-
tern of hyperventilation followed by hypoventilation, termed
Cheyne-Stokes respiration (CSR). CSR is not limited to sleep
but can occur at rest, or during exercise, in patients with ad-
vanced HF [8, 9].

A tendency to progress from OSA to CSA over the course
of the night has been observed in HF. This is thought to be
secondary to progressive pulmonary congestion and deterio-
rating hemodynamics [10].

Recently, it has been suggested that CSR (although a mark-
er of a poor prognosis) may be a compensatory mechanism in
patients with heart failure [11, 12]. Periodic hyperventilation
and apnoea may increase end-expiratory lung volume (and
therefore oxygen stores), increase vagal tone, aid cardiac
pump function, provide intrinsic positive end-expiratory air-
ways pressures, and reduce respiratory muscle fatigue [11].

How Is SDB Diagnosed and Quantified?

In patients without cardiovascular disease, typical symptoms
of SDB include excessive daytime sleepiness, insomnia,
morning headaches, depression, cognitive dysfunction, noc-
turnal dyspnoea, nocturia, and erectile dysfunction. However,
there is a wide inter-individual variation in symptoms, espe-
cially between male and female patients [13].

Importantly, patients with HF and SDB do not tend to com-
plain of daytime sleepiness, possibly related to high sympa-
thetic tone. Screening questionnaires that include questions
about daytime sleepiness (such as the Epworth Sleepiness
Scale used to screen for OSA in non-heart failure populations)
are therefore not useful [14].

Attended in-hospital polysomnography (PSG), including
assessment of respiratory movement, oxygen saturation, nasal
and oral airflow, snoring, electroencephalography, electrocar-
diography, electromyography, and ocular movement, has long
been considered the gold standard test for sleep disorders.
More limited, multi-channel sleep polygraphy (PG) with ox-
ygen saturation, nasal airflow, and chest and abdominal move-
ment recorded is more widely available and can be set up by
the patient at home [15]. Compared with PSG, PG has a sen-
sitivity and specificity of 90—100 % for the diagnosis of

significant SDB in patients with HF [16, 17]. Even simpler
screening may be performed by recording nocturnal oxygen
saturation via a finger probe, with a sensitivity of 93 % and a
specificity of 73 % for moderate-to-severe SDB compared to
PSG when using a cut-off of 12.5 desaturations of >3 % per h
for patients: few patients with clinically important SDB would
be missed by this simple first-stage approach [18]. Such
screening cannot determine the phenotype of SDB, and fur-
ther investigation with (at least) PG is mandatory in those who
test positive and in anyone who tests negative but where clin-
ical suspicion remains high.

The severity of SDB is described by the average number of
apnoeic and hypopnoeic events per hour of sleep—the ap-
noea-hypopnoea index (AHI). Apnoea is a reduction in air-
flow >90 % of pre-event baseline for >10 s; hypopnoea is a
reduction in airflow >30 % from baseline for >10 s, with a fall
in PaCO, >3 % or an arousal from sleep [19]. Up to 5 events/h
is usually defined as normal, 5-15/h as mild, 15-30/h as mod-
erate, and >30/h as severe SDB. The number and severity of
oxygen desaturations may also be used as a metric of the
severity of SDB. Additionally, those in whom >50 % of events
are obstructive are labelled as predominantly OSA, and if
>50 % of events are central, such a patient is labelled as pre-
dominantly CSA.

Algorithms have been developed in cardiac implantable
electronic devices (such as pacemakers and defibrillators) to
detect and quantify SDB [20]. The DREAM study reported a
sensitivity of 89 % and a specificity of 85 % for the diagnosis
of moderate-to-severe SDB by a pacemaker algorithm using
transthoracic impedance and minute ventilation sensors [21].

Risk Factors for SDB in Heart Failure

A recent study of more than 6500 patients in Germany with
systolic HF reported a strong association between SDB (either
OSA or CSA) and obesity, male sex, atrial fibrillation, age,
and poorer left ventricular systolic function [22]. Risk factors
for CSA in HF patients referred to a sleep laboratory include
male sex (OR =3.50), atrial fibrillation (OR =4.13), age
>60 years (OR =2.37), and resting hypocapnia (partial pres-
sure of carbon dioxide (PCO,) <38 mmHg during wakeful-
ness; OR =4.33) [23].

Physiological Consequences of SDB (Table 1)

Intermittent Hypoxaemia

Cyclical episodes of hypoxaemia-reoxygenation occur in pa-
tients with SDB, with increased inflammation and oxygen-

@ Springer



258

Curr Heart Fail Rep (2016) 13:255-265

Table 1  Disease mechanisms linking SDB with heart failure

Sleep apnoea Intermittent hypoxaemia

Intermittent hypercapnia

Increased negative intrathoracic pressure swings
Increased arousals from sleep

Sleep deprivation

Sleep fragmentation

Disease mechanisms ~ Sympathetic nervous system activation
Metabolic dysregulation

Endothelial dysfunction

Systemic inflammation
Hypercoagulability

Impaired cardiac function

Left atrial enlargement

Myocardial ischaemia

Myocardial fibrosis

Arrhythmia

derived free radicals analogous to ischaemia/reoxygenation
injury [24, 25]. The severity of oxygen desaturation is associ-
ated with levels of vascular endothelial growth factor, a stim-
ulator of neo-angiogenesis [26]. Intermittent hypoxaemia and
reoxygenation may also result in activation of the pro-
inflammatory transcription factor nuclear factor-kB, endothe-
lial cell and leukocyte activation, increased expression of ad-
hesion molecules, and activation of ‘stress’ genes that influ-
ence oxygen delivery, such as hypoxia-inducible factor-1
[27-29].

Sympathetic Nervous System (SNS) Activation

SNS activity is increased in SDB, with both higher muscle
SNS activity [30] and elevated urinary norepinephrine con-
centrations [3 1], related to upper airway closure, hypoxaemia,
hypercarbia, and the arousals associated with the respiratory
events. Enhanced SNS activity may stimulate the expression
of inflammatory cytokines [32].

Alterations in Intrathoracic Pressure

The repetitive inspiratory efforts during the apnoeas and
hypopnoeas in SDB lead to exaggerated negative intrathoracic
pressure swings (up to —65 mmHg intrathoracic pressure in
OSA), including increased left ventricular (LV) transmural
pressure, increased afterload and right ventricular venous re-
turn, and an abnormal leftward shift of the interventricular
septum [33]. This leads to increased myocardial oxygen de-
mand, impaired myocardial relaxation, and reduced cardiac
output. Progressive increases in intra-atrial pressures lead to
atrial myocardial overstretching and dilation, causing cardiac
volumetric changes and electrical remodelling that may lead
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to atrial fibrillation [34]. LV diastolic function declines in
association with SDB, especially with ageing [35].

Cardiac Remodelling

Animal models have shown the development of hypertension,
LV hypertrophy, and reduced LV ejection fraction as a result of
long-term SDB [36]. In humans, a progressive increase in LV
mass index with AHI level, independent of BMI, has been
reported in the Sleep Heart Health Study, an observational
cross-sectional study investigating cardiovascular outcomes
in SDB [37]. More severe SDB, as defined by higher AHI
and more hypoxaemia, was associated with greater LV systol-
ic dimensions and lower LV ejection fraction. LV diastolic
dysfunction also appears to be poorer in patients with more
severe SDB, independent of obesity, diabetes mellitus, and
hypertension [38]. SDB may more adversely affect myocardi-
al function in patients with underlying coronary artery disease
than in those without [39].

Sleep Reduction and Fragmentation

SDB exerts its negative physiologic effects in part due to
reduced quantity of sleep and excessive sleep fragmentation
as a result of repetitive upper airway obstruction-induced
sleep disruption. Such sleep deprivation appears to trigger
increased inflammation, with elevations in interleukin-6 (IL-
6), high-sensitivity C-reactive protein, and leukocyte counts
[40, 41].

Metabolic Dysregulation

Several observational studies have demonstrated associations
between sleep apnoea and insulin resistance that are indepen-
dent of obesity [42], partially mediated by upregulation of
inflammatory cytokines [43]. Increased SNS activity associ-
ated with SDB may affect glucose homeostasis by increasing
glycogen breakdown and gluconeogenesis. Experimental
sleep deprivation has been shown to increase evening cortisol
concentrations, resulting in pronounced increases in serum
glucose levels and insulin concentrations and increased insu-
lin secretion [44].

Other Abnormalities

Endothelial dysfunction may occur in SDB as a result of sys-
temic inflammation, oxidative stress, and SNS activation.
Individuals with SDB have impaired resistance vessel
endothelium-dependent dilation [45]. There is some evidence
for a hypercoagulable state in sleep apnoea with increased
levels of plasminogen activator inhibitor-1 (PAI-1), fibrino-
gen, activated coagulation factors XIla and VIla, thrombin/
antithrombin IIT complexes, and soluble P-selectin [46].
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Pathophysiological Link Between SDB and Heart
Failure

The Sleep Heart Health Study identified OSA as an indepen-
dent risk factor for the development of HF [47], with more
impact in men than in women [48]. Prospective data from the
Wisconsin Sleep Cohort Study in a cohort of 1131 adults aged
30-60 and followed for 24 years show a 2.6-fold increase in
the incidence of coronary heart disease and (self-reported) HF,
after adjustment for age, sex, body mass index, and smoking
[49].

Once HF has developed, SDB is common, with prevalence
rates of 50-75 % [50, 51] in both HFrEF [52, 53] and HF with
preserved ejection fraction (HFpEF) [54, 55], with no differ-
ence in prevalence between the two groups [56¢]. SDB is also
common in acute decompensated HF, with reported preva-
lence rates of between 44 and 97 % [57, 58].

The prevalence of CSA (including Cheyne-Stokes respira-
tion (CSR)) appears to increase as the symptomatic severity of
the HF syndrome increases [50, 54], and the severity of CSA/
CSR seems to mirror underlying cardiac dysfunction [59].
Furthermore, CSA is independently associated with a worse
prognosis, including increased mortality [60].

Similarly, OSA is independently associated with a worse
prognosis in HF [61], even in those who are receiving maxi-
mal and optimal HF therapy, including cardiac
resynchronisation [62].

Although effective treatment of HF may improve CSA/
CSR [63], patients who still manifest CSA/CSR despite max-
imal and optimal HF therapy, including cardiac
resynchronisation [62], have a poorer prognosis than those
who do not. In addition, when present, CSA in acute decom-
pensated HF patients is usually severe (apnoea-hypopnoea
index (AHI) >30/h) [57] and has been shown to be a predictor
of hospital readmission and mortality [64].

Treatment of SDB in Heart Failure
Lifestyle Measures

Weight loss significantly reduces AHI in obese patients with
OSA [65]. However, patients with HF and OSA are less likely
to be obese and the impact in this group is not known.

Patients in whom SDB occurs in a supine sleep position
should be counselled regarding positional therapy: using a
wedge or cushion or sewing a pocket filled with tennis balls
on the back of a pyjama shirt can discourage sleep in the
supine position. Such an approach appears to work for patients
with SDB due to HF [66].

Alcohol, sedatives, narcotics, and muscle relaxants should
be avoided, as they may reduce upper airway muscle tone.

Drowsy-driving precautions should be reviewed with the pa-
tient and advice documented.

General Medical Optimisation

Optimal medical management is likely to improve SDB. This
should include the use of diuretics and disease-modifying
therapy such as angiotensin-converting enzyme inhibitors/
angiotensin receptor blockers, sacubitril/valsartan, beta-
blockers, and aldosterone antagonists. Cardiac
resynchronisation therapy (CRT) for patients with heart failure
with reduced ejection fraction and a broad QRS complex sig-
nificantly reduces AHI in CSA (but not OSA) with HF [67].

Oral Appliances

Oral appliances, worn during sleep and fitted by a dentist, may
be used to extend the dimensions of the airway and may be
effective in select patients with OSA and retrognathism, par-
ticularly if the SDB is mild or positional [68].

Surgery

Although surgical methods of ameliorating SDB have not
been specifically tested in HF, there may be a limited role
for such intervention in carefully selected cases with OSA
and a BMI >35 kg/m* [69]. Upper airway or craniofacial sur-
gical interventions may be an option for SDB treatment; how-
ever, they require careful assessment and evaluation by an
experienced otolaryngologist.

Positive Airway Pressure
Obstructive Sleep Apnoea

Positive airway pressure (PAP) therapy delivered through a
nasal (or nasal-oral) mask stabilises the airway (preventing
collapse) and is the standard treatment for SDB associated
with daytime sleepiness in the non-HF population [70, 71].
There are a variety of different treatment modalities, including
continuous positive airway pressure (CPAP) therapy [72].

An overnight PAP titration study is required to determine
the optimal pressure setting that reduces the number of
apnoeas/hypopnoeas during sleep, improves hypoxaemia
and sleep architecture, and reduces arousals. Potential benefi-
cial cardiovascular effects of CPAP therapy include increased
intrathoracic pressure, reduced LV preload and afterload, and
reduced transmural cardiac pressure gradients, all of which
can ameliorate impaired cardiac function. CPAP therapy im-
proves daytime somnolence and some measures of quality of
life and physical vitality scores in patients with OSA but with-
out HF [73].
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Adherence with this therapy is highly variable, with aver-
age levels ranging from 50 to 80 %, but with around 70 % still
regularly using treatment after 5 years [74]. Adherence is pos-
itively influenced by patient education, careful selection of a
mask that best fits the patient, and supportive management of
nasal congestion or dryness.

In a randomised control trial of 55 patients with HF
and OSA, nocturnal CPAP therapy for 3 months im-
proved LV ejection fraction (by 5.0+ 1.0 vs. 1.0£1.4 %,
p=0.04) and reduced urinary noradrenalin excretion
[75]. Even one night of CPAP therapy lowers systolic
blood pressure (1266 to 116 +5 mmHg, p=0.02), re-
duces heart rate (68+3 to 64+3/min, p=0.007), and
improves LV end-systolic diameter (54.5+1.8 to 51.7
+1.2 mm, p=0.009) in those with OSA and HF, com-
pared to standard medical therapy [76]. CPAP therapy
improves right ventricular function, left ventricular mass,
and pulmonary hypertension after 3 months of treatment,
and these improvements persisted at 1 year [77]. An ob-
servational study (88 patients) of CPAP therapy versus
medical therapy for those with HF and moderate-to-
severe OSA demonstrated a significantly higher rate of
hospitalisation or death in the non-CPAP therapy group
(HR 2.03, CI 1.07 to 3.68, p=0.03) compared to those
treated with CPAP therapy [78]. Patients who were not
compliant with CPAP therapy also had a higher risk of
the composite endpoint. Two other large registry studies
found similar results [79, 80].

The 2010 Heart Failure Society of America
Comprehensive Heart Failure guidelines recommend
screening for SDB and CPAP therapy in those with con-
firmed OSA [81]. The 2013 ACCF/AHA guidelines states
that treating OSA with CPAP therapy in patients with HF
does have benefit [82].

Further data will emerge from a randomised trial of adap-
tive servoventilation device in patients with heart failure and
reduced ejection fraction and either predominantly OSA or
CSA (ADVENT-HF; NCT01128816), which is currently
recruiting patients.

Central Sleep Apnoea

A number of treatments for CSA/CSR have been studied,
including oxygen, carbon dioxide, CPAP therapy, and adap-
tive servoventilation (ASV).

Although it does not trigger inspiration during central ap-
noea, CPAP therapy improves CSA/CSR probably by increas-
ing functional residual capacity (and, as a result, oxygen
stores), decreasing blood volume in the lungs and upper air-
way when lying down, and reducing hyperventilation via a
direct effect on the parabasal J receptors of the lung. In addi-
tion, CPAP therapy reduces preload and afterload and the
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cardiac transmural pressure and may benefit cardiac function
in some patients.

Early small trials of CPAP therapy in CSA with HF dem-
onstrated an improvement in AHI, reduced daytime plasma
natriuretic peptide and catecholamine concentrations, and im-
proved LV ejection fraction. A larger randomised controlled
trial (the CANPAP study) was designed to evaluate the effect
of CPAP therapy on transplant-free survival in patients with
CSA and HF [83]. This trial was stopped early after 258 pa-
tients had been randomised and followed up for over 2 years:
there was no difference in transplant-free survival between
CPAP therapy and the optimal medical therapy alone arm.
CPAP therapy improved the AHI (—21+16 vs. -2+ 18/h,
p<0.001), LV ejection fraction (2.2+5.4 vs. 0.4£5.3 %,
p=0.02), and 6-min walk test distance and reduced plasma
noradrenaline concentrations, but this did not translate into
improved survival. Post hoc subgroup analysis suggested that
there was a survival advantage in those in whom the AHI was
suppressed by CPAP therapy to below 15/h, suggesting a pos-
sible role for more efficacious ventilatory techniques, such as
ASV [84].

ASV has been shown to be the most effective mask-based
intervention for controlling (central) SDB in patients with HF
[85]. ASV increases inspiratory support during hypopnoea,
withdraws support during hyperventilation, provides manda-
tory breaths during apnoea, and generates background PAP. It
is therefore effective in both CSA and OSA and can suppress
complex sleep apnoea [86].

In small randomised clinical trials, beneficial effects of
ASV treatment of CSA/CSR in HF patients include significant
reductions in AHI, N-terminal pro-B-type natriuretic peptide
(BNP) concentrations, urinary catecholamine release, and LV
end-systolic diameter; increases in 6-min walk distance and
LV ejection fraction; and improved New York Heart
Association (NYHA) class [87, 88].

Given these beneficial effects, a large randomised con-
trolled trial, SERVE-HF, was undertaken to assess the
impact of ASV on hospitalisation, life-saving cardiovas-
cular intervention, or death in those with HF and CSA
[89+]. One thousand three hundred twenty-five patients
with a LV ejection fraction <45 % and moderate-to-
severe (predominantly) CSA were enrolled. At 12 months,
ASV was highly efficacious at reducing AHI (from a
mean of 31.2/h at baseline to 6.6/h). Despite the good
control of the CSA, there was no difference in the prima-
ry endpoint between the two groups, and there was a
higher overall mortality in those treated with ASV (HR
for all-cause mortality 1.28, 95 % CI 1.06 to 1.55,
p=0.01; HR for cardiovascular mortality 1.34, 95 % CI
1.09 to 1.65, p =0.006). This trial did not find differences
in plasma BNP concentration, 6-min walk test, or health-
related quality of life between the two randomised
groups. Initial results suggest that the excess mortality
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was driven by an increase in sudden death, with no dif-
ference in deaths from pump failure or admissions to
hospital with HF decompensation. Various explanations
have been proposed: chance, a direct toxic effect of PAP
on patients with poor LV function and a low pulmonary
capillary wedge pressure, or that CSA may be at least
partially adaptive for patients with severe heart failure
[11]. Further data will emerge from the ADVENT-HF
study (NTO1128816). In the meantime, the use of ASV
(or other airway pressure therapies) for the treatment of
predominantly central sleep apnoea in HF patients with
reduced ejection fraction cannot be recommended. For
those already on ASV, they should be counselled about
the potential risks of continuing with this therapy.

CSA is found in the majority of patients with acute decom-
pensated (as opposed to chronic) HF, is usually severe, and is
associated with an increased risk of readmission and mortality
[90]. A randomised trial of ASV in this patient group was
initiated but was terminated after the results of SERVE-HF
became available (CAT-HF; NCT01953874). The results have
yet to be published.

Another area of interest is the use of ASV in patients
with HFpEF and CSA/CSR. Early results suggest that
ASV can improve cardiac diastolic function, improve
symptoms, and decrease B-type natriuretic peptide con-
centrations in such patients [91, 92]. In addition, the pro-
portion of HFpEF patients treated with ASV who were
free of cardiac events were significantly higher than those
of untreated patients. No adequately powered randomised
trial has been undertaken.

Oxygen Therapy for CSA/CSR

Oxygen therapy for CSA has been the subject of a few
small-scale trials. Its use during sleep reduces the sever-
ity of CSA/CSR by approximately 50 %, reduces noctur-
nal norepinephrine levels, and attenuates apnoea-
associated hypoxaemia over time frames ranging from 1
night to 1 month, but only one study has reported clinical
improvements [93]. A meta-analysis of the results from
97 patients in the CHF-HOT trials demonstrated a de-
crease in AHI (—11.4+11.0 vs. —=0.2+7.6/h, p<0.01)
and an improvement in LV ejection fraction (36.1+11.8
to 46.3+16.2 %, p=0.014) in those with severe CSA
treated with home oxygen at 3 1/min via an oxygen con-
centrator, at least out to 12 weeks [94]. There was also an
improvement in mean NYHA class, but no overall im-
provement in ventricular ectopy or plasma catecholamine
concentrations. The impact on prognosis is unknown. A
meta-analysis of 14 studies concluded that oxygen thera-
py does reduce overnight desaturation, but prolongs ap-
noeas and hypopnoeas [95].

CO, Therapy for CSA/CSR

Administration of carbon dioxide reduces AHI in CSA, but at
the expense of hyperventilation and poor sleep quality, and is
not used clinically.

Experimental Therapies for SDB
Phrenic Nerve Stimulation

Phrenic nerve stimulation is a new approach to the treatment
of CSA/CSR, with initial results showing that it may improve
central respiratory events by about 50 % [96¢, 97]. The device
is similar to a pacemaker, with an electrode that stimulates the
phrenic nerve via the left pericardiophrenic or right
brachiocephalic vein, implanted percutaneously under seda-
tion in the catheter laboratory. The device unilaterally stimu-
lates the phrenic nerve when no impulse is sensed for a pre-
determined time period, inducing a breath. A non-randomised
study of 57 patients showed a mean reduction of 55 % in AHI
over 3 months (49.5 +14.6 to 22.4 + 13.6/h, p < 0.0001), with
a reduction in arousals and oxygen desaturation index and
improved quality of life [97]. Device or procedure-related ad-
verse events occurred in 26 % of patients, predominantly due
to lead displacement. A somewhat larger randomised study
has completed recruitment to further evaluate the effect of this
technology on the reduction in CSA events but is not powered
to determine the effect on hospitalisation or mortality
(NCT01816776).

Hypoglossal Nerve Stimulation

For those with OSA, a device which stimulates the hypoglos-
sal nerve in response to apnoea and hypopnoea can be im-
planted. An uncontrolled study has shown a significant mean
reduction of 68 % in AHI over 12 months in those treated with
this stimulator [98]. The impact on cardiovascular outcomes is
not known.

Acetazolamide

Two small trials of acetazolamide have been reported to re-
duce AHI and improve oxygen saturation in HF and CSA,
which may be due its respiratory-stimulating properties as
well as a diuretic action [99, 100]. A slightly larger (n = 85)
randomised study addressing the effect of acetazolamide on
the severity of SDB in HF is currently being conducted
(Predicting Successful Sleep Apnea Treatment With
Acctazolamide in Heart Failure Patients (HF-ACZ),
NCTO01377987). Whether furosemide achieves the same ef-
fect is unknown, although a reduction in pulmonary
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congestion might be expected to lessen CSA by reducing pul-
monary J receptor stimulation.

Conclusions

SDB is associated with frequent episodic exposure to
hypoxaemia, sympathetic nervous system activation, intra-
thoracic pressure swings, and sleep fragmentation, which
exert profound effects on the heart and vasculature. SDB
is common in patients with heart failure (although it is
rarely associated with daytime sleepiness) and is associat-
ed with a poor prognosis. Much of the evidence for the
benefit of treatment of SDB comes from observational
datasets or small randomised trials in non-heart failure
patients, but there is some circumstantial evidence to sug-
gest that the diagnosis and treatment of OSA is worthwhile
and may improve cardiac function, sympathetic activation,
and symptoms in heart failure. This requires confirmation
in an appropriately powered outcome study. A recent
randomised trial of the treatment of CSA with non-
invasive pressure support reported an unexpected increase
in cardiovascular mortality, largely driven by an increase
in sudden death. The explanation for this is unclear, but
currently, there is no therapeutic imperative to diagnose
and treat CSA in patients with heart failure.

Further randomised outcome studies (with cardiovascular
mortality and hospitalisation endpoints) are required to deter-
mine whether mask-based treatment for SDB is appropriate
for patients with chronic systolic heart failure and obstructive
sleep apnoea, for those with heart failure with preserved ejec-
tion fraction, and for those with decompensated heart failure.
New therapies for sleep apnoea—such as implantable phrenic
nerve stimulators—also require robust assessment. No longer
can the surrogate endpoints of improvement in respiratory and
sleep metrics be taken as adequate therapeutic outcome mea-
sures in patients with heart failure and sleep apnoea.

Once again, heart failure has confounded predictions—
tackling abnormal physiology does not necessarily improve
the outcome for patients. Such a link needs to be proven in
adequately powered randomised trials.
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