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Abstract
Purpose of Review Diabetes mellitus can be categorized into two major variants, type 1 and type 2. A number of traits such 
as clinical phenotype, age at disease onset, genetic background, and underlying pathogenesis distinguish the two forms.
Recent Findings Recent evidence indicates that type 1 diabetes can be accompanied by insulin resistance and type 2 diabetes 
exhibits self-reactivity. These two previously unknown conditions can influence the progression and outcome of the disease. 
Unlike most conventional considerations, diabetes appears to consist of a spectrum of intermediate phenotypes that includes 
monogenic and polygenic loci linked to inflammatory processes including autoimmunity, beta cell impairment, and insulin 
resistance.
Summary Here we discuss why a shift of the classical bi-modal view of diabetes (autoimmune vs. non-autoimmune) is nec-
essary in favor of a model of an immunological continuum of endotypes lying between the two extreme “insulin-resistant” 
and “autoimmune beta cell targeting,” shaped by environmental and genetic factors which contribute to determine specific 
immune-conditioned outcomes.
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Introduction

Diabetes mellitus is a metabolic disease clinically united 
by acute and chronic hyperglycemia. Two major catego-
ries, type 1 (T1D) and type 2 (T2D) diabetes, are the most 

prevalent. They are distinguished by (i) timing of disease 
onset, (ii) genetic predisposition, and (iii) clinical phenotype. 
T1D is an autoimmune process that begins years prior to the 
clinical onset resulting in the autoimmune-mediated, selec-
tive impairment of the pancreatic beta cells. T2D, instead, 
is characterized by peripheral insulin resistance (IR) and 
beta cell insufficiency [1]. To compensate for IR, beta cells 
are compelled to produce more insulin establishing a stress This article is part of the Topical Collection on Immunology, 
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condition that eventually imperils their functional responses 
to hyperglycemia [1]. Even as these two conditions converge 
clinically at hyperglycemia, accumulating evidence indicates 
that they share many more features than originally thought. 
Considering that latent autoimmune diabetes of adults 
(LADA) presents features of T1D and T2D, that IR is seen 
in overweight T1D patients [2], and that some T2D patients 
exhibit pancreatic autoimmunity [3•], it may be time to re-
think the separation of T1D and T2D and, instead, think of 
the conditions along immunoetiopathogenic lines.

Accumulating evidence also reveal an under-appreciated 
role for T cells driving IR in T1D, in addition to their known 
role in their selective targeting of beta cells. In this perspec-
tive, we discuss diabetes immunoetiopathogenesis from a 
novel viewpoint that T1D and T2D represent a continuum 
of immune-mediated responses to physiologic attempts 
to maintain a glucocentric metabolic homeostasis, where 
“endotypes” shape and define the continuum between auto-
immunity and IR.

Heterogeneity of Diabetes Mellitus: 
the Emerging Role of Precision Medicine

T1D and T2D are heterogeneous diseases caused by a com-
plex interplay of genetic, epigenetic, and environmental fac-
tors. Although many genes predisposing to T1D and T2D are 
known, disease risk genotypes of individual patients span a 
large spectrum. T1D is an autoimmune disease with a small 
number of genes having large effects, (i.e., HLA) and a large 
number of genes having small effects. Risk of T1D progres-
sion is mainly attributed to specific HLA DR/DQ alleles [4]. 
The heterogeneity of T2D is even more complex given the 
large number of genetic variants found to be associated with 
risk or protection of this condition. To date, association of at 
least 120 variants with T2D risk and progression has been 
replicated [5], with genetic evidence supporting a unified 
risk model for different diabetes variants [6].

A number of environmental factors are thought to trig-
ger and/or influence the severity of the autoimmune and the 
inflammatory attack on the pancreatic beta cells, and the spe-
cific immune mechanisms operative in individual patients 
appear to be variable [4]. At diagnosis, patients with T1D, 
LADA, or T2D can present with marked hyperglycemia, 
insulin resistance, and ketoacidosis, with asymptomatic or 
mild postprandial hyperglycemia. The rate of decline in beta 
cell function prior to and after diagnosis of these conditions 
is also extremely variable.

What is rapidly changing in the practice of medicine is the 
ability to characterize and understand human biological vari-
ation through assessment of the genetic and metabolic state 
of an individual, generating and understanding relevant data 
to develop likely disease categories, and implementation 

of preventive and treatment strategies tailored to specific 
conditions. Each form of diabetes has features that permit 
application of precision medicine as well as barriers to its 
implementation [7]. Diabetes caused by single gene defects 
(monogenic) can be characterized and targeted therapies 
are particularly effective. In T1D, islet autoantibodies and 
genomic risk have been identified as potential biomarkers 
of risk, facilitating immune intervention trials and pre-onset 
monitoring to reduce risk of severe complications and aiding 
in detection of environmental triggers. In T2D, multiple bio-
markers and genetic variants have been shown to alter risk 
of disease, revealing new biological pathways and providing 
potential drug targets.

The concept of “endotype” is an etiopathological pathway 
that can inform targeted therapy [8]. This concept is gaining 
traction and hopefully in the near future we should be able to 
identify the endotype of the patient in the form of a tailored 
therapy for diabetes mellitus based on the etiopathogenesis 
and the natural history of this syndrome.

Autoimmune Inflammation 
of Insulin‑Sensitive Tissues 
in Obesity‑Associated Diabetes

Obesity-associated diabetes has been mechanistically linked 
to a low-grade chronic inflammation induced by excessive 
and prolonged caloric intake. Metabolic dysregulation 
occurs in the adipose tissue leading to the release of pro-
inflammatory molecules, such as free fatty acids (FFA), 
tumor necrosis factor ( TNF� ), interleukin 6 (IL-6), mac-
rophage chemoattractant protein (MCP-1), inducing IR by 
inhibiting insulin signaling and recruiting other pro-inflam-
matory leukocytes, including M1 macrophages [1]. How-
ever, several other leukocyte populations, such as dendritic 
cells (DC), neutrophils, invariant-NK-T cells, and T and B 
cells, are altered in circulating frequency and phenotype in 
obesity and have been implicated in the development of IR.

T cells appear to be involved in the very early stages of 
the pathological cascade leading to IR. After 5–6 weeks 
of high-fat diet (HFD), CD4+ and CD8+ T cells infiltrate 
adipose tissue prior to macrophage accumulation and tem-
porally parallel to the onset of hyperglycemia [9]. Upregula-
tion of T helper 1 (Th1) surface proteins associated with a 
pro-inflammatory state in adipose tissue occurs by 2 weeks 
of the initiation of a HFD regimen [10]. These findings, sup-
portive of the hypothesis that T cells are relevant in the ini-
tiation of IR, are further reinforced by the observation that 
amelioration of insulin sensitivity can be achieved using T 
cell targeting immunotherapy [9]. T cell alterations, namely 
increased frequency of pro-inflammatory phenotype, can be 
found in T2D patients [11•], although it is not clear if they 
are involved in the initiation or the maintenance of IR.
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Since T cells are MHC-dependent for their target, it is 
of interest to determine if those T cells enriched at the tar-
get site of inflammation in T2D are antigen-independent 
bystanders, or if they are selected in a T cell receptor (TCR)-
dependent manner. A growing body of evidence suggests 
that, in T2D, adipose tissue and/or pancreas may be the site 
of self-antigen-dependent priming of T and B lymphocytes 
which, in turn, actively participate to the metabolic decline.

Visceral Adipose Tissue

Visceral adipose tissue (VAT) depots, including omental 
and mesenteric adipose tissue, contribute to the develop-
ment of cardiovascular diseases (CVD) and T2D [12]. It 
is becoming evident that the TCR repertoire of T cells 
infiltrating the VAT of obese mice is less heterogeneous 
than in lean mice. Indeed, restriction of the complemen-
tarity-determining region 3 (CDR3) of the TCR in CD8+ 
T cells [13•] and of TCR-Vα and TCR-Vβ repertoire in 
CD4+ T cells infiltrating the VAT of obese mice has been 
described [14, 15]. This would be suggestive of T cell 
clonal expansion upon antigen recognition. Heterogene-
ity of the TCR repertoire has yet to be investigated in the 
VAT of patients with T2D; however, in Pima Indians, a 
population with high incidence of obesity and T2D, there 
is a shortened circulating CDR3 and higher frequency 
of TRBV7-8 [14]. Of note, it has been suggested that 
reduced length of CDR3 region confers higher risk of 
autoimmune disease [16].

The work of Deng et  al. [10] provides mechanistic 
insights on how T cells are primed by adipocytes which, 
under stress conditions, can become capable of antigen 
presentation. Indeed, expression of major histocompat-
ibility complex class II (MHC-II) on adipocytes is upreg-
ulated in obesity, and co-culture of adipocytes from obese 
donors with splenic CD4+ T cells induces T cell expan-
sion and production of IL-2 and IFN-γ. Furthermore, T 
cell priming is antigen-dependent as the genetic deletion 
of the MHC-II complex in adipocytes reduced IR. Anti-
genicity of adipocytes was confirmed by another report 
showing that expression of MHC-II is higher in large ver-
sus small adipocytes [17]. Collectively, these data sug-
gest that, in a condition of hyperinsulinism, such as obe-
sity and T2D, adipocytes can acquire antigen presenting 
capacity with consequent induction of T cell expansion.

The presence of autoimmune inflammation in the VAT 
is also highlighted by the role of autoantibodies. Transfer 
of IgG from obese mice to B cell-depleted recipients leads 
to dysglycemia, suggesting that autoantibodies are patho-
genic in the context of IR [18]. Furthermore, a recent 
report identified IgG antibodies specific for adipocyte-
derived antigens (e.g., signal transduction molecules, 

metabolic and DNA repair enzymes, hormones, histones) 
in the plasma and in the fat of obese patients [3•].

These data indicate that alteration of antigen recogni-
tion and induction of autoantibodies in the VAT is asso-
ciated with T2D, which strengthens the hypothesis that 
adipose-specific autoimmunity may be mechanistically 
relevant in the development of IR.

Pancreatic Beta Cells

T2D-associated beta cell damage is thought to be the 
end result of metabolic stress in combination with local-
ized inflammation mediated primarily by infiltrating mac-
rophages. However, circulating islet-reactive T cells have 
been found in patients with T2D, and this was associated 
with a more compromised beta cell function compared to 
patients without islet-reactive T cells [19]. Notably, T cell 
autoreactivity and production of autoantibodies develop 
after the onset of T2D and are associated with a more rapid 
decline of beta cell function [20]. Another study confirmed 
the presence of circulating islet-reactive CD4+ T cells in 
T2D patients, while CD8+ T-cell reactivity to islet antigen 
was found to be a unique feature of T1D [21]. It is possible 
that the higher demand of beta cells due to IR promotes beta 
cell stress and eventual death, antigen presentation, and gen-
eration of islet-reactive T cells. Islet reactivity may be not as 
destructive as in T1D, probably due to the lack of autoreac-
tive CD8+ T cytotoxic cells. As a matter of fact, T (and also 
B) cells are part of the peri-insulitis and exocrine pancreas 
infiltrate in T2D patients [22]. It is possible, however, that 
antigen-specific lymphocytes do not stop in the pancreas but 
rather recirculate to insulin-sensitive tissues leading to an 
“infectious inflammatory state” that ultimately induces IR.

An alternative hypothesis is that T cells activated in the 
VAT of obese patients may contribute to beta cell death 
either by migrating to the pancreas or by releasing exosomes 
harboring soluble mediators targeting beta cells. This is sup-
ported by the evidence of a cross-talk between immune cells, 
adipose tissue, and beta cells with both T cells and adipo-
cytes releasing exosomes containing specific microRNAs 
regulating survival and function of pancreatic beta cells [23, 
24].

When considered together, two equally likely hypothesis 
can reconcile the presence of autoimmunity in T2D and IR 
in T1D: (i) adipose-reactive T cells generated in the VAT 
migrate to other metabolically active tissues where they 
induce IR or (ii) islet-reactive T cells generated in the pan-
creas, migrate to VAT and other metabolically active tis-
sues where they induce IR either by sustaining chronic tis-
sue inflammation or by targeting protective elements for the 
development of IR.
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Insulin Resistance as a Feature 
of Autoimmune Diabetes

IR can be defined as the impaired sensitivity of peripheral 
tissues to the biological actions of insulin, whether they are 
mediated by the insulin receptor or insulin/type 1 insulin 
growth factor hybrid receptors. IR also causes stress to the 
insulin producing beta cells which, as a consequence of the 
IR state, are required to produce more insulin to compensate 
for hyperglycemia. This establishes a vicious circle where 
IR stresses beta cells and where increased insulin finds more 
resistance to its actions in the otherwise insulin-sensitive tis-
sues and organs. In T1D, especially in overweight patients, 
this condition is even more pronounced as a consequence of 
pharmacologic insulin replacement [25].

Using the sensitive hyperinsulinemic-euglycemic clamp 
approach, a number of studies showed the presence of IR in 
T1D patients [26]. While exogenous insulin administration 
may be one of the drivers of IR [27], there are other underly-
ing mechanisms that are already in place in establishing IR 
independently of exogenous insulin. Studies in pre-sympto-
matic T1D patients show that relatives of patients with T1D 
who most rapidly developed the disease had greater insu-
lin resistance for their level of insulin secretion [28]. Fur-
thermore, a recent report demonstrated that normal weight 
at-risk individuals with elevated autoimmunity (2 or more 
anti-islet antibodies) have higher levels of insulin resistance 
compared to healthy controls [29••]. However, no significant 
relationships between IR and progression from one to mul-
tiple autoantibodies or to T1D were found in the TrialNet 
cohort [30]. Another study showed that only in a fraction 
of relatives with T1D, meaning autoantibody-positive rela-
tives in whom insulin secretion is markedly reduced, insulin 
resistance accelerated progression to T1D [31]. This is in 
line with reports showing that excess body weight is associ-
ated with increased risk to develop T1D [32]. On the other 
hand, mice of the non-obese diabetic (NOD) strain, which 
develop autoimmune T1D, fed a HFD that promoted IR, are 
paradoxically protected from developing diabetes [33]. The 
investigators proposed that immunoregulation is induced by 
gut microbiome-mediated generation of regulatory T cells 
(Tregs), suggesting a crucial role of diet in the development 
of autoimmune diabetes.

Relevance of Liver Insulin Resistance 
in Autoimmune Diabetes

While peripheral IR has been characterized in many human 
studies, less understood is hepatic IR in T1D. Regula-
tion of peripheral glucose concentrations and restraint of 
hepatic glucose production in T1D requires large concen-
trations of exogenous insulin [34]. However, the intraportal 

concentrations of insulin required to restrain hepatic glucose 
production are much lower in T1D than what is needed for 
peripheral glucose uptake and utilization. This creates a 
therapeutic conundrum, where, on the one hand, too much 
insulin, even though it responds to the need for peripheral 
glucose uptake and utilization, causes and exacerbates IR, 
while on the other hand, a low intraportal insulin concen-
tration would be better for optimal suppression of glucose 
production.

In what ways then can liver IR and inflammation be used 
as platforms to clarify and establish endotypes of diabetes? 
Non-alcoholic fatty liver disease (NAFLD), which is char-
acterized by the excessive storage of lipid and IR in liver, 
is oftentimes a comorbid condition in T2D that occurs in 
as many as 22% of adults with T1D [35] implicating the 
presence of liver IR in these patients. The T2D drug met-
formin works in part by increasing liver insulin sensitivity 
and reducing hepatic glucose production. Metformin use as 
an adjunctive to manage NAFLD has been tested in clinical 
trials. Data from recent T1D clinical trials, however, could 
not establish a clear benefit, but did show reduced insulin 
requirements, decreased circulating LDL, and indicated pro-
tection from atherosclerosis [36]. At the same time, NAFLD 
and T1D development is associated with a type 1 interferon 
response that drives T helper 1 cell expansion [37]. What has 
been largely unexplored is if the type 1 interferon response 
in the liver is capable of inducing auto-immune responses 
in T2D, where as many as 10% of patients present with 
autoantibodies. Beta cell endoplasmic reticulum (ER) stress, 
inflammation, and apoptosis are indicative of T2D [38] and 
when paired with a type 1 interferon response could estab-
lish conditions for the production of stress-induced “neo-
antigens” that act as self-antigens. NAFLD could therefore 
provide a diagnosable clinical context of shared IR and/or 
auto-immunity mechanisms in both T1D and T2D.

Where and How Self‑reactive T Cells Can Be 
Primed in Insulin Resistance

Multiple mechanisms may be involved in the generation 
of autoreactive T cells in the context of IR. In addition to 
lipid metabolism, adipocytes perform a number of local 
and systemic activities, including the release of a variety 
of cytokines and adipokines with endocrine and immu-
noregulatory functions that alter number, differentiation, 
and function of T cells [39]. The net effect is a skewing 
toward a type 1 T helper (Th1) phenotype. The metabolic 
imbalance induced by obesity may also favor the emergence 
of autoreactive T cells via the impairment of mechanisms of 
immunological tolerance. Indeed, nutritional overload per-
turbs the mTOR pathway leading to impaired differentiation 
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of Tregs [40]. Furthermore, our group showed that VAT-
derived CD4+ conventional T cells and CD8+ T cytotoxic 
cells from obese patients with dysglycemia are resistant to 
suppression, thus confirming that counterregulatory mecha-
nisms are compromised in the context of IR [11•]. Pres-
entation of (neo)antigens due to adipocyte and/or beta cell 
stress and death, accompanied by intestinal dysbiosis and 
liver-derived inflammation, concurs to the engagement of 
adaptive immunity in the context of IR (Figure 1).

Adipocyte Apoptosis

Hyperplasia and hypertrophy of adipocytes, accompanied 
by adipose tissue hypoxia and adipocyte death, are features 
of obesity. Dying adipocytes induce recruitment of mac-
rophages that surround dead adipocyte creating the so-called 
crown-like structure [41]. The finding of autoantibodies 
directed toward adipocyte antigens in T2D patients corrob-
orates the hypothesis that adipocyte death can be a source 

of antigens driving T cell priming in IR. Indeed, inhibition 
of adipocyte death by knocking out the pro-apoptotic pro-
tein Bid prevented IR in a preclinical model of obesity [42]. 
However, adipocyte death was shown to occur after 8 weeks 
of a HFD, once glucose metabolism is already impaired 
[43]. Furthermore, the pathological effect of autoantibodies 
is stronger when mice have an advanced stage of diabetes 
[18], suggesting that autoimmunity is a dynamic process 
likely fueled by continuous adipocyte death. Although adi-
pocyte apoptosis is observed in human IR [42], autoantigens 
may not necessarily derive from dying adipocytes; indeed, 
in vitro presentation of adipocyte-derived antigens occurs 
with live cells [10]. Excessive expansion and inflammation 
of adipose tissue resulting in adipocyte cell death may favor 
the generation of autoreactive lymphocytes. The dynamics 
of these events leading to the development of IR have yet to 
be established in human pathology.

Figure 1  Potential mechanisms of engagement of autoreactive T cells 
in insulin resistance. Schematic view of the proposed mechanisms 
involved in the generation of autoreactive T cells in the context of 
insulin resistance: (i) In the visceral fat, accumulation of fat depot 
induces adipocyte death and release of pro-inflammatory soluble 
hormones and cytokines. This is accompanied by the upregulation of 
MHC-II on adipocytes which turn into antigen-presenting cells; (ii) 
Intestinal dysbiosis, by promoting translocation of lipopolysaccharide 
(LPS) and bacteria metabolites in the systemic circulation, induces 
autoreactive immune responses in the gut as well as in other tissues; 
(iii) In the pancreas, metabolic-stress and inflammation induce beta 

cell death with the generation of conventional and neo-antigens; (iv) 
Local and systemic inflammation is fostered by the excessive accu-
mulation of lipids in the liver. All these pathways lead to TLR-4-me-
diated activation of tissue resident macrophages, enhanced presenta-
tion of autoantigens, and consequent development of (auto)reactive T 
cells with a type 1 T helper (Th1) or cytotoxic T cell (Tc1) pheno-
type. This is accompanied by the reduction of regulatory T cell sub-
sets and cytokines, such as Treg and IL-10, which contribute to the 
development of resistance to the insulin action in insulin-sensitive tis-
sues. Autoags: autoantigens; Autoabs: autoantibodies
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(Neo)antigen Presentation

As described earlier (Section “Visceral Adipose Tissue”), in 
obese mice, antigen-specific T and B cells are activated in 
response to adipocyte-derived antigens [3•, 10]. Post-trans-
lational modification (PTM) of native antigens, alternative 
splicing, and defective ribosomal products may generate 
novel epitopes which are identified as non-self [44]. It is 
conceivable that in T1D and LADA, novel neuroendocrine 
neoantigens may enhance T cell immunogenicity as the 
attendant hyperglycemic and pro-oxidative metabolic milieu 
includes abnormal glycosylations, deamidation, and oxida-
tive damage to proteins within pancreatic beta cells. Meta-
bolic stress-induced adipocyte death inside a pro-inflam-
matory milieu may foster the generation of conventional 
antigens or neoantigens by adipocytes, similarly to what is 
observed in T1D [45]. ER stress on both beta cells and adi-
pocytes occurs in response to the metabolic stress induced 
by obesity [46]. By promoting abnormal PTMs, obesity may 
foster the generation of neoantigens and, in turn, the devel-
opment of autoreactive responses to these epitopes. VAT-
derived MHC class I-associated immunopeptidome isolated 
from lean and obese mice shows that some MHC I-restricted 
peptides, such as LDHA237-244, are present exclusively in 
obese VAT and exhibited dose-dependent immunogenicity 
to induce CD8 T cell responses [47••]. These data support 
the hypothesis that T cells can be primed in the VAT by 
adipocyte-derived antigens generated as a result of PTMs, 
thus representing a crucial event in obesity-induced VAT 
inflammation.

Gut Dysbiosis

Gut dysbiosis has been linked to T2D and obesity. Increased 
abundance of Bacteroidetes and decreased abundance of Fir-
micutes strains observed in T2D and obesity result in lower 
levels of microbiota-derived metabolites, such as short-
chain fatty acids (SCFA), known to promote Treg differ-
entiation and production of the anti-inflammatory cytokine 
IL-10 [48]. Gut dysbiosis has also been associated with islet 
autoreactivity, with the loss of gut barrier integrity leading 
to translocation of bacterial products that stimulate islet-
reactive T cells through a TCR-mediated mechanism [49]. 
Dysbiosis occurring in obesity and T2D may similarly trig-
ger autoimmunity. Indeed, HFD, by increasing gut barrier 
permeability and intestinal absorption of antigenic material 
[50], may induce autoimmune responses especially in tis-
sues in close proximity of the gut, such as VAT. Triglycer-
ides promoted intestinal absorption of the protein antigen 
ovalbumin (“OVA”) and its localization in mesenteric adi-
pose tissue, which was associated to in situ accumulation 
of CD4+ T cells [51]. Increased intestinal permeability 

also allows bacterial products, such as lipopolysaccharide 
(LPS), to translocate in the systemic circulation, reach the 
VAT, and activate local immune responses via high-affinity 
binding to TLR4, eventually leading to IR [52]. The role 
of the gut microbiome in IR has been partially addressed 
in humans. Wu et al. [53] showed that metformin-treated 
T2D patients exhibited improved IR, change in gut micro-
biome, and increased levels of SCFA. However, further 
studies are required to establish whether the targeting of IR 
by metformin is mediated by the restoration of a healthy 
microbiome.

Accumulation of bacterial LPS may contribute to meta-
bolic stress/cell death in adipose tissue or pancreas with 
enhanced exposition of autoantigens and consequent devel-
opment of T cell autoreactivity. Autoreactive T cells then 
can migrate to the circulation with consequent extravasa-
tion in metabolically active organs. Therefore, regulation 
of immune homeostasis by gut dysbiosis, by fostering the 
development of the ideal milieu for the generation of auto-
reactive immune responses, may possibly result in the initia-
tion of IR.

Implications for Therapy

Given the growing prevalence of IR in T1D, especially in 
overweight individuals, increasing insulin dose may not be 
the best approach as it can very likely exacerbate IR.

Insulin sensitization using metformin was the obvious 
adjunctive approach; however, unlike in T2D, any possible 
benefit of this drug has been small in T1D [54]. Oral insulin 
and insulin analogs that exhibit preferential hepatic bioavail-
ability are another possible therapy that can confer a better 
insulin balance between portal and peripheral circulation. 
However, there are issues of limited bioavailability [55] and 
concerns about potential pathologic hepatic effects. Other 
approaches to improve insulin sensitivity in T1D include 
glucagon-like peptide-1 receptor agonists and liver-selective 
glucokinase activators. Glucagon receptor antagonists can 
lower insulin needs while improving glucose time-in-range 
and decreasing hypoglycemia times [56]. These agents how-
ever, other than being highly experimental, may interfere 
with exogenous glucagon in cases of severe hypoglycemia 
and can promote weight gain. Liver-selective glucokinase 
activators are very promising based on available data, as 
they reduce hypoglycemia while lowering peripheral glucose 
concentrations with lower insulin requirements [57].

To halt the low-grade systemic inflammatory state that 
is not of autoimmune nature, anti-inflammatory approaches 
such as CXCR2 antagonists [58] could be helpful adjunc-
tive treatments in T1D. Of note, targeting TNF-α in new 
onset T1D [59] improved endogenous insulin production 
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and lower insulin requirement, suggesting a potential effect 
on peripheral insulin sensitivity. No data are available on 
the effect of T cell modulation on IR in the prevention and 
treatment of T1D in humans. However, immunotherapy has 
the potential to be effective in the context of IR as admin-
istration of abatacept, targeting T cell co-stimulation, has 
improved insulin sensitivity in patients with rheumatoid 
arthritis [60]. To elucidate whether T cell modulation inter-
feres with IR, insulin sensitivity indices should be assessed 
in clinical trials with T cell targeting compounds in T1D. In 
line with this, clinical trials should be designed to elucidate 
whether immunotherapy has an effect on the modulation of 
IR and T2D.

Diabetes as an Immunologic Continuum

Diabetes has long been considered a multifaceted disease 
due to the heterogeneity of clinical manifestations, different 
aetiologies, and genetic factors contributing to its develop-
ment [61]. Clustering diabetes into distinct subgroups, or 
“endotypes”, based on specific pathophysiological processes 
would impact the clinical management of the disease. In the 
effort of accounting all the different factors that contribute 
to T2D development, McCarthy has proposed the “Palette” 
model to predict the trajectory of metabolic derangement 
starting from specific pathological defects observed in these 

patients [62]. We, likewise [8], have introduced the concept 
of endotypes in the field of T1D to highlight the presence of 
multiple mechanisms underlying T1D development.

In this perspective, we have highlighted that diabetes 
often results in the admixture of pathological mechanisms 
of T1D and T2D, suggesting that the distance between 
their aetiologies is smaller than originally thought, and 
that they may represent the extreme manifestations of a 
continuum immunological process. In light of this consid-
eration, we propose a novel model to interpret diabetes, in 
which the disease is not formally distinguished into T1D 
or T2D forms but is rather thought of as an immunologic 
continuum shaped by different endotypes between the two 
disease extremities (beta cell targeting autoimmunity and 
immune-sensitizing metabolic disruption resulting in IR). 
This continuum model is illustrated in Figure 2 and is based 
on a common motif whose platform is the immune system. 
As a simplification, the model here described is based on 
disease clusters identified by Ahlqvist et al. [63]: the Severe 
Autoimmune Diabetes (SAID) endotype, featured by islet 
autoimmunity and ketoacidosis, lies at the “autoimmune 
beta cell targeting” extremity, while the Severe Insulin-
Resistance Diabetes (SIRD) would correspond to the “insu-
lin-resistant” endotype, in which high levels of IR and low 
autoimmunity are present. Severe Insulin-Deficient Diabetes 
(SIDD) is far from the diet/environment arrow and has a 
high genetic component. Obesity-related diabetes (ORD), 

Figure  2  Application of the “continuum model” to define diabetes 
endotypes. Spectrum of diabetes endotypes ranging from “autoim-
mune beta cell targeting” (red) to “insulin-resistant” diabetes forms 
(blue). Color intensity indicates the magnitude of islet autoimmun-
ity and insulin-resistance components, red and blue respectively. The 
impact of diet/environment on diabetes endotypes is shown by the 
gray arrow (the larger and darker the arrow, the stronger the effect). 
Each individual represents a specific endotype, whose position is the 
result of a cumulative overlay of multiple factors (islet autoimmun-
ity, insulin-resistance, diet/environment). The shades of green of each 

individual indicate the weight of genetics in determining the endo-
type, dark green refers to a stronger effect than light green. We used 
the clusters identified by Ahlqvist et al. (63) as endotypes that may fit 
our model, i.e., the Severe Autoimmune Diabetes (SAID) endotype, 
Severe Insulin-Resistance Diabetes (SIRD), Severe Insulin-Deficient 
Diabetes (SIDD), and Obesity-related diabetes (ORD). This cluster 
analysis approach may be enriched by other disease variants, such as 
the “LADA-like” endotype, that lies in the middle and shows inter-
mediate traits
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featured by elevated BMI and intermediate levels of IR, 
is tightly associated with diet and environmental triggers. 
Here, we propose that a certain endotype is defined by the 
combination of specific factors such as autoimmunity, insu-
lin resistance, genetic, and environmental factors. However, 
this is still a simplification. Indeed, in the “insulin-resistant 
diabetes” extreme of the model, different endotypes are 
likely to co-exist, which may differ for the way the immune 
system induces insulin resistance, such as the dynamics and 
tissue localization of (autoreactive?) T cells. Moreover, we 
reasoned that genetic and environmental factors may dictate 
the specificity of autoantigens, the profile of autoreactive T 
cells, and the type and magnitude of autoimmune responses, 
thus skewing the endotypes toward a strong autoimmune 
versus insulin-resistant component.

Conclusions

In the view of emerging personalized therapies, endotype-
specific features should be part of a treatment approach. As 
IR and autoimmunity are often part of the clinical course of 
diabetes, clinical trials are needed to explore the benefit of 
diet/healthy lifestyle, insulin-sensitizing agents, and immu-
nomodulating therapies on distinct diabetes endotypes. Here 
we propose a model in which endotypes are defined by the 
combination of autoimmunity and insulin resistance repre-
senting the two extremities of an immunological continuum 
model in which genetic and environmental factors contribute 
to determine the specificity of the immune response.

With this model, we do not aim to underestimate the 
importance of the diet in the induction of metabolic dys-
function or the role of beta cell fragility, nor we want to 
exclude monogenic diabetes or downsize the role played 
by the innate immune system in the development of differ-
ent endotypes of diabetes. The effort of dissecting specific 
mechanisms that contribute to the definition of new endo-
types should be pursued to develop precision medicine as 
well as to prevent or mitigate the onset of diabetes in at-risk 
subjects.
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