Skip to main content

Advertisement

Log in

The Brain–Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The role of neuroimmune modulation and inflammation in cardiovascular disease has been historically underappreciated. Physiological connections between the heart and brain, termed the heart-brain axis (HBA), are bidirectional, occur through a complex network of autonomic nerves/hormones and cytokines, and play important roles in common disorders.

Recent Findings

At the molecular level, advances in the past two decades reveal complex crosstalk mediated by the sympathetic and parasympathetic nervous systems, the renin-angiotensin aldosterone and hypothalamus-pituitary axes, microRNA, and cytokines. Afferent pathways amplify proinflammatory signals via the hypothalamus and brainstem to the periphery, promoting neurogenic inflammation. At the organ level, while stress-mediated cardiomyopathy is the prototypical disorder of the HBA, cardiac dysfunction can result from a myriad of neurologic insults including stroke and spinal injury. Atrial fibrillation is not necessarily a causative factor for cardioembolic stroke, but a manifestation of an abnormal atrial substrate, which can lead to the development of stroke independent of AF.

Summary

Central and peripheral neurogenic proinflammatory factors have major roles in the HBA, manifesting as complex bi-directional relationships in common conditions such as stroke, arrhythmia, and cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pavlov VA, Chavan SS, Tracey KJ. Molecular and functional neuroscience in immunity. Annu Rev Immunol. 2018;36:783–812. https://doi.org/10.1146/annurev-immunol-042617-053158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pereira VH, Cerqueira JJ, Palha JA, Sousa N. Stressed brain, diseased heart: a review on the pathophysiologic mechanisms of neurocardiology. Int J Cardiol. 2013;166(1):30–7. https://doi.org/10.1016/j.ijcard.2012.03.165.

    Article  PubMed  Google Scholar 

  3. Rijkers K, Majoie HJ, Hoogland G, Kenis G, De Baets M, Vles JS. The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol. 2009;216(2):258–71. https://doi.org/10.1016/j.expneurol.2008.12.014.

    Article  CAS  PubMed  Google Scholar 

  4. Liu T, Young PR, McDonnell PC, White RF, Barone FC, Feuerstein GZ. Cytokine-induced neutrophil chemoattractant mRNA expressed in cerebral ischemia. Neurosci Lett. 1993;164(1–2):125–8. https://doi.org/10.1016/0304-3940(93)90873-j.

    Article  CAS  PubMed  Google Scholar 

  5. Yu Y, Zhang ZH, Wei SG, Chu Y, Weiss RM, Heistad DD, et al. Central gene transfer of interleukin-10 reduces hypothalamic inflammation and evidence of heart failure in rats after myocardial infarction. Circ Res. 2007;101(3):304–12. https://doi.org/10.1161/CIRCRESAHA.107.148940.

    Article  CAS  PubMed  Google Scholar 

  6. Scherbakov N, Doehner W. Heart-brain interactions in heart failure. Card Fail Rev. 2018;4(2):87–91. https://doi.org/10.15420/cfr.2018.14.2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, Demkow U. Brain inflammation and hypertension: the chicken or the egg? J Neuroinflammation. 2015;12:85. https://doi.org/10.1186/s12974-015-0306-8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alfaddagh A, Martin SS, Leucker TM, Michos ED, Blaha MJ, Lowenstein CJ, et al. Inflammation and cardiovascular disease: from mechanisms to therapeutics. Am J Prev Cardiol. 2020;4:100130. https://doi.org/10.1016/j.ajpc.2020.100130.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ridker PM, Bhatt DL, Pradhan AD, Glynn RJ, MacFadyen JG, Nissen SE, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet. 2023;401(10384):1293–301. https://doi.org/10.1016/S0140-6736(23)00215-5.

    Article  CAS  PubMed  Google Scholar 

  10. • Badoer E. New insights into the role of inflammation in the brain in heart failure. Front Physiol. 2022;13:837723. https://doi.org/10.3389/fphys.2022.837723. This paper reviews the influence of circulating, proinflammatory cytokines on cardiac function beyond the cardiovascular system, including brain activation of the sympathetic nervous system.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chan SH, Chan JY. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal. 2013;19(10):1074–84. https://doi.org/10.1089/ars.2012.4585.

    Article  CAS  PubMed  Google Scholar 

  12. Paton JF, Waki H. Is neurogenic hypertension related to vascular inflammation of the brainstem? Neurosci Biobehav Rev. 2009;33(2):89–94. https://doi.org/10.1016/j.neubiorev.2008.05.020.

    Article  CAS  PubMed  Google Scholar 

  13. Saavedra JM, Angiotensin II. AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond). 2012;123(10):567–90. https://doi.org/10.1042/CS20120078.

    Article  CAS  PubMed  Google Scholar 

  14. Wu KL, Chan SH, Chan JY. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation. 2012;9:212. https://doi.org/10.1186/1742-2094-9-212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Kloet AD, Krause EG, Shi PD, Zubcevic J, Raizada MK, Sumners C. Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther. 2013;138(3):428–40. https://doi.org/10.1016/j.pharmthera.2013.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM. Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol. 2005;32(5–6):419–25. https://doi.org/10.1111/j.1440-1681.2005.04205.x.

    Article  CAS  PubMed  Google Scholar 

  17. Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011;96(7):611–22. https://doi.org/10.1113/expphysiol.2010.052332.

    Article  PubMed  Google Scholar 

  18. Takahashi H. Upregulation of the renin-angiotensin-aldosterone-ouabain system in the brain is the core mechanism in the genesis of all types of hypertension. Int J Hypertens. 2012;2012:242786. https://doi.org/10.1155/2012/242786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kasparov S, Teschemacher AG. Altered central catecholaminergic transmission and cardiovascular disease. Exp Physiol. 2008;93(6):725–40. https://doi.org/10.1113/expphysiol.2007.041814.

    Article  CAS  PubMed  Google Scholar 

  20. Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Ufnal M, Zera T. Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases. J Physiol Pharmacol. 2010;61(5):509–21.

    CAS  PubMed  Google Scholar 

  21. Muller DN, Mervaala EM, Schmidt F, Park JK, Dechend R, Genersch E, et al. Effect of bosentan on NF-kappaB, inflammation, and tissue factor in angiotensin II-induced end-organ damage. Hypertension. 2000;36(2):282–90. https://doi.org/10.1161/01.hyp.36.2.282.

    Article  CAS  PubMed  Google Scholar 

  22. Paton JF, Wang S, Polson JW, Kasparov S. Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. J Mol Med (Berl). 2008;86(6):705–10. https://doi.org/10.1007/s00109-008-0324-4.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience. 2010;171(3):852–8. https://doi.org/10.1016/j.neuroscience.2010.09.029.

    Article  CAS  PubMed  Google Scholar 

  24. Guillot FL, Audus KL. Angiotensin peptide regulation of bovine brain microvessel endothelial cell monolayer permeability. J Cardiovasc Pharmacol. 1991;18(2):212–8. https://doi.org/10.1097/00005344-199108000-00006.

    Article  CAS  PubMed  Google Scholar 

  25. Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29(3):640–7. https://doi.org/10.1038/jcbfm.2008.158.

    Article  CAS  PubMed  Google Scholar 

  26. Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014;63(3):572–9. https://doi.org/10.1161/HYPERTENSIONAHA.113.01743.

    Article  CAS  PubMed  Google Scholar 

  27. Cardinale JP, Sriramula S, Mariappan N, Agarwal D, Francis J. Angiotensin II-induced hypertension is modulated by nuclear factor-kappaB in the paraventricular nucleus. Hypertension. 2012;59(1):113–21. https://doi.org/10.1161/HYPERTENSIONAHA.111.182154.

  28. Felder RB, Yu Y, Zhang ZH, Wei SG. Pharmacological treatment for heart failure: a view from the brain. Clin Pharmacol Ther. 2009;86(2):216–20. https://doi.org/10.1038/clpt.2009.117.

    Article  CAS  PubMed  Google Scholar 

  29. Felder RB. Mineralocorticoid receptors, inflammation and sympathetic drive in a rat model of systolic heart failure. Exp Physiol. 2010;95(1):19–25. https://doi.org/10.1113/expphysiol.2008.045948.

    Article  CAS  PubMed  Google Scholar 

  30. Shi Z, Gan XB, Fan ZD, Zhang F, Zhou YB, Gao XY, et al. Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf). 2011;203(2):289–97. https://doi.org/10.1111/j.1748-1716.2011.02313.x.

    Article  CAS  PubMed  Google Scholar 

  31. Reina-Couto M, Pereira-Terra P, Quelhas-Santos J, Silva-Pereira C, Albino-Teixeira A, Sousa T. Inflammation in human heart failure: major mediators and therapeutic targets. Front Physiol. 2021;12:746494. https://doi.org/10.3389/fphys.2021.746494.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu B, Zheng H, Patel KP. Enhanced activation of RVLM-projecting PVN neurons in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 2012;302(8):H1700–11. https://doi.org/10.1152/ajpheart.00722.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000;102(25):3060–7. https://doi.org/10.1161/01.cir.102.25.3060.

    Article  CAS  PubMed  Google Scholar 

  34. Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG. Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovasc Res. 2002;53(4):822–30. https://doi.org/10.1016/s0008-6363(01)00503-x.

    Article  CAS  PubMed  Google Scholar 

  35. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109(13):1594–602. https://doi.org/10.1161/01.CIR.0000124490.27666.B2.

    Article  CAS  PubMed  Google Scholar 

  36. Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC, et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol. 2018;71(21):2392–401. https://doi.org/10.1016/j.jacc.2018.03.002.

    Article  CAS  PubMed  Google Scholar 

  37. Ghaddar B, Diotel N. Zebrafish: a new promise to study the impact of metabolic disorders on the brain. Int J Mol Sci. 2022;23(10). https://doi.org/10.3390/ijms23105372.

  38. Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;292(18):2237–42. https://doi.org/10.1001/jama.292.18.2237.

    Article  CAS  PubMed  Google Scholar 

  39. Purkayastha S, Cai D. Neuroinflammatory basis of metabolic syndrome. Mol Metab. 2013;2(4):356–63. https://doi.org/10.1016/j.molmet.2013.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Golden E, Emiliano A, Maudsley S, Windham BG, Carlson OD, Egan JM, et al. Circulating brain-derived neurotrophic factor and indices of metabolic and cardiovascular health: data from the Baltimore Longitudinal Study of Aging. PLoS ONE. 2010;5(4):e10099. https://doi.org/10.1371/journal.pone.0010099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci U S A. 1999;96(26):15239–44. https://doi.org/10.1073/pnas.96.26.15239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. • Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci. 2021;79(1):32. https://doi.org/10.1007/s00018-021-04019-x. This is a comprehensive review establishing the role of glial cells in the causal relationship between hypothalamic inflammation and the development of metabolic diseases, such as hypertension, obesity, and diabetes.

    Article  CAS  PubMed  Google Scholar 

  43. Pelliccia F, Kaski JC, Crea F, Camici PG. Pathophysiology of Takotsubo syndrome. Circulation. 2017;135(24):2426–41. https://doi.org/10.1161/circulationaha.116.027121.

    Article  CAS  PubMed  Google Scholar 

  44. Nef HM, Möllmann H, Akashi YJ, Hamm CW. Mechanisms of stress (Takotsubo) cardiomyopathy. Nat Rev Cardiol. 2010;7(4):187–93. https://doi.org/10.1038/nrcardio.2010.16.

    Article  PubMed  Google Scholar 

  45. Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J. Brain–heart interaction. Circ Res. 2017;121(4):451–68. https://doi.org/10.1161/circresaha.117.311170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fure B, Bruun Wyller T, Thommessen B. Electrocardiographic and troponin T changes in acute ischaemic stroke. J Intern Med. 2006;259(6):592–7. https://doi.org/10.1111/j.1365-2796.2006.01639.x.

    Article  CAS  PubMed  Google Scholar 

  47. Khechinashvili G, Asplund K. Electrocardiographic changes in patients with acute stroke: a systematic review. cerebrovascular diseases. 2002;14(2):67–76. https://doi.org/10.1159/000064733.

  48. Yperzeele L, Van Hooff R-J, Nagels G, De Smedt A, De Keyser J, Brouns R. Heart rate variability and baroreceptor sensitivity in acute stroke: a systematic review. Int J Stroke. 2015;10(6):796–800. https://doi.org/10.1111/ijs.12573.

    Article  PubMed  Google Scholar 

  49. Park H-K, Kim BJ, Yoon C-H, Yang MH, Han M-K, Bae H-J. Left ventricular diastolic dysfunction in ischemic stroke: functional and vascular outcomes. J Stroke. 2016;18(2):195–202. https://doi.org/10.5853/jos.2015.01697.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Prosser J, Macgregor L, Lees KR, Diener H-C, Hacke W, Davis S. Predictors of early cardiac morbidity and mortality after ischemic stroke. Stroke. 2007;38(8):2295–302. https://doi.org/10.1161/strokeaha.106.471813.

    Article  PubMed  Google Scholar 

  51. Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci. 2014;8:389. https://doi.org/10.3389/fncel.2014.00389.

    Article  PubMed  PubMed Central  Google Scholar 

  52. van der Bilt IA, Vendeville JP, van de Hoef TP, Begieneman MP, Lagrand WK, Kros JM, et al. Myocarditis in patients with subarachnoid hemorrhage: a histopathologic study. J Crit Care. 2016;32:196–200. https://doi.org/10.1016/j.jcrc.2015.12.005.

    Article  PubMed  Google Scholar 

  53. Qiang L, Hong L, Ningfu W, Huaihong C, Jing W. Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. Int J Cardiol. 2013;168(3):2082–8. https://doi.org/10.1016/j.ijcard.2013.01.160.

    Article  PubMed  Google Scholar 

  54. Wang S, Aurora AB, Johnson BA, Qi X, Mcanally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71. https://doi.org/10.1016/j.devcel.2008.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, et al. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol. 2013;13(1):178. https://doi.org/10.1186/1471-2377-13-178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen J, Cui C, Yang X, Xu J, Venkat P, Zacharek A, et al. MiR-126 affects brain-heart interaction after cerebral ischemic stroke. Transl Stroke Res. 2017;8(4):374–85. https://doi.org/10.1007/s12975-017-0520-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lackner P, Dietmann A, Beer R, Fischer M, Broessner G, Helbok R, et al. Cellular microparticles as a marker for cerebral vasospasm in spontaneous subarachnoid hemorrhage. Stroke. 2010;41(10):2353–7. https://doi.org/10.1161/strokeaha.110.584995.

    Article  PubMed  Google Scholar 

  58. Schoch B, Regel JP, Wichert M, Gasser T, Volbracht L, Stolke D. Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage. Neurosurgery. 2007;60(5):828–36; discussion -36. https://doi.org/10.1227/01.NEU.0000255440.21495.80.

  59. Wilbert-Lampen U, Leistner D, Greven S, Pohl T, Sper S, Völker C, et al. Cardiovascular events during World Cup Soccer. N Engl J Med. 2008;358(5):475–83. https://doi.org/10.1056/nejmoa0707427.

    Article  CAS  PubMed  Google Scholar 

  60. Rozanski A, Bairey CN, Krantz DS, Friedman J, Resser KJ, Morell M, et al. Mental stress and the induction of silent myocardial ischemia in patients with coronary artery disease. N Engl J Med. 1988;318(16):1005–12. https://doi.org/10.1056/nejm198804213181601.

    Article  CAS  PubMed  Google Scholar 

  61. Goldberg AD, Bonsall R, Cohen JD, Ketterer MW, Kaufman PG, Krantz DS, et al. Ischemic, hemodynamic, and neurohormonal responses to mental and exercise stress. Experience from the Psychophysiological Investigations of Myocardial Ischemia Study (PIMI). Circulation. 1996;94(10):2402–9. https://doi.org/10.1161/01.cir.94.10.2402.

  62. Lazzarino AI, Hamer M, Gaze D, Collinson P, Steptoe A. The association between cortisol response to mental stress and high-sensitivity cardiac troponin T plasma concentration in healthy adults. J Am Coll Cardiol. 2013;62(18):1694–701. https://doi.org/10.1016/j.jacc.2013.05.070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilbert-Lampen U, Nickel T, Leistner D, Guthlin D, Matis T, Volker C, et al. Modified serum profiles of inflammatory and vasoconstrictive factors in patients with emotional stress-induced acute coronary syndrome during World Cup Soccer 2006. J Am Coll Cardiol. 2010;55(7):637–42. https://doi.org/10.1016/j.jacc.2009.07.073.

    Article  CAS  PubMed  Google Scholar 

  64. Wittstein IS, Thiemann DR, Lima JAC, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48. https://doi.org/10.1056/nejmoa043046.

    Article  CAS  PubMed  Google Scholar 

  65. Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017;14(1):30–8. https://doi.org/10.1038/nrcardio.2016.163.

    Article  CAS  PubMed  Google Scholar 

  66. Freeman R. Cardiovascular manifestations of autonomic epilepsy. Clin Auton Res. 2006;16(1):12–7. https://doi.org/10.1007/s10286-006-0278-y.

    Article  PubMed  Google Scholar 

  67. Tinuper P, Bisulli F, Cerullo A, Carcangiu R, Marini C, Pierangeli G, et al. Ictal bradycardia in partial epileptic seizures: autonomic investigation in three cases and literature review. Brain. 2001;124(12):2361–71. https://doi.org/10.1093/brain/124.12.2361.

    Article  CAS  PubMed  Google Scholar 

  68. Furlan JC, Fehlings MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurgical Focus FOC. 2008;25(5):E13. https://doi.org/10.3171/FOC.2008.25.11.E13.

    Article  Google Scholar 

  69. Park DY, Hu JR, Alexander KP, Nanna MG. Readmission and adverse outcomes after percutaneous coronary intervention in patients with dementia. J Am Geriatr Soc. 2023;71(4):1034–46. https://doi.org/10.1111/jgs.18120.

    Article  PubMed  Google Scholar 

  70. Kamel H, Okin PM, Elkind MS, Iadecola C. Atrial fibrillation and mechanisms of stroke: time for a new model. Stroke. 2016;47(3):895–900. https://doi.org/10.1161/strokeaha.115.012004.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Trayanova NA. Mathematical approaches to understanding and imaging atrial fibrillation: significance for mechanisms and management. Circ Res. 2014;114(9):1516–31. https://doi.org/10.1161/circresaha.114.302240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014;129(8):837–47. https://doi.org/10.1161/circulationaha.113.005119.

    Article  PubMed  Google Scholar 

  73. Di Tullio MR, Sacco RL, Sciacca RR, Homma S. Left atrial size and the risk of ischemic stroke in an ethnically mixed population. Stroke. 1999;30(10):2019–24. https://doi.org/10.1161/01.str.30.10.2019.

    Article  PubMed  Google Scholar 

  74. Kamel H, O’Neal WT, Okin PM, Loehr LR, Alonso A, Soliman EZ. Electrocardiographic left atrial abnormality and stroke subtype in the atherosclerosis risk in communities study. Ann Neurol. 2015;78(5):670–8. https://doi.org/10.1002/ana.24482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kamel H, Soliman EZ, Heckbert SR, Kronmal RA, Longstreth WT, Nazarian S, et al. P-wave morphology and the risk of incident ischemic stroke in the multi-ethnic study of atherosclerosis. Stroke. 2014;45(9):2786–8. https://doi.org/10.1161/strokeaha.114.006364.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kamel H, Elkind MSV, Bhave PD, Navi BB, Okin PM, Iadecola C, et al. Paroxysmal supraventricular tachycardia and the risk of ischemic stroke. Stroke. 2013;44(6):1550–4. https://doi.org/10.1161/strokeaha.113.001118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Larsen BS, Kumarathurai P, Falkenberg J, Nielsen OW, Sajadieh A. Excessive atrial ectopy and short atrial runs increase the risk of stroke beyond incident atrial fibrillation. J Am Coll Cardiol. 2015;66(3):232–41. https://doi.org/10.1016/j.jacc.2015.05.018.

    Article  PubMed  Google Scholar 

  78. De Jong AM, Maass AH, Oberdorf-Maass SU, Van Veldhuisen DJ, Van Gilst WH, Van Gelder IC. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res. 2011;89(4):754–65. https://doi.org/10.1093/cvr/cvq357.

    Article  CAS  PubMed  Google Scholar 

  79. Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012;366(2):120–9. https://doi.org/10.1056/NEJMoa1105575.

    Article  CAS  PubMed  Google Scholar 

  80. Chao TF, Liu CJ, Chen SJ, Wang KL, Lin YJ, Chang SL, et al. Atrial fibrillation and the risk of ischemic stroke: does it still matter in patients with a CHA2DS2-VASc score of 0 or 1? Stroke. 2012;43(10):2551–5. https://doi.org/10.1161/strokeaha.112.667865.

    Article  CAS  PubMed  Google Scholar 

  81. Cai H, Li Z, Goette A, Mera F, Honeycutt C, Feterik K, et al. Downregulation of endocardial nitric oxide synthase expression and nitric oxide production in atrial fibrillation: potential mechanisms for atrial thrombosis and stroke. Circulation. 2002;106(22):2854–8. https://doi.org/10.1161/01.cir.0000039327.11661.16.

    Article  CAS  PubMed  Google Scholar 

  82. Warraich HJ, Gandhavadi M, Manning WJ. Mechanical discordance of the left atrium and appendage: a novel mechanism of stroke in paroxysmal atrial fibrillation. Stroke. 2014;45(5):1481–4. https://doi.org/10.1161/strokeaha.114.004800.

    Article  PubMed  Google Scholar 

  83. Sanna T, Diener H-C, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–86. https://doi.org/10.1056/nejmoa1313600.

    Article  CAS  PubMed  Google Scholar 

  84. Budaj A, Flasinska K, Gore JM, Anderson FA Jr, Dabbous OH, Spencer FA, et al. Magnitude of and risk factors for in-hospital and postdischarge stroke in patients with acute coronary syndromes: findings from a Global Registry of Acute Coronary Events. Circulation. 2005;111(24):3242–7. https://doi.org/10.1161/circulationaha.104.512806.

    Article  PubMed  Google Scholar 

  85. Head SJ, Milojevic M, Daemen J, Ahn JM, Boersma E, Christiansen EH, et al. Stroke rates following surgical versus percutaneous coronary revascularization. J Am Coll Cardiol. 2018;72(4):386–98. https://doi.org/10.1016/j.jacc.2018.04.071.

    Article  PubMed  Google Scholar 

  86. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41. https://doi.org/10.1161/01.str.24.1.35.

  87. Merkler AE, Diaz I, Wu X, Murthy SB, Gialdini G, Navi BB, et al. Duration of heightened ischemic stroke risk after acute myocardial infarction. J Am Heart Assoc. 2018;7(22). https://doi.org/10.1161/jaha.118.010782.

  88. Kotecha T, Rakhit RD. Acute coronary syndromes. Clin Med (Lond). 2016;16(Suppl 6):s43–8. https://doi.org/10.7861/clinmedicine.16-6-s43.

    Article  PubMed  Google Scholar 

  89. Francis J, Chu Y, Johnson AK, Weiss RM, Felder RB. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol. 2004;286(6):H2264–71. https://doi.org/10.1152/ajpheart.01072.2003.

    Article  CAS  PubMed  Google Scholar 

  90. •• Gelosa P, Castiglioni L, Rzemieniec J, Muluhie M, Camera M, Sironi L. Cerebral derailment after myocardial infarct: mechanisms and effects of the signaling from the ischemic heart to brain. J Mol Med. 2022;100(1):23–41. https://doi.org/10.1007/s00109-021-02154-3. This is a comprehensive review of molecular mechanisms for how cardiac disorders, such as myocardial infarction, can enhance systemic inflammation and alter extracellular vesicles and circulating micro RNAs to cause neurologic dysfunction, including increasing the risk of stroke in MI.

    Article  CAS  PubMed  Google Scholar 

  91. Stellos K, Panagiota V, Kögel A, Leyhe T, Gawaz M, Laske C. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2010;30(11):1817–20. https://doi.org/10.1038/jcbfm.2010.140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ozcan Cetin EH, Cetin MS, Aras D, Topaloglu S, Temizhan A, Kisacik HL, et al. Platelet to lymphocyte ratio as a prognostic marker of in-hospital and long-term major adverse cardiovascular events in ST-segment elevation myocardial infarction. Angiology. 2016;67(4):336–45. https://doi.org/10.1177/0003319715591751.

    Article  CAS  PubMed  Google Scholar 

  93. Yang Y, Xie D, Zhang Y. Increased platelet-to-lymphocyte ratio is an independent predictor of hemorrhagic transformation and in-hospital mortality among acute ischemic stroke with large-artery atherosclerosis patients. Int J Gen Med. 2021;14:7545–55. https://doi.org/10.2147/ijgm.S329398.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Deckers K, Schievink SHJ, Rodriquez MMF, Van Oostenbrugge RJ, Van Boxtel MPJ, Verhey FRJ, et al. Coronary heart disease and risk for cognitive impairment or dementia: Systematic review and meta-analysis. PLoS ONE. 2017;12(9):e0184244. https://doi.org/10.1371/journal.pone.0184244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kasprzak D, Rzeźniczak J, Ganowicz T, Łuczak T, Słomczyński M, Hiczkiewicz J, et al. A review of acute coronary syndrome and its potential impact on cognitive function. Glob Heart. 2021;16(1):53. https://doi.org/10.5334/gh.934.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42(9):2672–713. https://doi.org/10.1161/STR.0b013e3182299496.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Abete P, Della-Morte D, Gargiulo G, Basile C, Langellotto A, Galizia G, et al. Cognitive impairment and cardiovascular diseases in the elderly. A heart-brain continuum hypothesis. Ageing Res Rev. 2014;18:41–52. https://doi.org/10.1016/j.arr.2014.07.003.

  98. Kucheryavykh LY, Davila-Rodriguez J, Rivera-Aponte DE, Zueva LV, Washington AV, Sanabria P, et al. Platelets are responsible for the accumulation of beta-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis. Brain Res Bull. 2017;128:98–105. https://doi.org/10.1016/j.brainresbull.2016.11.008.

    Article  CAS  PubMed  Google Scholar 

  99. Gagno G, Ferro F, Fluca AL, Janjusevic M, Rossi M, Sinagra G, et al. From brain to heart: possible role of amyloid-β in ischemic heart disease and ischemia-reperfusion injury. Int J Mol Sci. 2020;21(24):9655. https://doi.org/10.3390/ijms21249655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  101. Li C, Fang Z, Jiang T, Zhang Q, Liu C, Zhang C, et al. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med Genomics. 2013;6(1):16. https://doi.org/10.1186/1755-8794-6-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Devaux Y, Vausort M, Goretti E, Nazarov PV, Azuaje F, Gilson G, et al. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin Chem. 2012;58(3):559–67. https://doi.org/10.1373/clinchem.2011.173823.

    Article  CAS  PubMed  Google Scholar 

  103. Boštjančič E, Zidar N, Štajer D, Glavač D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology. 2010;115(3):163–9. https://doi.org/10.1159/000268088.

    Article  CAS  PubMed  Google Scholar 

  104. Ramírez Echeverría MDL, Schoo C, Paul M. Delirium. StatPearls. Treasure Island (FL): StatPearls Copyright © 2022, StatPearls Publishing LLC.; 2022.

  105. Li S, Zhang XH, Zhou GD, Wang JF. Delirium after primary percutaneous coronary intervention in aged individuals with acute ST-segment elevation myocardial infarction: a retrospective study. Exp Ther Med. 2019;17(5):3807–13. https://doi.org/10.3892/etm.2019.7398.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cortés-Beringola A, Vicent L, Martín-Asenjo R, Puerto E, Domínguez-Pérez L, Maruri R, et al. Diagnosis, prevention, and management of delirium in the intensive cardiac care unit. Am Heart J. 2021;232:164–76. https://doi.org/10.1016/j.ahj.2020.11.011.

    Article  CAS  PubMed  Google Scholar 

  107. Vives-Borrás M, Martínez-Sellés M, Ariza-Solé A, Vidán MT, Formiga F, Bueno H, et al. Clinical and prognostic implications of delirium in elderly patients with non-ST-segment elevation acute coronary syndromes. J Geriatr Cardiol. 2019;16(2):121–8. https://doi.org/10.11909/j.issn.1671-5411.2019.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Silva M, Pereira E, Rocha A, Sousa D, Peixoto B. Neurocognitive impairment after acute coronary syndrome: prevalence and characterization in a hospital-based cardiac rehabilitation program sample. J Cardiovasc Thorac Res. 2018;10(2):70–5. https://doi.org/10.15171/jcvtr.2018.11.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hayhurst CJ, Pandharipande PP, Hughes CG. Intensive care unit delirium: a review of diagnosis, prevention, and treatment. Anesthesiology. 2016;125(6):1229–41. https://doi.org/10.1097/aln.0000000000001378.

    Article  PubMed  Google Scholar 

  110. Sun SH, Yang L, Sun DF, Wu Y, Han J, Liu RC, et al. Effects of vasodilator and esmolol-induced hemodynamic stability on early post-operative cognitive dysfunction in elderly patients: a randomized trial. Afr Health Sci. 2016;16(4):1056–66. https://doi.org/10.4314/ahs.v16i4.23.

    Article  PubMed  PubMed Central  Google Scholar 

  111. • Park DY, Jamil Y, Hu JR, Lowenstern A, Frampton J, Abdullah A, et al. Delirium in older adults after percutaneous coronary intervention: prevalence, risks, and clinical phenotypes. Cardiovasc Revasc Med. 2023. https://doi.org/10.1016/j.carrev.2023.06.010. This paper outlines the risk of delirium and mortality as poor outcomes after percutaneous intervention in older adults with acute coronary syndrome, underscoring the neuroinflammatory response associated with the periprocedural period.

    Article  PubMed  Google Scholar 

  112. Wang X, Feng K, Liu H, Liu Y, Ye M, Zhao G, et al. Regional cerebral oxygen saturation and postoperative delirium in endovascular surgery: a prospective cohort study. Trials. 2019;20(1):504. https://doi.org/10.1186/s13063-019-3586-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Michael G. Nanna reports research funding from the Patient-Centered Outcomes Research Institute and the American College of Cardiology and grants from Yale Claude D. Pepper Older Americans Independence Center (P30AG021342) and the National Institute on Aging (R03AG074067); none of this funding is related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Soufer.

Ethics declarations

Conflict of Interest

Michael G. Nanna reports personal fees from Merck and HeartFlow, Inc., outside the submitted work. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, JR., Abdullah, A., Nanna, M.G. et al. The Brain–Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease. Curr Cardiol Rep 25, 1745–1758 (2023). https://doi.org/10.1007/s11886-023-01990-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01990-8

Keywords

Navigation