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Abstract Fueled by the successes of genome-wide associa-
tion studies, numerous studies have investigated the predictive
ability of genetic risk models in type 2 diabetes. In this paper,
we review these studies from a methodological perspective,
focusing on the variables included in the riskmodels as well as
the study designs and populations investigated. We argue and
show that differences in study design and characteristics of the
study population have an impact on the observed predictive
ability of risk models. This observation emphasizes that
genetic risk prediction studies should be conducted in those
populations in which the prediction models will ultimately be
applied, if proven useful. Of all genetic risk prediction studies
to date, only a few were conducted in populations that might
be relevant for targeting preventive interventions.
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Introduction

Type 2 diabetes (T2D) is a multifactorial disease, caused by
a complex interplay between genetic and nongenetic risk
factors. Compelling evidence has identified increasing age,
higher body mass index (BMI), impaired fasting glucose,
impaired glucose tolerance, higher glycated hemoglobin
(HbA1c) level, and metabolic syndrome as important T2D
risk factors (Table 1) [1–10]. These nongenetic factors have
a substantial impact on disease risk and are frequent. For
example, metabolic syndrome poses an eight times higher
T2D risk and is present in more than 40% of the individuals
over 50 years of age. The high impact and frequency make
these risk factors suitable candidates for targeting preven-
tive interventions, such as medication, weight loss, and
increased physical activity that can slow down or even
reverse the disease process [11, 12].

In the past 5 years, genome-wide association studies
have identified and replicated over 40 single nucleotide
polymorphisms (SNPs) that predispose to T2D [13, 14].
However, the effect sizes of the associated variants are very
modest, with per allele odds ratios ranging from 1.05 to
1.35 [13]. Even the strongest susceptibility variant,
rs7903146 in the TCF7L2 gene, is a weaker predictor of
T2D risk than most nongenetic risk factors. Evidently,
the low effect sizes make single genetic risk factors
unsuitable for targeting preventive interventions, but
there is increasing interest in investigating the extent
to which genetic risk factors combined can improve the
prediction of the disease.
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An improvement in the early identification of high-risk
groups is warranted because T2D imposes a great burden
on human health and health care systems [15, 16]. An
estimated 285 million people worldwide have diabetes [15]
and this number is expected to increase by more than 50%
in the next 20 years if no preventive strategies are
implemented [15]. To identify high-risk individuals, many
risk prediction models have been proposed.

Guidelines for T2D prevention advocate the use of clinical
risk scores as primary screening tools, followed by blood
glucose measurements to detect individuals with impaired
fasting glucose, impaired glucose tolerance, or metabolic
syndrome [17]. Examples of commonly used risk scores
include the FINDRISC (Finnish Diabetes Risk Score) and
the Diabetes Risk Calculator [18, 19]. The FINDRISC score
is based on age, BMI, waist circumference, use of
antihypertensive medication, history of elevated blood
glucose, daily physical activity and daily intake of fruits or
vegetables, and the Diabetes Risk Calculator on age, waist

circumference, gestational diabetes, height, race/ethnicity,
hypertension, family history of diabetes, and exercise.

The predictive ability of these clinical risk scores is
modest, but satisfactory. The area under the receiver
operating characteristic curve (AUC) is a commonly used
measure to indicate the predictive ability; the AUC
indicates the discriminative accuracy of a prediction model.
To generate the curve, on the x-axis 1-specificity is plotted,
and on the y-axis sensitivity is plotted. The AUC value
represents the probability that the predicted risk of a
random “patient” is higher than that of a random “non-
patient.” When predicted risks of individuals who will
develop the disease are always higher than the risks of
those who will not develop the disease, the AUC is 1.0.
When their risks are higher for 50% of the random pairs,
the AUC is 0.50, equaling the predictive performance of
tossing a coin [20].

The AUC was 0.65 in men and 0.66 in women for the
FINDRISC score predicting impaired fasting glucose,

Table 1 Risk factors for type 2
diabetes

aValues reported are prevalences
unless otherwise indicated
bUnless referenced, values are
calculated from the values
depicted in the column
“Diabetes risk”
cAnnualized incidence of
diabetes
dAnnualized relative risk
eCumulative 15-year incidence
of diagnosed diabetes
fMultivariable adjusted hazard
ratio of 15-year risk for each
absolute increase in 1
percentage point of glycated
hemoglobin

BMI body mass index; HbA1c

glycated hemoglobin; IFG
impaired fasting glucose; IGT
impaired glucose tolerance; NA
not available; RR relative risk

Risk factor Population Frequency
(%)

Diabetes risk
(%)a

RRb

Age (y)

0 to 44 General US population 61.3 [1] 1.7 [2] 1

45 to 64 25.9 12.2 7.2

65 to 74 6.8 19.9 11.7

75+ 6.1 17.9 10.5

Sex

Female General US population 50.7 [1] 5.9 [3] 1

Male 49.3 6.6 1.1

BMI (kg/m2)

<25 US adults ages ≥20 years 32.0 [4, 5] 8 [6] 1

25 to <30 34.2 15 1.9

30 to <35 19.5 23 2.9

35 to <40 8.6 33 4.1

≥40 5.7 43 5.4

IFG/IGT

Normoglycemic Nondiabetic US adults ages≥18 years
(frequency)

65.4 [7] NA [8] 1d [8]

IGT only 5.4 4.4–6.4c 5.5d

IFG only 19.4 6.1–9.2c 7.5d

IFG+IGT

Global cohorts (diabetes risk and RR)

9.8 10–15c 12.1d

HbA1c (%)

<5.0 Nondiabetic middle-aged adults from 4
US communities

8.6 [9] 6e [9] 0.5f [9]

5.0 to <5.5 44.6 12e 1f

5.5 to <6.0 33.2 21e 1.9f

6.0 to<6.5 9.3 44e 4.5f

≥6.5 4.3 79e 16.5f

Metabolic syndrome

No US adults ages ≥50 years 56.5 [10] 4.1 [10] 1

Yes 43.5 34.0 8.3
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impaired glucose tolerance, or undiagnosed diabetes, and
0.72 and 0.75 for detecting metabolic syndrome [18]. The
AUC of the Diabetes Risk Calculator was 0.70 for detecting
impaired fasting glucose, impaired glucose tolerance, or
undiagnosed diabetes [19]. These modest AUC values
indicate that many people who will develop T2D are not
identified as being at increased risk by these risk scores,
and that many that will not develop the disease are labeled
as increased risk. Although offering lifestyle modification
programs to individuals who will not develop T2D may do
no harm and may even provide other benefits by reducing
the risk of other diseases, not recognizing the many who
will develop diabetes would clearly be missed opportunities
to reduce the serious burden of disease [12]. Some clinical
risk models that include invasive measurements showed
higher AUC values for detecting individuals who will
develop T2D. An example is the Framingham Risk Score
including age, sex, obesity, hypertension, parental history
of diabetes, low levels of high-density lipoprotein choles-
terol, elevated triglyceride levels, and impaired fasting
glucose [21]. The AUC of this risk model was 0.85 for
predicting T2D in middle-aged adults [21]. However,
inclusion of invasive measurements that can change over
time in clinical risk models might be inconvenient at the
population level and these models still leave room for
improvement.

Recent studies have investigated the predictive ability of
risk models that include genetic variants only or genetic
variants added to clinical risk factors. A study that
investigated a genetic risk score based on 34 diabetes-
associated variants showed a significant association of the
risk score with risk of developing diabetes [22•]. This risk
was attenuated by lifestyle interventions, also in individuals
in the highest genetic risk quartile, suggesting that detecting
individuals at high risk of developing T2D based on genetic
variants and offering them lifestyle modification programs
is useful. In this paper, we review genetic risk prediction
studies from a methodologic perspective by focusing on
factors in the choice of study design and population that
may have impacted the observed predictive ability.

Genetic Risk Prediction Studies

The number of studies that investigate the predictive ability
of genetic variants in T2D has increased rapidly (Table 2;
[23, 24•, 25–38, 39•, 40–42, 43•]). These studies assessed
risk models that were based on genetic variants only or on a
combination of both genetic and nongenetic variants. The
table shows that the number of SNPs included in the
genetic models has increased from 3 in 2005 to 40 in 2011.
The models show considerable overlap in the genetic
variants that were considered, but there also are many

differences. Since its discovery, all but one of the studies
had included TCF7L2 and the majority additionally
investigated PPARG, CDKN2A/B, KCNJ11, IGF2BP2,
SLC30A8, and HHEX-IDE-KIF11. Yet, most other SNPs
were included in one or two models only [43•]. The same
was observed for the clinical models. Most clinical models
included at least age, sex, and BMI, but they differed in the
other factors that were added, such as blood pressure,
family history of T2D, and fasting plasma glucose level.

Table 2 shows that, almost without exception, the
genetic risk models had lower AUC values than the clinical
models. The AUC values for the genetic models ranged
from 0.55 to 0.68 and for the clinical models from 0.61 to
0.92. Table 2 also shows that the addition of genetic factors
either did not or only marginally improved the AUC
beyond that of the clinical risk models.

Predictive Ability of Clinical Risk Models

The differences in the predictive ability of clinical risk
models are explained by how many and which risk factors
are included in the model and by differences in study
design and study population. This is nicely illustrated by
three studies that had investigated largely the same 18
genetic variants. The AUCs of the genetic risks models in
these studies were similar (0.58–0.60), but the AUCs of the
clinical models were 0.66, 0.78, and 0.90 [33–35]. The
clinical models with AUC values of 0.66 and 0.78 included
age, sex, and BMI, but the model with an AUC value of
0.90 also included T2D family history, fasting plasma
glucose, systolic blood pressure, high-density lipoprotein
cholesterol, and triglycerides. The excellent predictive
ability was likely due to the inclusion of fasting plasma
glucose, as individuals with impaired fasting glucose have a
very high risk of developing T2D (Table 1). Table 2 shows
that AUC values tend to be higher when more risk factors
are included in the model, particularly when fasting plasma
glucose was included.

Yet, also the two studies that both investigated age, sex,
and BMI in the clinical model had markedly different AUC
values (0.66 and 0.78). The difference in these AUC values
was likely explained by differences in the study design and
population. The AUC of 0.66 was obtained in a prospective
cohort study, the Rotterdam Study, and the AUC of 0.78 in
a case–control study, consisting of case and control subjects
from the GoDARTS (Genetics of Diabetes Audit and
Research Tayside Study). Participants in the Rotterdam
Study were older and less often men (Table 2), but the two
populations predominantly differed in BMI. The mean BMI
of the cases in the GoDARTS study was higher than the
mean BMI of cases in the Rotterdam Study (31.5 vs
28.0 kg/m2). Also, the difference in mean BMI between
cases and controls was much larger in the GoDARTS study
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Table 2 Genetic risk prediction studies in T2D

Study No of
polymorphisms

Clinical risk factors AUC
genetic

AUC
clinical

AUC
combined

Design Age (mean,
years)a

Sex
(% men)a

BMI (mean,
kg/m2)a

European

Balkau et al. [23]

Men 2 FPG, smoking status, WC, GGT NA 0.85 0.85 Prospective cohort 50/47 100/100 27.5/25.1

Women 2 FPG, BMI, FH, TG NA 0.92 0.91 Prospective cohort 52/47 0/0 29.2/23.7

Lyssenko et al. [24•, 25] 3 BMI, FPG NA 0.68 0.68 Prospective cohort 45.1b 51/46 25.3b

Weedon et al. [26] 3 NA 0.58 NA NA Case–control 48.7/31.8 58/50 31.4/27.2

Vaxillaire et al. [27] 3 Age, sex, BMI 0.56 0.82 0.83 Prospective cohort 47.7b 50 24.3b

Cornelis et al. [28] 10 Age, sex, BMI, FH, smoking,
alcohol intake, PA

NA 0.78 0.79 Nested case–control 49.0/48.1 43/38 27.7/24.4

Lyssenko et al. [29]

Malmo 11 Age, sex, BMI, FH, BP, TG, FPG 0.63 0.74 0.75 Prospective cohort 45.5 64.9 24.3

Botnia 11 Age, sex, BMI, FH, BP, TG, FPG,
HDL, WC

0.68 0.79 0.80 Prospective cohort 44.9 45.5 25.6

Cauchi et al. [30] 15 Age, sex, BMI NA NA 0.86 Case–control 62.9/54.7 62/42 29.0/24.7

Lin et al. [31] 15 Age, sex, FH, PA, WHR,
triacylglycerol/HDL ratio

0.59 0.86 0.87 Cross-sectional 60.7/52.8 67/46 30.4/25.5

Fontaine-Bisson et al.
[32]

17 Age, sex NA NA 0.59 Cross-sectional 53.6/53.1 58.4/50.2 29.5/25.8

van Hoek et al. [33] 18 Age, sex, BMI 0.60 0.66 0.68 Prospective cohort 68.2/69.0 44/40 28.0/26.0

Lango et al. [34] 18 Age, sex, BMI 0.60 0.78 0.80 Case–control 55.7/NA 56/51 31.5/26.9

Meigs et al. [35] 18 Age, sex, BMI, FH, FPG, SBP,
HDL, TG

0.58c 0.90 0.90 Prospective cohort 42.1 47 25.6

Sparso et al. [36] 19 Age, sex, BMI 0.60 0.92 0.93 Case–control 60/47 59.3/46.3 30.6/25.6

Wang et al. [37]

FINDRISC 19 Age, BMI, WC, PA, FH, diet,
antihypertensive medication,
previously known high glucose

0.55 0.73 0.73 Cross-sectional 45–74d 100/100 NA

FINDRISC+ 19 FINDRISC, TG, HDL, adiponectin,
ALT

0.55 0.77 0.77 Cross-sectional 45–74d 100/100 NA

Schulze et al. [38] 20 Age, WC, height, history of HT, PA,
smoking, consumption of red
meat, whole-grain bread, coffee
and alcohol, glucose, HbA1c, TG,
HDL, GGT, ALT, hs-CRP

NA 0.90 0.90 Prospective case-
cohort

54.6/49.4 58.7/36.9 30.4/25.9

Talmud et al. [39•]

Cambridge score 20 Age, sex, BMI, drug treatment, FH,
smoking status

0.55 0.72 0.73 Prospective cohort 51.0/49.0 72.9/72.8 27.5/24.7

Framing-ham offspring
score

20 Age, sex, BMI, parental history of
T2D, HDL, TG, FPG

0.55 0.78 0.78 Prospective cohort 51.0/49.0 72.9/72.8 27.5/24.7

de Miguel-Yanes
et al. [40]

40 Age, sex, FH, BMI, FPG, SBP,
HDL, TG

0.61c 0.90 0.91 Prospective cohort 46 47 26.0

Asian

Miyake et al. [41] 11 Age, sex, BMI 0.63 0.68 0.72 Case–control 61.3/67.5 58/46 23.6/23.3

Hu et al. [42] 11 Age, sex, BMI 0.62 0.61 0.67 Case–control 61.2/57.4 52/41 24.0/23.6

a Values provided are for participants with and without T2D, respectively, when two values are reported and for the total population when one
value is reported. For prospective cohort studies, descriptive data from baseline examinations are given. Values are means unless otherwise
indicated
bMedian
c Adjusted for sex
d Range

ALT alanine aminotransferase; AUC area under the receiver operating characteristic curve; BMI body mass index; BP blood pressure; FH family
history of type 2 diabetes; FINDRISC finnish diabetes risk score; FPG fasting plasma glucose; GGT γ-glutamyltransferase; HbA1c glycated
hemoglobin; HDL high-density lipoprotein cholesterol; hs-CRP high-sensitivity C-reactive protein; HT hypertension; NA not available; PA physical
activity; SBP systolic blood pressure; TG triglycerides; T2D type 2 diabetes; WC waist circumference; WHR waist-hip ratio

(Adapted from Mihaescu et al. [43•])
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compared with the Rotterdam Study (4.6 vs 2.0 kg/m2). In
general and by definition, the predictive ability of risk models
is higher when there are larger differences between cases and
controls on the risk factors included in the risk model. Along
the same lines, study design and population characteristics may
have influenced the observed AUC values of the other clinical
models, and also of AUC values of the genetic risk models.

Predictive Ability of Genetic Risk Models

The AUC values of the genetic risk models ranged from 0.55 to
0.68, a range that was much smaller than that of the clinical
models. Similar as for the clinical risk models and given that all
SNPs approximately have the same low effect size, one would
expect better predictive ability for models that included a higher
number of SNPs, but Figure 1 shows that this was not
observed for the studies listed in Table 2. The differences in
the AUC values of the genetic risk scores cannot be explained
by the number of polymorphisms included in the risk models.
In fact, the highest genetic AUC (0.68) was found for a model
that included 11 SNPs, and the lowest for a model that
included these exact 11 SNPs plus an additional 8 others. The
explanation for the absence of this relationship is likely in the
low effect sizes of the genetic variants. A higher number of
SNPs only yields a slightly higher AUC, a combined effect
that could easily be outweighed by the influence of other
factors, such as study design and study population.

Genetic risk prediction models have been investigated in
prospective cohort studies, in case–control studies and in cross-
sectional studies, and in study populations that differed in age,
sex, and BMI (Table 2). These methodologic aspects may have
impacted the observed AUC values in a similar way as they
impact the AUC values of the clinical models. First, clinical
and demographic characteristics of the study population may

have influenced the observed predictive ability of the genetic
risk models. There are two ways in which these characteristics
may impact the predictive ability: the clinical and demographic
characteristics of the study population itself and the differences
in these characteristics between patients and nonpatients.

Table 2 describes mean age and BMI and the percentage of
men in published genetic risk prediction studies for T2D.
Mean age varied from 42.1 to 68.9 years, mean BMI from
23.4 to 29.1 kg/m2, and the percentage of men from 0% to
100%. It is often hypothesized that genetic risk factors may be
more predictive in populations in which nongenetic T2D risk
factors are not yet present (eg, in younger or normal weight
cohorts), but AUC values of the genetic models were not
markedly higher when populations were younger, had lower
BMI, or had a lower percentage of men. However, because of
the heterogeneity between the studies and their relatively small
number, conclusions must be drawn with caution. Moreover,
one study that had investigated the predictive performance in
two age categories (<50 years vs ≥50 years) did find higher
AUC values for the genetic risk score in younger people (AUC
0.66 vs 0.59) [40]. The observation that a stratified analysis
within a single study did show differences in predictive ability
suggests that the absence of a clear relation of age, BMI, and
sex with AUC values across studies is likely explained by the
presence of other differences between the studies.

The other way in which clinical and demographic character-
istics of the study population impact the predictive ability of risk
models is through differences in these characteristics between
patients and nonpatients. This specifically holds for character-
istics that are included as risk factors in the prediction models,
and for characteristics that are associated with these risk factors.
Evidently and by definition, the presence of risk factors will
differ between patients and nonpatients, but the difference can
also be enlarged as a result of selection procedures. For example,
patients who are recruited through hospitals may have more
unfavorable risk profiles than patients randomly selected from
the total patient population. Consequently, differences in risk
factors between hospital-based cases and population-based
controls will be larger and the impact of these risk factors on
the predictive ability higher. For the studies listed in Table 2,
differences in mean age ranged from −6.2 to 16.9 years, in
mean BMI from 0.3 to 5.5 kg/m2, and differences in the
percentage of men from −0.1% to 21.8%. Figure 2 shows that
larger differences in mean age and BMI between patients and
nonpatients were associated with higher AUC values for the
clinical risk models, and, although less apparent, lower AUC
values for the genetic models. No relation was observed
between clinical AUC values and the percentage of men
included in the studies, but this may be because male sex only
marginally increases T2D risk compared with age and BMI
(Table 1).

A second methodological aspect that may impact the
predictive ability of risk models is study design. Genetic

Fig. 1 The area under the receiver operating characteristic curve
(AUC) versus the number of single nucleotide polymorphisms
included in the genetic risk models
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risk prediction studies are preferably conducted in prospec-
tive follow-up studies, but cross-sectional and case–control
studies have been used as well (Table 2). The impact of
study design on AUC values of T2D risk prediction models
is in part related to the impact of population characteristics.
Selection procedures for cases and controls may affect
differences in clinical and demographic characteristics
between patients and nonpatients. Case–control studies
may demonstrate AUC values that deviate from those
observed in prospective cohort and cross-sectional studies
when cases and controls are recruited from different
sources.

Another way in which study design may impact the
predictive ability of risk models is length of follow-up in
prospective cohort studies. Longer follow-up increases the
likelihood that clinical T2D risk factors change over time,
and that as a result their baseline values will be less
predictive for the development of disease, resulting in
prediction models with lower AUC. The length of follow-
up of the studies listed in Table 2 varied from 6 to 25 years.
Again, the number of prospective cohort studies was too
small to investigate the impact of follow-up duration, but

one study investigated the predictive ability in quintiles of
follow-up time. This study demonstrated that the AUC of
the clinical risk model decreased with increasing duration
of follow-up, whereas the AUC of the genetic risk model
increased [29]. From the first to the fifth quintile, the
clinical AUC value decreased from 0.75 to 0.67 and the
genetic AUC value increased from 0.57 to 0.62 [29].

Conclusions

In this review, we showed that study design and population
characteristics may have affected the observed predictive
performance of risk models. AUC values of the clinical risk
models were higher and, although weaker, AUC values of
the genetic risk models were lower when there were larger
differences in age and BMI between cases and controls.
This observation has important implications for the design
and health care relevance of genetic risk prediction studies.

The predictive ability of risk models is preferably
investigated in prospective cohort studies, but in practice
often only case–control or cross-sectional designs are

Fig. 2 The area under the receiver operating characteristic curve (AUC) of the genetic and clinical models in relation to differences in mean age,
percentage of men, and mean body mass index (BMI) between patients and controls
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available. Because clinical risk factors, particularly the
difference in risk factors between cases and controls, impact
AUC values, it is expected that AUC values for genetic risk
models obtained in case–control or cross-sectional studies
may be valid when the distribution of these risk factors
does not differ from prospective studies. For case–control
studies, this means that the selection of cases and controls is
not affected by these risk factors. In case of selection,
transparency about the methods is important to enable a
correct interpretation of the scientific and health care
relevance of the results. For this reason, the GRIPS
(Genetic Risk Prediction Studies) statement, a recently
published guideline for the reporting of genetic risk
prediction studies, recommends to describe eligibility
criteria for participants, and sources and methods of
selection of participants [44•].

The observed impact of population characteristics
implies that it is important to assess the predictive ability
of risk scores in representative samples of the popula-
tion in which the model is ultimately applied to get
valid estimates of their performance in that population.
The question then is: which populations do we want to
target for the prevention of T2D? Evidently, these may
include individuals with metabolic syndrome or over-
weight, but for genetic prediction this may particularly
concern young individuals who have not developed
clinical risk factors. To date none of the T2D risk
prediction studies have been conducted in younger
populations; all studies were conducted in populations
who on average were older than 40 years of age, two
even in populations over 60 years of age [33, 41]. The
study that best approximates the desired study population
has been conducted in a population with a mean age of
42 years, a mean BMI of 25.6 kg/m2, and an almost equal
number of men and women [35]. Given the observed
differences in AUC values, we must conclude that we do
not know whether genetic variants are useful in predicting
T2D risk in younger populations. None of the studies so
far has started from a health care perspective when
investigating the predictive ability of T2D risk models.

There is increasing interest in investigating the value of
genetic risk factors in the prediction of T2D risk. In this
review, we demonstrated that the choice of study design
and predominantly the choice of study population impact
the observed predictive ability of risk models. For this
reason it is important that the planning of future genetic risk
prediction studies in T2D starts from a health care
perspective by asking in which population we want to
predict T2D risk. It is the answer to this question that
determines the population in which the predictive ability
should be assessed and that determines whether the results
of the study ultimately can be informative and change
health care practice.
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