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Abstract
Purpose of Review Non-alcoholic fatty liver disease (NAFLD) is a major and increasing health burden, with the potential to
overwhelm hepatology services. However, only a minority of patients develop advanced liver disease. The challenge is early
identification of patients at risk of progression. This review aims to summarize current knowledge on the genetic predisposition to
NAFLD, and its implications for prognostication and risk stratification.
Recent Findings PNPLA3-I148M is the most robustly associated genetic variant with NAFLD. Recently, variants in TM6SF2,
MBOAT7, GCKR and HSD17B13 have also been implicated. NAFLD is a complex disease, and any one genetic variant alone is
insufficient for risk stratification, but combining multiple genetic variants with other parameters is a promising strategy.
Summary It is anticipated that, in the near future, analysis of data from large-scale prospective cohorts will reveal NAFLD
subtypes and enable the development of prognostic models. This will facilitate risk stratification of patients, enabling optimisa-
tion of resources to effectively manage the NAFLD epidemic.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is now the most
common liver disease in Europe and the United States and
affects an estimated 25% of the global population [1], increas-
ing to 55% in those with type 2 diabetes [2]. Although the
majority of patients do not develop clinically significant liver
disease, the high prevalence means that NAFLD is a heavy

healthcare burden [3, 4]. It is already the second leading cause
of liver transplantation in the United States [5], with mortality
expected to more than double by 2030 [6].

NAFLD is characterized by steatosis (>5% hepatocytes) in
the absence of significant alcohol intake or secondary causes
(e.g. steatotic drugs); and encompasses a spectrum of disease
ranging from simple steatosis through steatohepatitis (nonal-
coholic steatohepatitis, NASH: steatosis plus inflammation
and hepatocyte ballooning) to fibrosis, cirrhosis and hepato-
cellular carcinoma (HCC). There is considerable heterogene-
ity in disease phenotype, and the natural history and risk of
progression to clinically significant liver disease are uncertain.
Patients may have stable disease, progress slowly or rapidly,
or even regress [7]; some will develop HCC [8] (Fig. 1).

Understanding which patients are at risk of liver-
related morbidity and mortality is essential. Firstly, risk
stratification of patients to appropriate follow up is nec-
essary to manage the burden of disease. Secondly,
subtyping patients based on risk of progressive disease
will facilitate baseline parameter standardization in clin-
ical trials, enabling identification of effective treatments
[9]. Thirdly, understanding individualized risk will help
clinicians select those patients most likely to benefit
from new drug therapies, as they become available.
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NAFLD Pathogenesis

NAFLD is a complex disease resulting from interplay of ge-
netic, environmental, metabolic and microbial factors. The
rising prevalence of NAFLD is linked to the increasing trends
in obesity and type 2 diabetes, resulting from changes in die-
tary patterns and sedentary lifestyles [10]. NAFLD is closely
linked to the metabolic syndrome, a cluster of conditions in-
cluding central obesity, hypertension, dyslipidaemia and
hyperglycaemia [11]. The major source of hepatic lipid is
through lipolysis of adipose tissue [12]. Basal lipolysis is en-
hanced in obesity, leading to increased delivery of free fatty
acids to the liver and skeletal muscle [13]. In turn, this may
promote insulin resistance [13, 14]. Secondary sources of he-
patic lipid are de novo lipogenesis from excess dietary sugars,
and dietary fat [12].

Within the liver, free fatty acids are metabolized by mito-
chondrial beta-oxidation or incorporated into triglycerides, for
export as very low density lipoprotein (VLDL) or sequester-
ing into lipid droplets [15]. When the liver’s capacity to me-
tabolize free fatty acids is exceeded, harmful lipid species may
be formed, which can activate lipotoxic pathways leading to
hepatocellular injury and driving progression towards NASH
[15–18].

Fibrosis, or scarring, results from a dysregulated wound
healing response to repeated hepatocellular injury.
Inflammatory mediators activate hepatic stellate cells to
myofibroblasts, which migrate into the liver parenchyma and
secrete the collagen-rich extracellular matrix that characterizes
fibrosis [19]. At the same time, mechanisms for fibrolysis are
inhibited, leading to a net increase in scarring [19]. Ultimately,

this leads to cirrhosis, characterized by thick, fibrous septae
and architectural distortion, which predisposes to the compli-
cations of portal hypertension, organ failure and HCC. With
removal of the injurious agent, fibrolysis may be favoured,
and even cirrhosis can regress [20].

Disease Progression

Previously, simple steatosis, without evidence of NASH, was
thought to be a benign condition, with no risk of progression
to clinically significant liver disease. However, there have
been several studies and systemic analyses evaluating disease
progression with paired liver biopsies, which challenge this
assumption.

Staging of NAFLD fibrosis is usually assessed using the
NASHClinical Research Network histological scoring system
[21]. This ranges from no fibrosis (stage 0), through mild
(stage 1), moderate (stage 2), and advanced fibrosis (stage 3;
bridging fibrosis, spanning portal-to-portal or portal-to-central
spaces), to cirrhosis (stage 4).

In a large meta-analysis, Singh et al. demonstrated that
39.1% of those with steatosis but no evidence of NASH de-
veloped progressive fibrosis, with an average progression rate
of one fibrosis stage every 14 years [7]. On average, patients
with NASH progressed twice as fast. Importantly, they iden-
tified a subgroup of ‘rapid progressors’, with one in five
progressors advancing from no fibrosis at baseline to ad-
vanced fibrosis or cirrhosis over a mean 5.9 years [7]. More
recent studies have also demonstrated progression to ad-
vanced fibrosis or cirrhosis in around 20% of patients with

Fig. 1 NAFLD encomapasses as a spectrum of disease, ranging from
steatosis through NASH, to fibrosis and cirrhosis. 25% of the
population are estimated to have NAFLD [1]. Only a minority will
develop advanced disease, but large-scale long-term studies are needed
to better understand the risk of progression. Factors promoting the
development and progression of NAFLD include obesity, type 2
diabetes, reduced physical activity, genetic variants and alterations of

the gut microbiome. Conversely, weight reduction and exercise can
result in disease regression. Cirrhosis is associated with risks of portal
hypertension, liver failure, liver transplantation and death. HCC typically
arises on a background of cirrhosis, but in NAFLD it can also occur pre-
cirrhosis. NAFLD, non-alcoholic fatty liver diseases; NASH, non-
alcoholic steatohepatitis; HCC, hepatocellular carcinoma
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baseline steatosis without evidence of NASH, over an average
follow up of 4 to 8 years [22, 23]. Overall, 34% of patients
have progressive disease, 43% have stable disease and 22%
will regress [7].

However, many of these studies are retrospective, per-
formed in tertiary centres, and limited by inherent selection
bias in patients undergoing repeated liver biopsy. Therefore, it
may be difficult to extrapolate these findings to the general
population. To address this, Loomba et al. studied a large,
real-world cohort of patients in the United States, and identi-
fied that 39% of those with an initial diagnosis of NAFLD
progressed to advanced liver disease (cirrhosis, liver trans-
plant or HCC) over an 8 year study period [24]. It has been
argued that this may overestimate the risk of progression to
advanced liver disease, due to the low prevalence of NAFLD
(5.7%; perhaps due to underdiagnosis) and older age
(≥65 years; favouring fibrosis progression) of the study cohort
[25]. Other population-based studies are currently underway
to ascertain the prevalence of chronic liver disease and iden-
tify population subgroups at highest risk of progressive fibro-
sis [25].

Assessing the Disease Stage

Liver biopsy is the gold standard for diagnosing NASH and
staging fibrosis. However, it is limited by sampling error (liver
pathology can be heterogeneous, and biopsy only samples
approximately 1/50,000th of the liver), and inter-observer var-
iability [26]. It is also associated with cost, inconvenience, and
risk to the patient, including very rarely, a risk of death [26].
Moreover, it has been suggested that rather than following a
linear course, NASH activity may fluctuate over time, and
therefore, a singular liver biopsy may not accurately reflect
disease severity [27].

For these reasons, there is a major research focus to identify
and validate non-invasive fibrosis biomarkers. Several have
been developed, including specific blood biomarkers (e.g.
Enhanced Liver Fibrosis test); combined scores based on clin-
ical data and standard laboratory investigations (e.g. NAFLD
Fibrosis Score); and imaging modalities (e.g. transient
elastography, Fibroscan). Whilst currently available bio-
markers are useful for ruling out advanced fibrosis, they per-
form less well at diagnosing cirrhosis and discriminating be-
tween fibrosis stages [28]. This means that many patients still
require a liver biopsy for an accurate diagnosis.

Currently, the British Society for Gastroenterology (BSG)
and European Association for Study of the Liver - Asociacion
Latinoamericana para el Estudio del Higado (EASL-ALEH)
guidelines advocate using non-invasive biomarkers to assess
advanced fibrosis in NAFLD [29, 30]. Patients are then
dichotomised into those at low or high risk of advanced fibro-
sis. Patients at low risk are managed in primary care, with

repeat assessment of fibrosis risk every 2 to 5 years; patients
at high risk are referred to hepatology services for further
assessment [29].

Liver fibrosis is the strongest predictor of liver-related and
all-cause mortality in NAFLD [31–33]. This underpins the
current diagnostic pathway, with only patients at high risk of
advanced fibrosis referred to hepatology services. Liver dis-
ease is typically asymptomatic until complications develop.
The majority of patients with cirrhosis are first diagnosed dur-
ing a hospital admission with decompensated disease [34].
Identifying asymptomatic patients with cirrhosis would allow
opportunity for monitoring and treatment for complications,
including surveillance for varices and HCC. However, the
current pathway is suboptimal. Firstly, patients with low risk
of advanced fibrosis who will never go on to develop clinical-
ly significant liver disease may be needlessly followed up,
creating unnecessary workload and potentially fuelling health
related anxiety. Secondly, patients at high risk of fibrosis pro-
gression may miss the opportunity for intensive management
to minimize their risk of developing cirrhosis. To address this,
we need methods of identifying those patients with early dis-
ease who are destined to progress.

Although HCC typically develops on a background of cir-
rhosis, in NAFLD it can occur in non-cirrhotics. Up to 49% of
NAFLD-related HCC occurs in patients without background
cirrhosis [8]. NAFLD-related HCC presents late, with a more
advanced tumour stage, and a poorer prognosis [35].
Currently, there is no recommendation for HCC surveillance
in pat ients with NAFLD without cir rhosis [36] .
Understanding which patients are most at risk, may allow
for earlier diagnosis and improvement in outcomes.

Predicting Risk: Key Genes

PNPLA3

Genetic risk for NAFLD susceptibility is suggested by ethnic
variability [37], increased risk with a parental history [38], and
twin studies [39, 40]. Notably, a twin study in the United
States has shown that the heritability of hepatic steatosis and
fibrosis is around 50% [40]. Genome wide association studies
(GWAS) look for links between common genetic variants
(single nucleotide polymorphisms, SNPs) and disease pheno-
types. Over the last decade, a number of GWAS have revealed
genetic variants associated with NAFLD. The first, by Romeo
et al., identified that a SNP (rs738409) in the gene encoding
patin-like phospholipase domain-containing protein 3
(PNPLA3) was strongly associated with hepatic steatosis
and inflammation (assessed by liver transanimases) [41••].
The rs738409 variant is a cytosine to guanine substitution,
which results in a switch from isoleucine to methionine at
residue 148 (I148M). PNPLA3 is predominantly expressed
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in the liver and retina [42]. In vitro, PNPLA3 catalyses the
hydrolysis of triglycerides [43]. Its catalytic activity is
disrupted by the I148M mutation. However, Pnpla33 knock-
out mice do not develop hepatic steatosis [44]. Therefore,
PNPLA3-I148-mediated steatosis is not thought to result from
a simple loss-of-function. Instead, PNPLA3-I148M resists
degradation and accumulates on lipid droplets [45], where it
is thought to sequester the lipase co-factor comparative gene
identification-58 (CGI-58), thereby indirectly inhibiting other
lipases [46, 47].

PNPLA3 is more highly expressed in hepatic stellate cells
in the liver, where it is also involved in the metabolism of
intracellular lipid droplets [42]. Quiescent hepatic stellate cells
store retinol in the form of retinol palmitate. PNPLA3 has
been shown to hydrolyse retinol palmitate and promote the
release of retinol from hepatic stellate cells [42]. Hepatic stel-
late cells are activated to myofibroblasts in response to liver
injury. This activation process is associated with loss of their
intracellular lipid droplets [48]. The PNPLA3-I148M variant
is associated with a reduction in lipid droplet metabolism [42],
and a more inflammatory and fibrogenic phenotype in hepatic
stellate cells in vitro [49].

PNPLA3-I148M has subsequently been associated with all
aspects of NAFLD, including age at diagnosis [50]; hepatic
steatosis [51]; disease severity [51]; fibrosis stage [51]; and
HCC [52]. Most recently, in the largest GWAS on histologi-
cally characterized NAFLD, PNPLA3-I148M was confirmed
to be associated with the full spectrum of disease [53••].

Interestingly, carriage of the PNPLA3-I148M variant
confers a poorer prognosis in other liver diseases in-
cluding alcohol-related liver disease [54], and autoim-
mune hepatitis [55]. Alcohol excess causes hepatic
steatosis, and therefore, in alcohol-related liver disease,
PNPLA3-I148M may increase risk of progression
through a shared mechanism with NAFLD. However,
in autoimmune hepatitis the effect of PNPLA3-I148M
was seemingly unrelated to hepatic steatosis, suggesting
alternative mechanisms of action [55].

Genotyping for the PNPLA3-I148M variant is not
recommended as a singular test for risk stratification
of NAFLD or HCC [36, 50, 52]. Indeed, its effects
are modulated by interactions with environmental fac-
tors and other gene variants. For example, its effect is
potentiated by adiposity: Stender et al. showed that ho-
mozygosity for PNPLA3-I148M variant was associated
with hepatic steatosis in 18% of lean individuals com-
pared with 84% in the very obese [56]. PNPLA3-I148M
is also modified by interaction with other genetic poly-
morphisms. Donati et al. discovered that an additional
polymorphism in the PNPLA3 gene, rs2294918 G > A
encoding the E434K protein variant, ameliorated the ef-
fect of PNPLA3-I134M on development of NASH by
reducing its expression [57].

TM6SF2

A polymorphism (rs58542926 A >G) in the transmembrane 6
superfamily member 2 (TM6SF2) gene is associated with he-
patic steatosis and progressive fibrosis [53, 58–60]. The ge-
netic variant results in a substitution of lysine for glutamate at
residue 167 [59]. The function of the protein was unknown.
However, recent studies in mice have revealed that loss of
Tm6sf22 is associated with reduced hepatic lipid secretion
via VLDL, with excess lipid accumulating in hepatocellular
droplets [61]. When fed a normal diet, the Tm6sf2 knockout
mice developed hepatic steatosis, elevated liver enzymes and
hypocholesterolaemia, recapitulating the human phenotype
[61]. Interestingly, loss of Tm6sf22 was associated with a
marked reduction in expression of PNPLA3 [61]. Notably,
the TM6SF2 variant is associated with lower levels of circu-
lating total cholesterol, LDL-cholesterol and triglycerides, and
is protective against cardiovascular disease [60, 62].
Therefore, targeting TM6SF2 therapeutically may not be via-
ble in NAFLD.

MBOAT7

The rs641738 C > T polymorphism in the membrane bound
O-acyltransferase domain containing 7 (MBOAT7) gene was
initially identified as a genetic modifier of risk for alcohol-
related cirrhosis [54]. Subsequently, it was shown to be asso-
ciated with hepatic steatosis, and severity of NAFLD-related
necroinflammation and fibrosis [63]. More recently, it has
been associated with NAFLD-related HCC, particularly in
non-cirrhotics [64]. However, others have not found evidence
of an association between MBOAT7 and NAFLD [53, 65].

T h e MBOA T 7 g e n e e n c o d e s t h e e n z y m e
lysophosphatidylinositol acyltransferase 1 (LPIAT1), which
catalyses the incorporation of arachidonic acid into phos-
phatidylinositol [66]. The rs641738 variant is associated with
a reduction in both mRNA and protein MBOAT7/LPIAT1
levels [63], but the mechanisms linking this to the develop-
ment of NAFLD are unclear. Recently, Tanaka et al. have
discovered a novel pathway. They demonstrated that loss of
MBOAT7/LPIAT1 is associated with increased triglyceride
synthesis and accumulation in hepatocytes, secondary to in-
creased phosphatidylinositol turnover resulting in increased
production of diacylglycerol, a substrate for triglyceride syn-
thesis [67]. In addition, loss of MBOAT7/LPIAT1 in hepatic
stellate cells was associated with a more fibrogenic phenotype
[67].

On the contrary, Thangapandi et al. demonstrated that
hepatocyte-specific Mboat7 deletion in mice is associated
with increased hepatocyte cholesteryl esters but not triglycer-
ides [68]. In addition, they discovered that hepatocyte-specific
Mboat7deficient mice develop hepatic fibrosis in the absence
of inflammation when fed a NAFLD-inducing diet. Similarly,
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in patients with a BMI ≤ 35, carriage of the rs641738 poly-
morphism was associated with hepatic fibrosis independent of
inflammation [68].

GCKR

In the liver, glucokinase regulatory protein (GKRP) regulates
the activity of glucokinase, depending on the glycaemic
levels. In low glucose conditions, GKRP binds to, and seques-
ters, glucokinase in the hepatocyte nucleus [69]. Whereas in
high glucose conditions, GKRP is released from glucokinase,
allowing its translocation from the nucleus to the cytoplasm
[69]. Cytosolic glucokinase activates glucose storage path-
ways including glycogen synthesis and de novo lipogenesis
[70]. Counterintuitively, overexpressing GKRP in diabetic
mice results in decreased fasting blood glucose levels and
improved insulin sensitivity [69]. It is proposed that GKRP
may also act to stabilize glucokinase protein, thereby leading
to increased levels and activity [69].

The SNP rs1260326 in the GCKR gene encodes a C to T
substitution, which results in a switch from proline to leucine
at residue 446 (P446L) [71]. Functionally, this attenuates the
capacity of GCKR to inhibit glucokinase [70]. Initially, the
GCKR-P446L variant was linked to increased triglyceride
levels, but reduced fasting glucose, insulin resistance and type
2 diabetes risk [72]. Subsequently, it has been associated with
hepatic steatosis [53, 71]. A further SNP in the GCKR gene
(rs780094) has also been shown to associate with NAFLD and
fibrosis severity [73–75]. However, from studies in type 2
diabetes, these two SNPs are in strong linkage disequilibrium
[76, 77].

HSD17B13

Hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) is a
liver-specific, lipid droplet associated protein [78, 79], with
retinol dehydrogenase activity in vitro [53, 80]. It is upregu-
lated in human liver tissue in NAFLD, and its overexpression
results in the development of hepatic steatosis in mice [79].
Several studies have now reported that loss-of-function vari-
ants in HSD17B13 are protective against the development of
NASH and NAFLD cirrhosis [53, 80, 81]. However, the
mechanisms underlying this remain to be elucidated.

Polygenic Risk Scores

NAFLD is a complex disease, therefore, it is logical that
combing genetic variants into a risk score will improve prog-
nostic accuracy over a singular genetic variant. Recently,
Gellert-Kristensen et al. demonstrated that a genetic risk score,
combining the three genetic variants in PNPLA3, TM6SF2
and HSD17B13, was associated with risk of cirrhosis and

HCC in fatty liver disease (both NAFLD and alcohol-
related) in the general population [82]. The score ranged from
0 to 6 depending on the number of risk alleles; a score of 5 or 6
was associated with a 12-fold increased risk of cirrhosis and a
29-fold increased risk of HCC [82]. Although, of note, only
0.5% of the study population scored a 5 or 6 [82].

In their editorial, Pfeiffer et al. demonstrated that, despite
its strong association, Gellert-Kristensen et al.’s genetic risk
score has limited usefulness as a singular test for risk stratifi-
cation, due to its low positive predictive value (0.003 for cir-
rhosis and 0.0008 for HCC for score ≥ 4 in the UK population)
[83]. However, it is anticipated that risk prediction scores will
be used in confirmed NAFLD (rather than the general popu-
lation), to stratify patients to appropriate follow up, and target
individuals for novel therapeutics and enhanced surveillance.
It is likely that genetic risk variants will need to be combined
with other variables, such as clinical parameters, to improve
score performance [83]. Similarly a genetic risk score includ-
ing variants in PNPLA3, TM6SF2, HSD17B13 and GCKR
found a significant association with steatosis, steatohepatitis
and fibrosis in a large cohort of patients with histologically
characterized NAFLD [53••]. Gellert-Kristensen et al. also
evaluated inclusion of the GCKR variant, but found that it
did not improve score performance [82].

Conclusion

Our knowledge of the aetiological drivers and pathophys-
iology of NAFLD has increased greatly in recent years.
However, translating this to clinical practice remains a
challenge. The majority of patients with NAFLD will
not develop advanced liver disease. Therefore, identifying
at-risk individuals to target for therapeutics and enhanced
surveillance is critical. For this, the most accurate risk
prediction scores will combine genetics with clinical var-
iables and other biomarkers reflecting the underlying
pathological mechanisms. However, accuracy will need
to be weighed against cost, ease and acceptability for
large-scale implementation.

In the near future, it is likely that artificial
intelligence-based strategies to interrogate large multi-
modal datasets will uncover disease subtypes and enable
the development of prognostic models. This will facili-
tate risk stratification of patients, optimisation of re-
sources, and individualized treatment. This should, of
course, be combined with wider, governmental strategies
to address the root causes of the epidemic (e.g. societal
and environmental factors promoting obesity) [4, 84].
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