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Abstract Obesity and type 2 diabetes (T2D) are common and
complex metabolic diseases, which are caused by an inter-
change between environmental and genetic factors. Recently,
a number of large-scale genome-wide association studies
(GWAS) have improved our knowledge of the genetic archi-
tecture and biological mechanisms of these diseases. Current-
ly, more than ~250 genetic loci have been found for mono-
genic, syndromic, or common forms of T2D and/or obesity-
related traits. In this review, we discuss the implications of
these GWAS for obesity and T2D, and investigate the overlap
of loci for obesity-related traits and T2D, highlighting poten-
tial mechanisms that affect T2D susceptibility.
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Introduction

Type 2 diabetes (T2D) is a common metabolic disease of
increased plasma glucose levels to which individuals are
predisposed to by a combination of genes and environmen-
tal factors. The hyperglycemia typically results from de-
creased insulin sensitivity (insulin resistance) in insulin-
dependent tissues (such as skeletal muscle, liver and adi-
pose tissues), which leads to hyperinsulinemia. Subse-
quently, when the pancreatic beta cells are not capable of
producing the amount of insulin required to maintain nor-
mal glycemic status, which may be caused by beta-cell dys-
function and/or reduced beta-cell mass, chronic hypergly-
cemia and T2D occur (reviewed in [1]).

Overall obesity is defined when a person’s body mass index
(BMI, weight (in kilograms) divided by height (in meters)
squared) is ≥30 kg/m2 [2]. Directly measured fat percent
(fat%, measured by bioimpedance (BI), dual-energy X-ray
absorptiometry (DXA), computerized tomography (CT), or
magnetic resonance imaging (MRI)) is a more accurate indica-
tor of adiposity, which also takes the amount of lean and fat
mass into account [3]. Other specific measures of individual fat
depots and fat distribution include waist circumference (WC),
hip circumference (HC), waist-to-hip ratio (WHR), and subcu-
taneous and visceral adipose tissue (SAT and VAT) [4, 5].
Levels of adiponectin secreted from adipose tissue [6–13], ec-
topic fat depots such as pericardial fat [14], and non-alcoholic
fatty liver disease (NAFLD) [15] are also obesity-related traits.

The prevalence of obesity and T2D is currently escalating
worldwide as a consequence of a sedentary lifestyle and in-
creased consumption of high-energy content food [2]. Be-
tween 1980 and 2014, the worldwide prevalence of obesity
more than doubled. In 2014, 11 % of men (>205 million) and
15 % of women (>297 million) in the world were obese,
compared with 5 % for men and 8 % for women in 1980
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[16]. The overall prevalence of obesity is at least four times
higher in high-income countries compared to that in low-
income countries. A similar accompanying increase in the
prevalence of T2D is seen as obesity is a risk factor for T2D
[17, 18]. In 2014, it was estimated that there are 387 million
people living with diabetes (ages 20–79) with a worldwide
prevalence of 8.3 %, and ~90 % of these are individuals with
T2D. By 2035, this number is expected to increase by 205
million. It is estimated that 77 % of people with diabetes live
in low- and middle-income countries [19].

Genetic, but also environmental, factors interact to cause
both obesity and T2D as shown by familial aggregation
[20–23], family and twin studies on obesity (heritability
(h2)~40–70 %) [22, 24, 25] and T2D (h2~26–69 %) [21,
26]. Beyond a sedentary lifestyle, socioeconomic status, poor
nutrition, infections and differences in the gut flora have also
been added to the list of potential environmental triggers of
obesity and T2D [27]. Genetic and environmental evidence is
also provided by numerous animal studies. Rodent models for
T2D, such as the Lepob and Zucker mice strains rely on the
mutations in genes encoding leptin or its receptor to develop
T2D via obesity (reviewed in [28]). Evidence of both environ-
mental and genetic effects in an animal model has been shown
to exist in the Agouti Avymouse, where the obesity phenotype
is inherited through an epigenetic effect that is dependent on
the maternal diet [29].

Early evidence for the genetic effect in obesity and diabetes
was found through linkage studies of monogenic forms of
these diseases segregating as Mendelian disorders, in which
mutations occurring in a gene lead to extreme and early-onset
forms of these conditions. For obesity, these include genes
functioning in the leptin-melanocortin pathway, such as the
leptin (LEP) and melanocortin 4 receptor (MC4R) genes
(reviewed in [30, 31]). Similarly, monogenic forms of diabetes
are caused by mutations in genes such as GCK, HNF4A and
HNF1Awith allelic series causing maturity onset of the young
(MODY) (reviewed in [32]). Linkage studies have been sub-
sequently accompanied by larger and statistically more pow-
erful genome-wide association studies (GWAS) that are de-
signed to dissect the genetic architecture of common complex
traits in a hypothesis-free way [33]. GWAS are useful for
identifying common genetic variants (i.e. single-nucleotide
polymorphisms (SNPs) with a minor allele frequency
(MAF) >5 %) that affect a trait outcome or increase the risk
of a disease of interest by comparing frequencies of alleles in
thousands of individuals, or between cases and healthy con-
trols, respectively. Many variants associated with complex
traits and diseases have been discovered so far through the
GWAS approach. SNPs that reach genome-wide significance
(p<5×10−8 after correction for multiple-testing, 0.05/1,000,
000 independent tests among common variants in the human
genome) are specifically targeted for replication and further
functional experiments [33]. These associations are important

for unraveling biological mechanisms and pathways that
might lend themselves to informing about new therapeutic
targets.

In this article, we review the current GWAS of obesity-
related traits and consider the overlap with T2D-associated
loci in order to gain insights into the genetic susceptibility
and potential mechanisms that lead to increased risk of T2D.

Overview of Genetics of T2D and Obesity-Related
Traits in the GWAS Era

To date, T2D GWAS efforts including samples of European
[34, 35, 36•, 37, 38], East Asian [39–45], South Asian [46,
47], Mexican/Mexican American [48] and African American
[49] descent have delivered 76 robust susceptibility loci
[50••]. The majority of these T2D associations appear to act
through beta-cell function-related pathways. In contrast, a
handful of T2D-associated loci seem to primarily operate
through insulin resistance (reviewed in [51]). These associated
loci generally have small effect sizes and only explain ~6 and
~10–20 % of the variance in disease susceptibility and the
heritability, respectively [36•]. Thus, much of the genetic con-
tribution to the disease remains to be discovered.

Overall ~185 loci associated with obesity traits have been
identified in large-scale GWAS efforts; analyses in Europeans
found associations between 77 loci and BMI [52–57, 58••], 48
loci and WHR (adjusted for BMI, WHRadjBMI) [59–61,
62••], and three loci and body fat% [3]. Furthermore, 13 loci
were associated with extreme and/or early-onset obesity
[63–68], one locus with VAT in women and one locus with
VAT/SAT ratio [4], five loci with NAFLD [15], one locus with
pericardial fat [14], and seven loci with clinical classes of
obesity [69] (Fig. 1). The most recent meta-analysis by the
Genetic Investigation of Anthropometric Traits (GIANT) con-
sortium involved 125 studies of European (up to 322,154
individuals) and non-European (up to 17,072 individuals) an-
cestry [58••, 62••]. Inclusion of non-European ethnicities in
these analyses revealed additional genetic associations with
10 BMI loci and a WHRadjBMI locus [58••, 62••]. Ten more
associations with BMI were discovered in the secondary anal-
yses of this recent GIANTstudy [58••]. In other non-European
GWAS of BMI and WHRadjBMI, eight additional loci were
identified [70–72].

Since the heritability of BMI is 7 % higher at younger ages
and increases with the mean age in childhood studies (+1.2 %
per year) [73], GWAS of children, adolescents and young
adults have been carried out identifying three loci associated
with childhood BMI [66, 74–76]. To date, ~2.7 % of the phe-
notypic variation in BMI was explained by the 97 associations
in populations of European and non-European ancestry. Fur-
thermore, common genetic variation (MAF>5 %) accounted
for ~21 % of BMI variation.
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Overlap Between GWAS of Obesity-Related Traits
and T2D

Body Mass Index

The first overall obesity GWAS [54] identified a robust asso-
ciation between BMI and SNPs in the first intron of the fat
mass and obesity-associated (FTO) gene that has been widely
replicated since [70, 72, 77–80]. FTO variants had previously
been associated with T2D (p<5×10−8), but this association
disappeared after adjusting for BMI, which showed that FTO
association with T2D is largely due its effect on BMI [54]. In
line with this, the effect of FTO variants on 23 cardiometabol-
ic traits, in addition to T2D, is mainly mediated through BMI
[81]. The FTO locus is not only strongly associated with T2D
risk [50••] and higher BMI [52] but also increased fasting
insulin and homeostatic model estimated insulin resistance
(HOMA-IR; p=9.5×10−5), which is in agreement with insulin
resistance playing a part in the FTO association with T2D via
increased BMI [52]. The FTO protein has been characterized
as a 2-oxoglutarate- and Fe(II)-dependent demethylase, possi-
bly involved in mRNA modification, and it is highly
expressed in the brain [82, 83]. However, a recent study sug-
gested that the obesity-associated FTO variants affect expres-
sion of IRX3, but not FTO, in the human brain, which may
mean thatFTO is not the causal gene in this region. Functional
experiments also supported this finding; body weight of Irx3--
deficient mice was reduced by 25–30 %, and hypothalamic
expression of a dominant-negative form of Irx3 resulted in the
same metabolic phenotype as the Irx3-deficient mice [84].
The precise biological role of the BMI-associated variants at
the FTO locus is still unclear and remains to be disentangled.

Following the identification of obesity variants in FTO, a
robust and replicated association between BMI and variants
~188 kb upstream of MC4R was reported [55, 58••, 85–87].

Previous studies have shown that mutations causing MC4R
inactivation lead to severe and monogenic forms of obesity
[31]. Low frequency variants inMC4Rwere identified in mor-
bid obese individuals (BMI>40 kg/m2) and were associated
with obesity [88, 89]. MC4R is a neural G-protein-coupled
melanocortin receptor that is highly expressed in the brain
[90]. It plays an important role in the regulation of energy
balance, specifically in the regulation of energy intake via the
control of satiety and energy expenditure (reviewed in [91]).

The MC4R locus was associated with both T2D
(rs12970134, odds ratio (OR)=1.08, 95 % confidence interval
(CI)=1.03–1.12, European p=0.0002, trans-ethnic p=2.6×
10−8) [50••] and BMI (beta=0.05, 95 % CI=0.043–0.057,
p=4.7×10−47) [58••] (Fig. 2). In addition, another SNP
(rs571312) at the same locus, in strong linkage disequilibrium
with rs12970134 (r2=0.87, D′=0.96, HapMap2, Utah Resi-
dents with European ancestry population (CEU)), was associ-
ated with increased fasting insulin (p=5.2×10−5), HOMA-IR
(p=7.6×10−5) and T2D (p=0.0004), which is in agreement
with insulin resistance playing a part in theMC4R association
with T2D through BMI [52]. However, in an exome sequenc-
ing study of 6760 Pima Indians, mutations decreasing MC4R
activity were detected and these individuals with MC4R de-
fects had increased T2D risk, partially independent of BMI in
childhood (BMI-adjusted hazard rate ratio=3.3, 95 % CI=
1.2–9.2, p=0.03). This effect might be due to an increased
rate of weight gain compared to adulthood and MC4R affect-
ing downstream insulin signaling [92, 93]. Nevertheless, the
effect ofMC4R variants on T2D risk was completely attribut-
able to BMI in adulthood [94]. Thus, taking into account the
changing physiology and hormonal levels during different
stages of life would be valuable when considering the biology
behind traits and diseases such as BMI and T2D.

The genetic association between T2D and variants in tran-
scription factor 7-like 2 (TCF7L2) was first discovered in a

Fig. 1 Genome-wide hits for T2D and obesity-related traits loci. GWAS
data were obtained from GWAS catalog (http://www.ebi.ac.uk/gwas/,
accessed 26 June 2015). Search terms used included obesity, type 2

diabetes, adiposity, waist, fat, body mass index, non-alcoholic liver,
adiponectin, weight and adipose. P value threshold for association was
p<5×10−8. Associations are labeled with corresponding trait colors
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candidate gene study [95]. This association was later detected
in GWAS, and it is the strongest known association with the
disease to date among common variants (rs7903146, OR=1.4,
p=1.9×10−59) [34, 35, 36•, 37, 38, 50••]. The same lead SNP
was also identified in the recent GIANTmeta-analysis of BMI
(beta=−0.023, p=1.1×10−11) [58••] (Fig. 2). It is interesting
that the T allele of rs7903146 increases T2D risk while de-
creasing BMI, opposing the idea that increased BMI leads to
insulin resistance and T2D. In comparison to FTO andMC4R
variants, TCF7L2 variants have a much larger effect on T2D
risk and a smaller effect on BMI, which might indicate that the
TCF7L2 variants act via T2D to affect BMI (Fig. 2). TCF7L2
is a transcription factor functioning in WNT signaling, which
is crucial for cell proliferation, motility, normal embryogene-
sis, and regulation of myogenesis and adipogenesis (reviewed
in [96]). Although the causal variant is still unclear, the T2D
risk allele appears to act via lowering the levels of insulin
secretion and influencing beta-cell function (reviewed in [51,
96, 97]).

In Fig. 2, 17 genes associated with both T2D [50••] and
BMI (orange: p<5×10−8≤p<10−4 for BMI; yellow: 10-4≤
p<0.01 for BMI) [58••] are shown. These associations pro-
vide insights into the genetic overlap of T2D and BMI. For
instance, the ARL15 (rs702634) T2D risk allele was associated
with increased fasting insulin (BMI-adjusted, p=5×10–12),
HOMA-IR (p=0.02) and triglyceride levels (p=0.01) as well
as decreased high-density lipoprotein (HDL) levels and BMI
(p=5.6×10−5) [50••]. These associations implicate that
ARL15 variants may play a role in insulin resistance leading
to T2D susceptibility independently of BMI.

GWAS of Fat Percent

In a meta-analysis of 15 GWAS with 36,626 individuals of
European and Indian Asian descent informative for fat% (as
measured by BI and/or DXA), three loci near FTO, SPRY2
and IRS1were identified [3]. All of these loci were previously
associated with T2D [42, 98]. The fat%-decreasing allele of
rs2943650 near IRS1 was associated with increased risk of
T2D as that allele decreased subcutaneous fat but not visceral
fat, which is more health damaging (reviewed in [99]). The
T2D risk allele of another IRS1 variant, rs2943640 (r2=0.97,
D′=1.00, HapMap2, CEU), was also nominally associated
with decreased BMI (beta=−0.014, p=1.1×10−5; Fig. 2)
[58••]. Furthermore, another variant (rs2943634), strongly
correlated with the T2D and fat%-associated rs2943650 (r2=
0.80, D′=0.96, HapMap2, CEU), was associated with fasting
insulin levels (beta=0.025, p=2.5×10−14) [34, 100, 101]. In-
sulin receptor substrate 1 encoded by IRS1 is an important
member of the insulin signaling cascade functioning as a
docking protein and activating downstream signaling when
phosphorylated by the insulin receptor [102]. Given the essen-
tial function of IRS1 in insulin signaling and the association of
IRS1 variants with T2D as well as fat% and BMI, this gene is
likely to be involved in fat distribution, adipocyte biology and/
or insulin resistance [98].

GWAS of Extreme/Early-Onset Obesity

In the polygenic form of extreme/early-onset obesity, muta-
tions in more than one gene may play a role in susceptibility.

Fig. 2 Risk at T2D autosomal loci [50••] vs. BMI [58••]. P value
thresholds for association with BMI (y-axis) are p<5×10−8 (red), 5×
10−8≤p<10−4 (orange), 10−4≤p<0.01 (yellow), 0.01≤p<0.05 (green)

and p≥0.05 (blue). Red, orange and yellow associations are labeled
with corresponding gene names
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Individuals with extreme/early-onset obesity are likely to be
enriched for genetic variants predisposing the general popula-
tion to obesity. Out of five GWAS, only three studies identified
novel loci that were not discovered by the previous GWAS of
BMI [64, 65, 68]. Except for FTO and MC4R variants, which
affect T2D susceptibility through their effect on BMI, none of
these loci overlap with the known T2D loci (Fig. 1) [50••].

Waist Circumference and Waist-to-Hip Ratio

WHRadjBMI is a measure of fat distribution that indicates the
amount of metabolically adverse visceral fat [61], while taking
into account the metabolically protective role of gluteal fat
[103, 104]. Both WC and WHR are associated with T2D risk
independently of BMI [17, 18], and are correlated with the
gold standard MRI measurement of central adiposity (i.-
e. visceral fat, r2=0.6 and r2=0.5, respectively). However,
when targeting genetic associations independent of BMI,
WHRadjBMI is a better measure of central fat distribution
given the strong correlation between WC and BMI (WC-
BMI r2=0.9, WHR-BMI r2=0.6) [59].

A number of variants strongly associated (p<5×10−8) with
T2D risk exhibit opposite directions of effect on BMI and
WHRadjBMI (Figs. 2 and 3). For instance, while the T2D risk
allele inGCKR is associated with increased BMI (rs780094, C
allele, beta=0.01, p=0.0002) [58••] (Fig. 2), the same variant
has an opposite effect on WHRadjBMI (rs780094, beta=
−0.01, p=0.004) [62••] (Fig. 3). Interestingly, sexual dimor-
phism was also observed in WHRadjBMI, with a statistically
significant (p<0.05) GCKR association only in women
(rs780094, beta=−0.015, p=0.001). Glucokinase regulatory
protein (GCKR) regulates glucokinase (GCK), which is a cru-
cial enzyme for glucose metabolism in the liver and glucose-
stimulated insulin secretion from pancreatic beta cells. It was
previously observed that over-expression ofGCKR in the liver
significantly improved insulin sensitivity and glucose toler-
ance in mice resulting in decreased leptin and increased tri-
glyceride levels [105]. This finding may provide a possible
explanation for the observed genetic association; the effect of
GCKR variants may act through leptin to increase BMI, while
independently affecting central fat distribution.

Similarly, a pattern of sexual dimorphism was detected for
>~40 % (20/49) of the WHRadjBMI lead SNPs, while no
pronounced gender difference was found in the BMI and
T2D studies [50••, 58••, 62••]. The stronger associations with
WHRadjBMI in women were identified in genes that are
known to be involved in insulin resistance and/or lipid traits
[61, 62••]. One of these genes is GRB14 (growth factor
receptor-bound protein 14; rs3923113, beta=0.025, p=1.0×
10−12) [62••], which encodes a protein functioning in the reg-
ulation of insulin signaling. It binds to insulin receptors, lead-
ing to inhibition of their catalytic activity [106]. Female-
specific effects of GRB14 variants were also detected in

previous studies of WHRadjBMI and blood lipids [61, 107,
108]. In addition, a gender-specific association with T2D risk
was observed with a stronger association in women
(rs3923113; ORmen=1.05, p=0.005; ORwomen=1.11, p=
1.8×10−9) [36•]. Furthermore, another WHRadjBMI-
associated GRB14 variant (rs10195252, r2=0.79, D′=1.00,
HapMap2, CEU) also exhibited association with decreased
BMI (beta=−0.010, p=0.002), HC (beta=−0.021, p=3×
10−9), HDL (Z-score=−2.6, p=0.008), increased low-density
lipoprotein (LDL) (Z-score=3.5, p=4.5×10−4), triglycerides
(Z-score=5.8, p=7.4×10−9), fasting insulin (Z-score=4.6, p=
5×10−6) and HOMA-IR (Z-score=4.8, p=1.9×10−6). SNP
rs10195252 was associated with expression of GRB14 in
SATas well, indicating thatGRB14 could indeed be the effec-
tor transcript in this locus [61].

GRB14 is an interesting example of a gene with T2D
risk alleles causing increased WHRadjBMI and decreased
BMI (Figs. 2 and 3). Associations of T2D risk alleles with
increased fasting insulin and HOMA-IR implicate GRB14
variants playing a role in insulin resistance [109]. In ro-
dents and humans, expression of GRB14 in adipose tissue
was negatively correlated with insulin sensitivity. In addi-
tion, prolonged fasting and metformin treatment in mice
significantly decreased Grb14 expression in peri-
epididymal adipose tissue [110]. Furthermore, improved
glucose homeostasis and enhanced insulin signaling were
observed in Grb14-deficient mice [111]. These findings
provide evidence for the importance of GRB14 regulation
in insulin resistance and show that complete understanding
of its regulation is essential for identification of new ther-
apeutic pathways in obesity and T2D [112].

ADAMTS9 is a member of the ADAMTS (a disintegrin and
metalloproteinase with thrombospondin motifs) family of pro-
teins involved in cleaving proteoglycans, controlling organ
maturation and development as well as inhibiting angiogenesis.
Its expression is high in all fetal tissues, adult heart and skeletal
muscle [113]. Similar to GRB14, ADAMTS9 is also implicated
in insulin sensing [61], and variants within this gene show a
stronger WHRadjBMI association in women (rs6795735,
beta=0.025, p=9.8×10−14 [61]; rs2371767, pmen =0.008,
pwomen =7.1×10−23 [108]; rs6795735-rs2371767 r2=0.31,
D′=1.00, HapMap2, CEU). Furthermore, the WHRadjBMI-
associated variant (rs6795735) was also nominally associated
with decreased HDL (rs6795735, Z-score=−2.5, p=0.01) and
T2D risk (OR=1.12, p=0.002), but not with BMI (Fig. 3) [50••,
61]. ADAMTS9 seems to play a role in insulin resistance in
peripheral tissues [114]. Although a possible association of
T2D risk allele with beta-cell function has also been reported
[115], it was not detected in larger GWAS [36•].

ANKRD55-MAP3K1 is another T2D susceptibility locus
(rs459193, OR=1.05, p=0.03 ) [50••] that was also associated
with WHRadjBMI (beta=−0.026, p=1.6×10−11) [62••] but
not overall obesity (Fig. 3). Due to lack of association of the

Curr Diab Rep (2015) 15: 83 Page 5 of 12 83



lead SNP (rs459193) with ANKRD55 expression, ANKRD55
may not be the functional gene in this region. The neighboring
geneMAP3K1, with known functions in insulin signaling, has
been suggested as a mediator of the biological effect [36•,
101], but that remains to be validated.

PEPD encodes peptidase D, which is an enzyme function-
ing in the recycling of proline and potentially in collagen
production. Variants near PEPD were associated with fasting
insulin (rs731839, BMI-adjusted beta=0.015, p=5.1×10−12)
[100, 101] and adiponectin levels (rs731839, beta=−0.03, p=
8×10−12) [7], which is directionally consistent with the func-
tion of adiponectin in regulating insulin sensitivity. Further-
more, the intronic variant rs3786897 (rs3786897-rs731839
r2=0.34, D′=1.00, HapMap2, CEU) was nominally associat-
ed with T2D susceptibility (European OR=1.02, p=0.3, 12,
171 cases and 56,862 controls; East Asian OR=1.17, p=3.5×
10−7, 6952 cases and 11,865 controls; trans-ethnic p=3.3×
10−4 ) [50••] and WHRadjBMI (beta=−0.022, p=9.7×10−11;
Fig. 3) [62••]. Interestingly, SNP rs8182584 is strongly corre-
lated with the fasting insulin and adiponectin-associated vari-
ant at this locus (rs731839-rs8182584 r2=0.82, D′=0.92,
HapMap2, CEU) and was also associated with reduced ex-
pression levels of PEPD in adipose tissue (beta=−0.13, p=
9.96×10−10) [7]. The effect of PEPD variants may be medi-
ated through insulin and/or adiponectin pathways. Even
though PEPD associations with T2D are ethnically heteroge-
neous, identification of a possible role of PEPD in suscepti-
bility to T2D and obesity may provide crucial insights into
biological mechanisms of these conditions.

GWAS of Other Obesity-Related Traits: Abdominal
Subcutaneous and Visceral Adipose Tissue, Non-alcoholic
Fatty Liver Disease and Pericardial Fat

Similar to WHRadjBMI associations, sexual dimorphism was
observed in genetic associations with SATand VAT, highlight-
ing the importance of physiological and hormonal difference
in susceptibility to obesity and T2D in men and women [4]. In
a GWAS of NAFLD, associations with five loci were identi-
fied [15]. One of these loci, the previously reported
WHRadjBMI locus at LYPLAL1, was also associated with
VAT/SAT ratio in women (rs4846567, p=0.0004) [4] and
T2D (rs2820446, p=2.3×10−6; rs4846567-rs2820446 r2=
1.00, D′=1.00, HapMap2, CEU) [50••]. Women are known
to have more subcutaneous fat but less visceral fat compared
to men [5]. Given the protective role of subcutaneous fat in
T2D susceptibility, it is plausible to observe more men with
T2D.Globally, the prevalence of T2D is higher inmen, but the
reasons for this observation may not be limited to the amount
of subcutaneous fat in men [116]. In a GWAS of pericardial
fat, only one locus (TRIB2) reached genome-wide signifi-
cance, but this locus is also devoid from associations with
T2D and other obesity traits (Fig. 1). This lack of overlap
between loci associated with T2D, the more commonly used
obesity trait measures (BMI, WHRadjBMI, etc.) and the other
obesity-related traits such as pericardial fat may indicate that
there is a different genetic architecture for pericardial fat and
potentially for other ectopic fat depots. Anthropometric and
more specifically measured traits might be more distinct than

Fig. 3 Risk at T2D autosomal loci [50••] vs. WHRadjBMI [62••]. P
value thresholds for association with WHRadjBMI (y-axis) are p<5×
10−8 (red), 5×10−8≤p<10−4 (orange), 10−4≤p<0.01 (yellow), 0.01≤

p<0.05 (green) and p≥0.05 (blue). Red, orange and yellow associations
are labeled with corresponding gene names
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the close relationships between these phenotypes indicate, or
these observations most likely reflect that there is a power
difference in detection of loci between these studies [14].

GWAS of Adiponectin Levels

Adiponectin is an adipokine secreted by adipocytes in-
creasing insulin sensitivity [117–119]. Adiponectin levels
are positively correlated with HC and inversely correlated
with WC, WHR, body fat%, BMI, T2D and coronary
heart disease [120–124]. Levels of adiponectin are highly
heritable (30–70 %) [125–127], and a number of GWAS
have been performed to identify genes affecting
adiponectin levels [6–13]. The previously discussed T2D/
BMI-associated ARL15 locus also showed an independent
association with adiponectin levels (rs702634-rs4311394
r2=0.09, D′=0.90, HapMap2, CEU). The lead SNP at
the ARL15 locus (rs4311394) was associated with lower
adiponectin levels (p=2.9×10−8), increased T2D risk
(OR=1.11, p=3.2×10−3) and coronary heart disease
(OR=1.12, p=8.5×10−6) [13]. The function of ARL15 is
not known, but ARL15 expression is more pronounced in
skeletal muscle [13]. Interestingly, glucose is disposed in
skeletal muscle in an insulin-dependent manner, and
adiponectin trafficking is essential for insulin sensitivity
and glucose transport in muscle. ARL15 is structurally
similar to proteins functioning in intracellular vesicle traf-
ficking, and it was suggested that it might play a role in
insulin signaling and glucose transport [128, 129]. There-
fore, effects of ARL15 variants may be mediated via insu-
lin resistance and/or adiponectin trafficking [13].

Conclusions

T2D loci appear to affect susceptibility to T2D via two main
mechanisms: (1) through insulin resistance, i.e. insulin sensi-
tivity (measured by fasting insulin and HOMA-IR) and/or (2)
through a beta-cell dysfunction (measured by fasting glucose
and homeostatic model estimated beta-cell function). In addi-
tion, these loci, in general, also exhibit overlapping associa-
tions with obesity-related traits and blood lipid levels (HDL,
LDL, triglycerides), whichmight explain the phenotypic over-
lap with obesity and cardiovascular diseases. However, these
associations are often heterogeneous and variants may have
opposite directions of effect for different obesity-related traits,
reflecting the intricate biology behind them. For instance,
most T2D risk alleles seem to be associated with a decrease
in BMI, except for the variants in FTO, MC4R and GCKR,
two of which are known to affect T2D susceptibility through
BMI [50••]. In contrast, most T2D risk variants are associated
with increased WHRadjBMI (Figs. 2 and 3). This observation
might indicate distinct mechanisms by which (1)

WHRadjBMI- and BMI-increasing alleles act on T2D risk,
and (2) T2D risk alleles act on BMI. Increased BMI and cen-
tral adiposity (defined by increased WHRadjBMI) are known
to be health damaging and raising T2D risk via insulin resis-
tance. However, there seems to be a second mechanism where
risk alleles (e.g. TCF7L2 variants) predominantly act via T2D
and decrease BMI, not vice versa. More targeted genetic and
functional studies are necessary to explore these mechanisms
and biological pathways implicated (reviewed in [130, 131]).

The heritability of obesity and T2D is not entirely ex-
plained by all the loci discovered so far [36•, 50••, 52, 58••,
61, 62••]. More studies with larger sample sizes, in different
ethnicities, employing various approaches such as rare variant
analysis, exome sequencing, studies of epigenetics and gene-
environment interactions are necessary to help explain the
missing heritability. Identifying actual functional variants
may also increase the phenotypic variance explained by the
known loci. Identification of novel loci and functional variants
is also required to gain a better understanding of the genetic
architecture of body shape, fat depots and T2D. Discovery of
additional overlapping genetic associations could provide im-
portant insights into the role played by obesity in susceptibil-
ity to T2D.

Beyond filling out the gaps in the heritability estimates,
deciphering biological mechanisms and pathways that medi-
ate effects leading to susceptibility to obesity and T2D is es-
sential for development of new therapeutic strategies, includ-
ing lifestyle changes. It is noticeable that genes within loci that
are BMI- and WHRadjBMI-associated display different gene
expression patterns; they have higher expression levels in the
hypothalamus and adipose/peripheral tissues, respectively
[52, 61]. These initial observations were further supported
by the evidence from Data-driven Expression Prioritized Inte-
gration for Complex Traits (DEPICT) analyses in the recent
GIANT BMI and WHRadjBMI meta-analyses [58••, 62••].
For WHRadjBMI, significant pathways and gene sets includ-
ed adiponectin signaling, insulin sensitivity and regulation of
glucose levels, skeletal growth, transcriptional regulation and
those functioning in the development of metabolically active
tissues such as adipose, liver and muscle [62••]. In contrast,
highlighted pathways and gene sets for BMI included those
functioning in the central nervous system involved in synaptic
function, long-term potentiation and neurotransmitter signal-
ing [58••].

Monogenic obesity genes in the leptin-melanocortin path-
way provide the link between adipose tissue and the hypothal-
amus, which are critical sites for balancing the energy need of
the body. Genes functioning in the leptin-melanocortin path-
way such as those encoding leptin (LEP), leptin receptor
(LEPR ) , melanocor t in 4 receptor (MC4R ) , p ro-
opiomelanocortin (POMC) and brain-derived neurotrophic
factor (BDNF) have been implicated in the monogenic form
of obesity (reviewed in [30]). Leptin is a hormone produced
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by adipocytes that play an important role in food intake and
weight regulation. Increased leptin signaling in the hypothal-
amus leads to decreased food intake via MC4R and POMC-
derived peptide alpha-melanocyte stimulating hormone (al-
pha-MSH). Many of the monogenic obesity genes lie within
loci that are also associated with T2D [50••]. The overlap
between monogenic obesity genes and obesity genes identi-
fied via GWAS (e.g.MC4R and BDNF) might imply a role of
hypothalamic dysfunction affecting the regulation of energy
balance in polygenic obesity, which can drive T2D.

Gender-specific effects are observed for anthropometric
traits, particularly for waist-related phenotypes, and under-
standing their biological influences is crucial [61, 108]. For
instance, variants in and around PPARG have been associated
with T2D, monogenic obesity andWHRadjBMI. Of these, the
WHRadjBMI association exhibited sexual dimorphism with a
significantly stronger effect in women (betawomen=0.035,
betamen=0.005) [62••]. In parallel with that, gender differ-
ences were detected in response to PPARG-agonist therapy
in patients with T2D which might indicate different mecha-
nisms for insulin resistance in men and women [132]. Even
though biological functions of associated loci are not clear for
many genes, gender-specific effects are detected during/after
puberty and are potentially attributable to sex hormones [133].
In addition, distribution of body fat also affects metabolic
pathways, and body fat has an endocrinological role produc-
ing hormones such as estrogen, progesterone, leptin and
adiponectin, which affect the regulation of energy balance in
the hypothalamus and insulin sensitivity [134]. The under-
standing of sexual dimorphisms is likely to improve explora-
tion of metabolic disease processes and design of better ther-
apeutic approaches.

In summary, the recent GWAS of obesity-related traits and
T2D show considerable overlap in associated loci. These iden-
tified associations point to potential mechanisms through
which obesity traits affect T2D susceptibility.
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