Skip to main content

Advertisement

Log in

Retinal Neurodegeneration as an Early Manifestation of Diabetic Eye Disease and Potential Neuroprotective Therapies

  • Microvascular Complications—Retinopathy (DL Chao and G Yiu, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diabetic retinopathy (DR) is a major cause of visual impairment and blindness throughout the world. Microvascular changes have long been regarded central to disease pathogenesis. In recent years, however, retinal neurodegeneration is increasingly being hypothesized to occur prior to the vascular changes classically associated with DR and contribute to disease pathogenesis.

Recent Findings

There is growing structural and functional evidence from human and animal studies that suggests retinal neurodegeneration to be an early component of DR. Identification of new therapeutic targets is an ongoing area of research with several different molecules undergoing testing in animal models for their neuroprotective properties and for possible use in humans.

Summary

Retinal neurodegeneration may play a central role in DR pathogenesis. As new therapies are developed, it will be important to develop criteria for clinically defining retinal neurodegeneration. A standardization of the methods for monitoring neurodegeneration along with more sensitive means of detecting preclinical damage is also needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015;2:17.

    Article  Google Scholar 

  2. Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013;1(6):e339–49.

    Article  PubMed  Google Scholar 

  3. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  4. Metea MR, Newman EA. Signalling within the neurovascular unit in the mammalian retina. Exp Physiol. 2007;92(4):635–40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Simo R, Hernandez C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  6. Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina. 2016;36(11):2039–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan G, Balaratnasingam C, Yu PK, Morgan WH, McAllister IL, Cringle SJ, et al. Quantitative morphometry of perifoveal capillary networks in the human retina. Invest Ophthalmol Vis Sci. 2012;53(9):5502–14.

    Article  PubMed  Google Scholar 

  8. Ames A 3rd, Li YY, Heher EC, Kimble CR. Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci. 1992;12(3):840–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Langhans M, Michelson G, Groh M. Effect of breathing 100% oxygen on retinal and optic nerve head capillary blood flow in smokers and non-smokers. Br J Ophthalmol. 1997;81(5):365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feng Y, Busch S, Gretz N, Hoffmann S, Hammes HP. Crosstalk in the retinal neurovascular unit – lessons for the diabetic retina. Exp Clin Endocrinol Diabetes. 2012;120(04):199–201.

    Article  CAS  PubMed  Google Scholar 

  11. Aung MH, Park HN, Han MK, Obertone TS, Abey J, Aseem F, et al. Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes. J Neurosci. 2014;34(3):726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D'Cruz TS, Weibley BN, Kimball SR, Barber AJ. Post-translational processing of synaptophysin in the rat retina is disrupted by diabetes. PLoS One. 2012;7(9):e44711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lieth E, LaNoue KF, Antonetti DA, Ratz M. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res. 2000;70(6):723–30.

    Article  CAS  PubMed  Google Scholar 

  14. Pemp B, Garhofer G, Weigert G, Karl K, Resch H, Wolzt M, et al. Reduced retinal vessel response to flicker stimulation but not to exogenous nitric oxide in type 1 diabetes. Invest Ophthalmol Vis Sci. 2009;50(9):4029–32.

    Article  PubMed  Google Scholar 

  15. Mandecka A, Dawczynski J, Blum M, Muller N, Kloos C, Wolf G, et al. Influence of flickering light on the retinal vessels in diabetic patients. Diabetes Care. 2007;30(12):3048–52.

    Article  PubMed  Google Scholar 

  16. Garhofer G, Zawinka C, Resch H, Kothy P, Schmetterer L, Dorner GT. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br J Ophthalmol. 2004;88(7):887–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(1):1–6.

    Article  PubMed  Google Scholar 

  18. Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018;61(9):1902–12.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wolter JR. Diabetic retinopathy. Am J Ophthalmol. 1961;51:1123–41.

    CAS  PubMed  Google Scholar 

  20. Araszkiewicz A, Zozulinska-Ziolkiewicz D. Retinal neurodegeneration in the course of diabetes-pathogenesis and clinical perspective. Curr Neuropharmacol. 2016;14(8):805–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu SM, Maple BR. Amino acid neurotransmitters in the retina: a functional overview. Vis Res. 1998;38(10):1371–84.

    Article  CAS  PubMed  Google Scholar 

  22. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1(8):623–34.

    Article  CAS  PubMed  Google Scholar 

  23. Lucas DR, Newhouse JP. The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 1957;58(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  24. Vorwerk CK, Lipton SA, Zurakowski D, Hyman BT, Sabel BA, Dreyer EB. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci. 1996;37(8):1618–24.

    CAS  PubMed  Google Scholar 

  25. Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res. 1997;37(24):3483–93.

    Article  CAS  PubMed  Google Scholar 

  26. Ambati J, Chalam KV, Chawla DK, D'Angio CT, Guillet EG, Rose SJ, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol. 1997;115(9):1161–6.

    Article  CAS  PubMed  Google Scholar 

  27. Diederen RMH, La Heij EC, Deutz NEP, Kijlstra A, Kessels AGH, van Eijk HMH, et al. Increased glutamate levels in the vitreous of patients with retinal detachment. Exp Eye Res. 2006;83(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  28. Santiago AR, Hughes JM, Kamphuis W, Schlingemann RO, Ambrosio AF. Diabetes changes ionotropic glutamate receptor subunit expression level in the human retina. Brain Res. 2008;1198:153–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bloodworth JM Jr. Diabetic retinopathy. Diabetes. 1962;11:1–22.

    PubMed  Google Scholar 

  30. Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 1998;47(5):815–20.

    Article  CAS  PubMed  Google Scholar 

  31. Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(2):283–90.

    Article  CAS  Google Scholar 

  32. Szabó K, Énzsöly A, Dékány B, Szabó A, Hajdú RI, Radovits T, et al. Histological evaluation of diabetic neurodegeneration in the retina of Zucker diabetic fatty (ZDF) rats. Sci Rep. 2017;7:8891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bogdanov P, Corraliza L, Villena JA, Carvalho AR, Garcia-Arumi J, Ramos D, et al. The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration. PLoS One. 2014;9(5):e97302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102(4):783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barber AJ, Antonetti DA, Kern TS, Reiter CE, Soans RS, Krady JK, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci. 2005;46(6):2210–8.

    Article  PubMed  Google Scholar 

  36. Aizu Y, Oyanagi K, Hu J, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology. 2002;22(3):161–70.

    Article  PubMed  Google Scholar 

  37. Seigel GM, Lupien SB, Campbell LM, Ishii DN. Systemic IGF-I treatment inhibits cell death in diabetic rat retina. J Diabetes Complicat. 2006;20(3):196–204.

    Article  Google Scholar 

  38. Podesta F, Romeo G, Liu WH, Krajewski S, Reed JC, Gerhardinger C, et al. Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am J Pathol. 2000;156(3):1025–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oshitari T, Yamamoto S, Hata N, Roy S. Mitochondria- and caspase-dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy. Br J Ophthalmol. 2008;92(4):552–6.

    Article  CAS  PubMed  Google Scholar 

  40. Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci. 2004;45(8):2760–6.

    Article  PubMed  Google Scholar 

  41. Valverde AM, Miranda S, García-Ramírez M, González-Rodriguez Á, Hernández C, Simó R. Proapoptotic and survival signaling in the neuroretina at early stages of diabetic retinopathy. Mol Vis. 2013;19:47–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu S, Dong S, Zhu M, Sherry DM, Wang C, You Z, et al. Müller glia are a major cellular source of survival signals for retinal neurons in diabetes. Diabetes. 2015;64(10):3554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gastinger MJ, Singh RSJ, Barber AJ. Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci. 2006;47(7):3143–50.

    Article  PubMed  Google Scholar 

  44. Park SH, Park JW, Park SJ, Kim KY, Chung JW, Chun MH, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia. 2003;46(9):1260–8.

    Article  PubMed  Google Scholar 

  45. Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta. 2015;1852(11):2474–83.

    Article  CAS  PubMed  Google Scholar 

  46. Du Y, Veenstra A, Palczewski K, Kern TS. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci U S A. 2013;110(41):16586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tonade D, Liu H, Palczewski K, Kern TS. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Diabetologia. 2017;60(10):2111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tonade D, Liu H, Kern TS. Photoreceptor cells produce inflammatory mediators that contribute to endothelial cell death in diabetes. Invest Ophthalmol Vis Sci. 2016;57(10):4264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Gooyer TE, Stevenson KA, Humphries P, Simpson DA, Gardiner TA, Stitt AW. Retinopathy is reduced during experimental diabetes in a mouse model of outer retinal degeneration. Invest Ophthalmol Vis Sci. 2006;47(12):5561–8.

    Article  PubMed  Google Scholar 

  50. Carrasco E, Hernandez C, Miralles A, Huguet P, Farres J, Simo R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care. 2007;30(11):2902–8.

    Article  CAS  PubMed  Google Scholar 

  51. •• Sohn EH, van Dijk HW, Jiao C, Kok PH, Jeong W, Demirkaya N, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A. 2016;113(19):E2655–64. This 4-year longitudinal study in people with DM with no or minimal DR shows that DRN precedes signs of microvasculopathy and is progressive and independent of glycated hemoglobin, age, and sex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Masser DR, Otalora L, Clark NW, Kinter MT, Elliott MH, Freeman WM. Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy. J Neurochem. 2017;143(5):595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol. 1961;66:366–78.

    Article  CAS  PubMed  Google Scholar 

  54. Papachristodoulou D, Heath H, Kang SS. The development of retinopathy in sucrose-fed and streptozotocin-diabetic rats. Diabetologia. 1976;12(4):367–74.

    Article  CAS  PubMed  Google Scholar 

  55. Kanamori A, Nakamura M, Mukuno H, Maeda H, Negi A. Diabetes has an additive effect on neural apoptosis in rat retina with chronically elevated intraocular pressure. Curr Eye Res. 2004;28(1):47–54.

    Article  PubMed  Google Scholar 

  56. LoDuca AL, Zhang C, Zelkha R, Shahidi M. Thickness mapping of retinal layers by spectral domain optical coherence tomography. Am J Ophthalmol. 2010;150(6):849–55.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Costa RA, Skaf M, Melo LA Jr, Calucci D, Cardillo JA, Castro JC, et al. Retinal assessment using optical coherence tomography. Prog Retin Eye Res. 2006;25(3):325–53.

    Article  PubMed  Google Scholar 

  58. Ctori I, Huntjens B. Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software. PLoS One. 2015;10(6):e0129005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Massin P, Vicaut E, Haouchine B, Erginay A, Paques M, Gaudric A. Reproducibility of retinal mapping using optical coherence tomography. Arch Ophthalmol. 2001;119(8):1135–42.

    Article  CAS  PubMed  Google Scholar 

  60. Scarinci F, Picconi F, Virgili G, Giorno P, Di Renzo A, Varano M, et al. Single retinal layer evaluation in patients with type 1 diabetes with no or early signs of diabetic retinopathy: the first hint of neurovascular crosstalk damage between neurons and capillaries? Ophthalmologica. 2017;237(4):223–31.

    Article  PubMed  Google Scholar 

  61. Ng DS, Chiang PP, Tan G, Cheung CG, Cheng CY, Cheung CY, et al. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin Exp Ophthalmol. 2016;44(4):243–50.

    Article  PubMed  Google Scholar 

  62. Gundogan FC, Akay F, Uzun S, Yolcu U, Cagiltay E, Toyran S. Early neurodegeneration of the inner retinal layers in type 1 diabetes mellitus. Ophthalmologica. 2016;235(3):125–32.

    Article  CAS  PubMed  Google Scholar 

  63. El-Fayoumi D, Badr Eldine NM, Esmael AF, Ghalwash D, Soliman HM. Retinal nerve fiber layer and ganglion cell complex thicknesses are reduced in children with type 1 diabetes with no evidence of vascular retinopathy. Invest Ophthalmol Vis Sci. 2016;57(13):5355–60.

    Article  CAS  PubMed  Google Scholar 

  64. Dhasmana R, Sah S, Gupta N. Study of retinal nerve fibre layer thickness in patients with diabetes mellitus using Fourier domain optical coherence tomography. J Clin Diagn Res. 2016;10(7):Nc05–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Carpineto P, Toto L, Aloia R, Ciciarelli V, Borrelli E, Vitacolonna E, et al. Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus. Eye. 2016;30(5):673–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodrigues EB, Urias MG, Penha FM, Badaro E, Novais E, Meirelles R, et al. Diabetes induces changes in neuroretina before retinal vessels: a spectral-domain optical coherence tomography study. Int J Retina Vitreous. 2015;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Demir M, Oba E, Sensoz H, Ozdal E. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus. Indian J Ophthalmol. 2014;62(6):719–20.

    Article  PubMed  PubMed Central  Google Scholar 

  68. van Dijk HW, Verbraak FD, Kok PH, Stehouwer M, Garvin MK, Sonka M, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2012;53(6):2715–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. van Dijk HW, Verbraak FD, Kok PHB, Garvin MK, Sonka M, Lee K, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51(7):3660–5.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen Y, Li J, Yan Y, Shen X. Diabetic macular morphology changes may occur in the early stage of diabetes. BMC Ophthalmol. 2016;16:12.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cabrera DeBuc D, Somfai GM. Early detection of retinal thickness changes in diabetes using optical coherence tomography. Med Sci Monit. 2010;16(3):Mt15–21.

    PubMed  Google Scholar 

  72. Verma A, Raman R, Vaitheeswaran K, Pal SS, Laxmi G, Gupta M, et al. Does neuronal damage precede vascular damage in subjects with type 2 diabetes mellitus and having no clinical diabetic retinopathy? Ophthalmic Res. 2012;47(4):202–7.

    Article  CAS  PubMed  Google Scholar 

  73. Pierro L, Iuliano L, Cicinelli MV, Casalino G, Bandello F. Retinal neurovascular changes appear earlier in type 2 diabetic patients. Eur J Ophthalmol. 2017;27(3):346–51.

    Article  PubMed  Google Scholar 

  74. van Dijk HW, Kok PHB, Garvin M, Sonka M, DeVries JH, Michels RPJ, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(7):3404–9.

    Article  PubMed  Google Scholar 

  75. Tavares Ferreira J, Alves M, Dias-Santos A, Costa L, Santos BO, Cunha JP, et al. Retinal neurodegeneration in diabetic patients without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57(14):6455–60.

    Article  PubMed  Google Scholar 

  76. Zhu T, Ma J, Li Y, Zhang Z. Association between retinal neuronal degeneration and visual function impairment in type 2 diabetic patients without diabetic retinopathy. Sci China Life Sci. 2015;58(6):550–5.

    Article  CAS  PubMed  Google Scholar 

  77. Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabetes Res. 2013;2013:8.

    Google Scholar 

  78. Araszkiewicz A, Zozulinska-Ziolkiewicz D, Meller M, Bernardczyk-Meller J, Pilacinski S, Rogowicz-Frontczak A, et al. Neurodegeneration of the retina in type 1 diabetic patients. Pol Arch Med Wewn. 2012;122(10):464–70.

    PubMed  Google Scholar 

  79. van Dijk HW, Verbraak FD, Stehouwer M, Kok PH, Garvin MK, Sonka M, et al. Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vis Res. 2011;51(2):224–8.

    Article  PubMed  Google Scholar 

  80. Verma A, Rani PK, Raman R, Pal SS, Laxmi G, Gupta M, et al. Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye (Lond). 2009;23(9):1824–30.

    Article  CAS  Google Scholar 

  81. Oshitari T, Hanawa K, Adachi-Usami E. Changes of macular and RNFL thicknesses measured by stratus OCT in patients with early stage diabetes. Eye (Lond). 2009;23(4):884–9.

    Article  CAS  Google Scholar 

  82. Asefzadeh B, Fisch BM, Parenteau CE, Cavallerano AA. Macular thickness and systemic markers for diabetes in individuals with no or mild diabetic retinopathy. Clin Exp Ophthalmol. 2008;36(5):455–63.

    Article  PubMed  Google Scholar 

  83. Demirkaya N, van Dijk HW, van Schuppen SM, Abramoff MD, Garvin MK, Sonka M, et al. Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(7):4934–40.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Do carmo A, Ramos P, Reis A, Proenca R, Cunha-vaz JG. Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. Exp Eye Res. 1998;67(5):569–75.

    Article  Google Scholar 

  85. Bowd C, Weinreb RN, Williams JM, Zangwill LM. The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol. 2000;118(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  86. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma. 2009;18(7):501–5.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chhablani J, Sharma A, Goud A, Peguda HK, Rao HL, Begum VU, et al. Neurodegeneration in type 2 diabetes: evidence from spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56(11):6333–8.

    Article  PubMed  Google Scholar 

  88. Falsini B, Porciatti V, Scalia G, Caputo S, Minnella A, Di Leo MA, et al. Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc Ophthalmol. 1989;73(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  89. Di Leo MA, Falsini B, Caputo S, Ghirlanda G, Porciatti V, Greco AV. Spatial frequency-selective losses with pattern electroretinogram in type 1 (insulin-dependent) diabetic patients without retinopathy. Diabetologia. 1990;33(12):726–30.

    Article  PubMed  Google Scholar 

  90. Caputo S, Di Leo MA, Falsini B, Ghirlanda G, Porciatti V, Minella A, et al. Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care. 1990;13(4):412–8.

    Article  CAS  PubMed  Google Scholar 

  91. Bearse MA Jr, Han Y, Schneck ME, Adams AJ. Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Invest Ophthalmol Vis Sci. 2004;45(1):296–304.

    Article  PubMed  Google Scholar 

  92. Shimada Y, Li Y, Bearse MA Jr, Sutter EE, Fung W. Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol. 2001;85(4):414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45(3):948–54.

    Article  PubMed  Google Scholar 

  94. Han Y, Adams AJ, Bearse MA Jr, Schneck ME. Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol. 2004;122(12):1809–15.

    Article  PubMed  Google Scholar 

  95. Lakhani E, Wright T, Abdolell M, Westall C. Multifocal ERG defects associated with insufficient long-term glycemic control in adolescents with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51(10):5297–303.

    Article  PubMed  Google Scholar 

  96. Bronson-Castain KW, Bearse MA Jr, Neuville J, Jonasdottir S, King-Hooper B, Barez S, et al. Adolescents with type 2 diabetes: early indications of focal retinal neuropathy, retinal thinning, and venular dilation. Retina. 2009;29(5):618–26.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Han Y, Schneck ME, Bearse JMA, Barez S, Jacobsen CH, Jewell NP, et al. Formulation and evaluation of a predictive model to identify the sites of future diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45(11):4106–12.

    Article  PubMed  Google Scholar 

  98. Ng JS, Bearse JMA, Schneck ME, Barez S, Adams AJ. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci. 2008;49(4):1622–8.

    Article  PubMed  Google Scholar 

  99. • Santos AR, Ribeiro L, Bandello F, Lattanzio R, Egan C, Frydkjaer-Olsen U, et al. Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR project. Diabetes. 2017;66(9):2503–10. Findings from this study suggest that neurodegeneration plays a role in the pathogenesis of early stages of DR in a large proportion but not in all patients with T2DM.

    Article  CAS  PubMed  Google Scholar 

  100. Nilsson M. The rarebit fovea test: a new measure of visual function: Institutionen för klinisk neurovetenskap/Department of Clinical Neuroscience; 2008.

  101. Balta O, Sungur G, Yakin M, Unlu N, Balta OB, Ornek F. Pattern visual evoked potential changes in diabetic patients without retinopathy. J Ophthalmol. 2017;2017:6.

    Article  Google Scholar 

  102. Heravian J, Ehyaei A, Shoeibi N, Azimi A, Ostadi-Moghaddam H, Yekta A-A, et al. Pattern visual evoked potentials in patients with type II diabetes mellitus. J Ophthalmic Vis Res. 2012;7(3):225–30.

    PubMed  PubMed Central  Google Scholar 

  103. Mariani E, Moreo G, Colucci GB. Study of visual evoked potentials in diabetics without retinopathy: correlations with clinical findings and polyneuropathy. Acta Neurol Scand. 1990;81(4):337–40.

    Article  CAS  PubMed  Google Scholar 

  104. Ponte F, Giuffre G, Anastasi M, Lauricella M. Involvment of the visual evoked potentials in type I insulin-dependent diabetes. Metab Pediatr Syst Ophthalmol (1985). 1986;9(2–4):77–80.

    CAS  Google Scholar 

  105. Raman P, Sodani A, George B. A study of visual evoked potential changes in diabetes mellitus. Int J Diab Dev Countries. 1997;17:69–73.

    Google Scholar 

  106. Simonsen SE. The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol. 1980;58(6):865–78.

    Article  CAS  Google Scholar 

  107. van der Torren K, van Lith G. Oscillatory potentials in early diabetic retinopathy. Doc Ophthalmol. 1989;71(4):375–9.

    Article  PubMed  Google Scholar 

  108. Yonemura D, Kawasaki K. New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential. Doc Ophthalmol. 1979;48(1):163–222.

    Article  CAS  PubMed  Google Scholar 

  109. Bresnick GH, Korth K, Groo A, Palta M. Electroretinographic oscillatory potentials predict progression of diabetic retinopathy: preliminary report. Arch Ophthalmol. 1984;102(9):1307–11.

    Article  CAS  PubMed  Google Scholar 

  110. Bresnick GH, Palta M. Oscillatory potential amplitudes: relation to severity of diabetic retinopathy. Arch Ophthalmol. 1987;105(7):929–33.

    Article  CAS  PubMed  Google Scholar 

  111. Juen S, Kieselbach GF. Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol. 1990;108(3):372–5.

    Article  CAS  PubMed  Google Scholar 

  112. Andrade LCO, Souza GS, Lacerda EMCB, Nazima MTST, Rodrigues AR, Otero LM, et al. Influence of retinopathy on the achromatic and chromatic vision of patients with type 2 diabetes. BMC Ophthalmol. 2014;14:104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Feitosa-Santana C, Paramei GV, Nishi M, Gualtieri M, Costa MF, Ventura DF. Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test. Ophthalmic Physiol Opt. 2010;30(5):717–23.

    Article  PubMed  Google Scholar 

  114. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  115. Dosso AA, Bonvin ER, Morel Y, Golay A, Assal JP, Leuenberger PM. Risk factors associated with contrast sensitivity loss in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 1996;234(5):300–5.

    Article  CAS  PubMed  Google Scholar 

  116. Greenstein VC, Thomas SR, Blaustein H, Koenig K, Carr RE. Effects of early diabetic retinopathy on rod system sensitivity. Optom Vis Sci. 1993;70(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  117. Amemiya T. Dark adaptation in diabetics. Ophthalmologica. 1977;174(6):322–6.

    Article  CAS  PubMed  Google Scholar 

  118. Di Leo MA, Caputo S, Falsini B, Porciatti V, Minnella A, Greco AV, et al. Nonselective loss of contrast sensitivity in visual system testing in early type I diabetes. Diabetes Care. 1992;15(5):620–5.

    Article  PubMed  Google Scholar 

  119. Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res. 1998;17(4):485–521.

    Article  CAS  PubMed  Google Scholar 

  120. Bresnick GH, Palta M. Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol. 1987;105(6):810–4.

    Article  CAS  PubMed  Google Scholar 

  121. Green FD, Ghafour IM, Allan D, Barrie T, McClure E, Foulds WS. Colour vision of diabetics. Br J Ophthalmol. 1985;69(7):533–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Trick GL, Burde RM, Gordon MO, Santiago JV, Kilo C. The relationship between hue discrimination and contrast sensitivity deficits in patients with diabetes mellitus. Ophthalmology. 1988;95(5):693–8.

    Article  CAS  PubMed  Google Scholar 

  123. Shoji T, Sakurai Y, Sato H, Chihara E, Takeuchi M. Do type 2 diabetes patients without diabetic retinopathy or subjects with impaired fasting glucose have impaired colour vision? The Okubo Color Study Report. Diabet Med. 2011;28(7):865–71.

    Article  CAS  PubMed  Google Scholar 

  124. Gella L, Raman R, Kulothungan V, Pal SS, Ganesan S, Sharma T. Impairment of colour vision in diabetes with no retinopathy: Sankara Nethralaya diabetic retinopathy epidemiology and molecular genetics study (SNDREAMS- II, report 3). PLoS One. 2015;10(6):e0129391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Fong DS, Barton FB, Bresnick GH. Impaired color vision associated with diabetic retinopathy: early treatment diabetic retinopathy study report no. 15. Am J Ophthalmol. 1999;128(5):612–7.

    Article  CAS  PubMed  Google Scholar 

  126. Nguyen TT, Kawasaki R, Wang JJ, Kreis AJ, Shaw J, Vilser W, et al. Flicker light–induced retinal vasodilation in diabetes and diabetic retinopathy. Diabetes Care. 2009;32(11):2075–80.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Barnstable CJ, Tombran-Tink J. Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res. 2004;23(5):561–77.

    Article  CAS  PubMed  Google Scholar 

  128. Zheng B, Li T, Chen H, Xu X, Zheng Z. Correlation between ficolin-3 and vascular endothelial growth factor-to-pigment epithelium-derived factor ratio in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 2011;152(6):1039–43.

    Article  CAS  PubMed  Google Scholar 

  129. Shen X, Zhong Y, Xie B, Cheng Y, Jiao Q. Pigment epithelium derived factor as an anti-inflammatory factor against decrease of glutamine synthetase expression in retinal Müller cells under high glucose conditions. Graefes Arch Clin Exp Ophthalmol. 2010;248(8):1127–36.

    Article  CAS  PubMed  Google Scholar 

  130. Yoshida Y, Yamagishi S-I, Matsui T, Jinnouchi Y, Fukami K, Imaizumi T, et al. Protective role of pigment epithelium-derived factor (PEDF) in early phase of experimental diabetic retinopathy. Diabetes Metab Res Rev. 2009;25(7):678–86.

    Article  CAS  PubMed  Google Scholar 

  131. Barber AJ, Nakamura M, Wolpert EB, Reiter CE, Seigel GM, Antonetti DA, et al. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem. 2001;276(35):32814–21.

    Article  CAS  PubMed  Google Scholar 

  132. Reiter CE, Wu X, Sandirasegarane L, Nakamura M, Gilbert KA, Singh RS, et al. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes. 2006;55(4):1148–56.

    Article  CAS  PubMed  Google Scholar 

  133. Seki M, Tanaka T, Nawa H, Usui T, Fukuchi T, Ikeda K, et al. Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats. Diabetes. 2004;53(9):2412–9.

    Article  CAS  PubMed  Google Scholar 

  134. Hu Y, Cho S, Goldberg JL. Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Invest Ophthalmol Vis Sci. 2010;51(3):1747–54.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bai Y, Xu J, Brahimi F, Zhuo Y, Sarunic MV, Saragovi HU. An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma. Invest Ophthalmol Vis Sci. 2010;51(9):4722–31.

    Article  PubMed  Google Scholar 

  136. Dostalova I, Haluzikova D, Haluzik M. Fibroblast growth factor 21: a novel metabolic regulator with potential therapeutic properties in obesity/type 2 diabetes mellitus. Physiol Res. 2009;58(1):1–7.

    CAS  PubMed  Google Scholar 

  137. Jiang X, Zhang C, Xin Y, Huang Z, Tan Y, Huang Y, et al. Protective effect of FGF21 on type 1 diabetes-induced testicular apoptotic cell death probably via both mitochondrial- and endoplasmic reticulum stress-dependent pathways in the mouse model. Toxicol Lett. 2013;219(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  138. Zhang C, Shao M, Yang H, Chen L, Yu L, Cong W, et al. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation. PLoS One. 2013;8(12):e82275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Cheng Y, Zhang J, Guo W, Li F, Sun W, Chen J, et al. Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy. Free Radic Biol Med. 2016;93:94–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.

    Article  CAS  PubMed  Google Scholar 

  141. Fu Z, Wang Z, Liu CH, Gong Y, Cakir B, Liegl R, et al. Fibroblast growth factor 21 protects photoreceptor function in type 1 diabetic mice. Diabetes. 2018;67(5):974–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Simó R, Lecube A, Sararols L, García-Arumí J, Segura RM, Casamitjana R, et al. Deficit of somatostatin-like immunoreactivity in the vitreous fluid of diabetic patients. Diabetes Care. 2002;25(12):2282–6.

    Article  PubMed  Google Scholar 

  143. Hernandez C, Bogdanov P, Corraliza L, Garcia-Ramirez M, Sola-Adell C, Arranz JA, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes. 2016;65(1):172–87.

    CAS  PubMed  Google Scholar 

  144. Hernandez C, Bogdanov P, Sola-Adell C, Sampedro J, Valeri M, Genis X, et al. Topical administration of DPP-IV inhibitors prevents retinal neurodegeneration in experimental diabetes. Diabetologia. 2017;60(11):2285–98.

    Article  CAS  PubMed  Google Scholar 

  145. Colafrancesco V, Coassin M, Rossi S, Aloe L. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration. Ann Ist Super Sanita. 2011;47(3):284–9.

    CAS  PubMed  Google Scholar 

  146. Wilkinson-Berka JL. Angiotensin and diabetic retinopathy. Int J Biochem Cell Biol. 2006;38(5–6):752–65.

    Article  CAS  PubMed  Google Scholar 

  147. Ola MS, Ahmed MM, Abuohashish HM, Al-Rejaie SS, Alhomida AS. Telmisartan ameliorates neurotrophic support and oxidative stress in the retina of streptozotocin-induced diabetic rats. Neurochem Res. 2013;38(8):1572–9.

    Article  CAS  PubMed  Google Scholar 

  148. Kurihara T, Ozawa Y, Nagai N, Shinoda K, Noda K, Imamura Y, et al. Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina. Diabetes. 2008;57(8):2191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kumar B, Gupta SK, Srinivasan BP, Nag TC, Srivastava S, Saxena R, et al. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc Res. 2013;87:65–74.

    Article  CAS  PubMed  Google Scholar 

  150. Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R, Jha KA, et al. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp Eye Res. 2014;125:193–202.

    Article  CAS  PubMed  Google Scholar 

  151. Ibrahim AS, El-Shishtawy MM, Peña A Jr, Liou GI. Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation. Mol Vis. 2010;16:2033.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mrudula T, Suryanarayana P, Srinivas PNBS, Reddy GB. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun. 2007;361(2):528–32.

    Article  CAS  PubMed  Google Scholar 

  153. Quaranta L, Bettelli S, Uva MG, Semeraro F, Turano R, Gandolfo E. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003;110(2):359–62 discussion 362-354.

    Article  PubMed  Google Scholar 

  154. Guo X, Kong X, Huang R, Jin L, Ding X, He M, et al. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014;55(1):110–6.

    Article  PubMed  Google Scholar 

  155. Kusari J, Zhou S, Padillo E, Clarke KG, Gil DW. Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2007;48(11):5152–9.

    Article  PubMed  Google Scholar 

  156. Almasieh M, Levin LA. Neuroprotection in glaucoma: animal models and clinical trials. Ann Rev Vis Sci. 2017;3:91–120.

    Article  Google Scholar 

  157. Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;151(4):671–81.

    Article  CAS  PubMed  Google Scholar 

  158. Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2013;2(2):CD006539.

    Google Scholar 

  159. Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2017;1:Cd006539.

    PubMed  Google Scholar 

  160. Birch DG, Weleber RG, Duncan JL, Jaffe GJ, Tao W, Ciliary Neurotrophic Factor Retinitis Pigmentosa Study G. Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. Am J Ophthalmol. 2013;156(2):283–292.e281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Miao I, Bhakta AS, Sredar N, Ivers KM, Patel NB, Queener HM, et al. In vivo examination of cone photoreceptors in patients with retinitis pigmentosa implanted over five years ago with encapsulated ciliary neurotrophic factor. Invest Ophthalmol Vis Sci. 2014;55(13):2619.

    Google Scholar 

  162. Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, et al. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci. 2011;52(5):2219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chew EY, Clemons TE, Jaffe GJ, Johnson CA, Farsiu S, Lad EM, et al. Effect of ciliary neurotrophic factor on retinal neurodegeneration in patients with macular telangiectasia type 2: a randomized clinical trial. Ophthalmology. 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roomasa Channa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, S., Sachdeva, M., Frankfort, B.J. et al. Retinal Neurodegeneration as an Early Manifestation of Diabetic Eye Disease and Potential Neuroprotective Therapies. Curr Diab Rep 19, 17 (2019). https://doi.org/10.1007/s11892-019-1134-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1134-5

Keywords

Navigation