Skip to main content

Advertisement

Log in

The Role of Large Animal Models in Cardiac Regeneration Research Using Human Pluripotent Stem Cell-Derived Cardiomyocytes

  • Regenerative Medicine (SM Wu, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Heart failure leads to high mortality. The failing myocardium cannot often be rescued as heart regeneration is mostly compromised by disease progress. Stem cell therapy is a strategy under development to replace the impaired myocardium for recovery after heart injury.

Recent Findings

Many studies have provided evidence of the beneficial effects of pluripotent stem cell-derived cardiomyocyte (CM) implantation into diseased rodent hearts, but there are still many challenges and limitations to replicating the same effects in large animal models for preclinical validation.

Summary

In this review, we summarize progress in the use of pluripotent stem cell-derived CMs in large animal models based on three key parameters: species selection, cell source, and delivery. Most importantly, we discuss the current limitations and challenges that need to be solved to advance this technology to the translational stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Daina MF, Oriol IE, Carolina GM. iPSC therapy for myocardial infarction in large animal models: land of hope and dreams. Biomedicines. 2021;9(12):1836. https://doi.org/10.3390/biomedicines9121836. Findings from this study summarized several methods using iPSC for myocardial infarction in big animals.

  2. Plus JR, Gu MX, Longaker MT, Wu JC. Large animal induced pluripotent stem cells as pre-clinical models for studying human disease. J Cell Mol Med. 2012;16(6):1196–202. https://doi.org/10.1111/j.1582-4934.2012.01521.x.

    Article  CAS  Google Scholar 

  3. Chong JJH, Murry CE. Cardiac regeneration using pluripotent stem cells progression to large animal models. Stem Cell Res. 2014;13(3 Pt B):654–65. https://doi.org/10.1016/j.scr.2014.06.005.

  4. Liao S, Zhang Y, Ting S, Zhen Z, Luo F, Zhu Z, Jiang Y, Sun S, Lai WH, Lian Q, Tse H. Potent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure. Stem Cell Res Ther. 2019;10(1):78. https://doi.org/10.1186/s13287-019-1183-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boettcher AN, Loving CL, Cunnick JE, Tuggle CK. Development of severe combined immunodeficient (SCID) pig models for translational cancer modeling: future insights on how humanized SCID pigs can improve preclinical cancer research. Front Oncol. 2018;30(8):559. https://doi.org/10.3389/fonc.2018.00559.

    Article  Google Scholar 

  6. Lee K, Kwon D, Ezashi T, Choi Y, Park C, Ericsson AC, Brown AN, Samuel MS, Park KW, Walters EM, Kim DY, Kim J, Franklin CL, Murphy CN, Roberts RM, Prather RS, Kim JH. Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA. 2014;111(20):7260–5. https://doi.org/10.1073/pnas.1406376111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suzuki S, Iwamoto M, Saito Y, Fuchimoto D, Sembon S, Suzuki M, Mikawa S, Hashimoto M, Aoki Y, Najima Y, Takagi S, Suzuki N, Suzuki E, Kubo M, Mimuro J, Kashiwakura Y, Madoiwa S, Sakata Y, Perry ACF, Ishikawa F, Onishi A. Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell. 2012;10(6):753–8. https://doi.org/10.1016/j.stem.2012.04.021.

    Article  CAS  PubMed  Google Scholar 

  8. Burki T. Pig-heart transplantation surgeons look to the next steps. Lancet. 2022;399(10322):347. https://doi.org/10.1016/S0140-6736(22)00097-6.

    Article  PubMed  Google Scholar 

  9. Song G, Lingmei Q, Shen Y, Qian L, Kong X, Chen M, Cao K, Zhang F. Transplantationof iPSc restores cardiac function by promoting angiogenesis and ameliorating cardiac remodeling in a post-infarcted swine model. Cell Biochem Biophys. 2015;71(3):1463–73. https://doi.org/10.1007/s12013-014-0369-7.

    Article  CAS  PubMed  Google Scholar 

  10. Gálvez-Montón C, Soler-Botija C, Iborra-Egea O, Díaz-Güemes I, Martí M, Iglesias-García O, Prat-Vidal C, Crisóstomo V, Llucià-Valldeperas A, Perea-Gil I, Roura S, Sánchez-Margallo FM, Raya Á, Bayes-Genis A. Preclinical safety evaluation of allogeneic induced pluripotent stem cell-based therapy in a swine model of myocardial infarction. Tissue Eng Part C Methods. 2017;23(11):736–44. https://doi.org/10.1089/ten.TEC.2017.0156.

    Article  PubMed  Google Scholar 

  11. Kawamura T, Miyagawa S, Fukushima S, Maeda A, Kashiyama N, Kawamura A, et al. Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. stem cell reports. 2016;6(3):312–20. https://doi.org/10.1016/j.stemcr.2016.01.012.

  12. Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K, Ido D, Shiina T, Ohkura M, Nakai J, Uno N, Kazuki Y, Oshimura M, Minami I, Ikeda U. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 2016;538(7625):388–91. https://doi.org/10.1038/nature19815.

    Article  CAS  PubMed  Google Scholar 

  13. Kashiyama N, Miyagawa S, Fukushima S, Kawamura T, Kawamura A, Yoshida S, Eiraku S, Harada A, Matsunaga K, Watabe T, Toda K, Hatazawa J, Sara Y. MHC-mismatched allotransplantation of induced pluripotent stem cell-derived cardiomyocyte sheets to improve cardiac function in a primate ischemic cardiomyopathy model. Transplantation. 2019;103(8):1582–90. https://doi.org/10.1097/TP.0000000000002765.

    Article  CAS  PubMed  Google Scholar 

  14. Ye L, Chang YH, Xiong Q, Zhang P, Zhang L, Somasundaram P, Lepley M, Swingen C, Su L, Wendel JS, Guo J, Hang A, Rosenbush D, Greder L, Dutton JR, Zhang J, Kamp TJ, Kaufman DS, Ge Y, Zhang J. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell. 2014;15(6):750–61. https://doi.org/10.1016/j.stem.2014.11.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y, Lou X, Kannappan R, Borovjagin AV, Walcott GP, Pollard AE, Fast VG, Hu X, Lloyd SG, Ge Y, Zhang J. Large cardiac muscle patches engineered from human induced-pluripotent stem cell–derived cardiac cells improve recovery from myocardial infarction in swine. Circulation. 2018;137(16):1712–30. https://doi.org/10.1161/CIRCULATIONAHA.117.030785.

    Article  PubMed  Google Scholar 

  16. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. 2012;126(11 Suppl 1):S29-37. https://doi.org/10.1161/CIRCULATIONAHA.111.084343.

    Article  CAS  PubMed  Google Scholar 

  17. Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Ito E, Sougawa N, Kawamura T, Daimon T, Shimizu T, Kano T, Toda K, Sawa Y. Enhanced survival of transplanted human induced pluripotent stem cell–derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation. 2013;128(11 Suppl 1):S87-94. https://doi.org/10.1161/CIRCULATIONAHA.112.000366.

    Article  PubMed  Google Scholar 

  18. • Tan SH, Loo SJ, Gao Y, Tao ZH, Su LP, Wang CX, et al. Thymosinβ4 increases cardiac cell proliferation, cell engraftment, and the reparative potency of human induced-pluripotent stem cell-derived cardiomyocytes in a porcine model of acute myocardial infarction. Theranostics. 2021;11(16):7879–95. https://doi.org/10.7150/thno.56757. Findings from this study reported thymosin β4-treated iPSC-derived cardiomyocytes would increase its therapeutic efficiency in big models of myocardial infarction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. • Zhao M, Nakada Y, Wei Y, Bian W, Chu Y, Borovjagin AV, et al. Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell–derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction. Circulation. 2021;144(3):210–28. https://doi.org/10.1161/CIRCULATIONAHA.120.049497. Findings from this study reported the importance of cyclin D2 for higher efficiency of iPSC-derived cardiomyocytes for myocardial repair in pig models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishigami M, Masumoto H, Ikuno T, Aoki T, Kawatou M, Minakata K, et al. Human iPS cell-derived cardiac tissue sheets for functional restoration of infarcted porcine hearts. PLoS One. 2018;13(8):e0201650. https://doi.org/10.1371/journal.pone.0201650.

  21. Kawaguchi S, Soma Y, Nakajima K, Kanazawa H, Tohyama S, Tabei R, et al. Intramyocardial transplantation of human iPS cell-derived cardiac spheroids improves cardiac function in heart failure animals. JACC Basic Transl Sci. 2021;6(3):239–54. https://doi.org/10.1016/j.jacbts.2020.11.017.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7. https://doi.org/10.1126/science.282.5391.1145.

    Article  CAS  PubMed  Google Scholar 

  23. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404. https://doi.org/10.1038/74447.

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Zhang F, Song G, Gu W, Chen M, Yang B, et al. Intramyocardial injection of pig pluripotent stem cells improves left ventricular function and perfusion: a study in a porcine model of acute myocardial infarction. PLoS One. 2013;8(6):e66688. https://doi.org/10.1371/journal.pone.0066688.

  26. Zhang F, Song G, Li X, Gu W, Shen Y, Chen M, et al. Transplantation of IPSC ameliorates neural remodeling and reduces ventricular arrhythmias in a post-infarcted swine model. J Cell Biochem. 2014;115(3):531–9. https://doi.org/10.1002/jcb.24687.

    Article  CAS  PubMed  Google Scholar 

  27. Song G, Lingmei Q, Shen Y, Qian L, Kong X, Chen M, et al. Transplantation of iPSc restores cardiac function by promoting angiogenesis and ameliorating cardiac remodeling in a post-infarcted swine model. Cell Biochem Biophys. 2015;71(3):1463–73. https://doi.org/10.1007/s12013-014-0369-7.

    Article  CAS  PubMed  Google Scholar 

  28. Bruneau BG. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol. 2013;5(3): a008292.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, Zaunbrecher RJ, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc. 2017;12(1):15–31. https://doi.org/10.1038/nprot.2016.153.

    Article  CAS  PubMed  Google Scholar 

  30. Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE. Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One. 2010;5(6):e11134. https://doi.org/10.1371/journal.pone.0011134.

  31. Laco F, Woo TL, Zhong Q, Szmyd R, Ting S, Khan FJ, et al. Unraveling the inconsistencies of cardiac differentiation efficiency induced by the GSK3beta inhibitor CHIR99021 in human pluripotent stem cells. Stem Cell Reports. 2018;10(6):1851–66. https://doi.org/10.1016/j.stemcr.2018.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–75. https://doi.org/10.1038/nprot.2012.150.

    Article  CAS  PubMed  Google Scholar 

  33. Cao N, Liu Z, Chen Z, Wang J, Chen T, Zhao X, et al. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 2012;22(1):219–36. https://doi.org/10.1038/cr.2011.195.

    Article  CAS  PubMed  Google Scholar 

  34. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11(8):855–60. https://doi.org/10.1038/nmeth.2999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xavier-Neto J, Neville CM, Shapiro MD, Houghton L, Wang GF, Nikovits WJ, et al. A retinoic acid-inducible transgenic marker of sino-atrial development in the mouse heart. Development. 1999;126(12):2677–87. https://doi.org/10.1242/dev.126.12.2677.

    Article  CAS  PubMed  Google Scholar 

  36. Hattori F, Chen H, Yamashita H, Tohyama S, Satoh YS, Yuasa S, et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods. 2010;7(1):61–6. https://doi.org/10.1038/nmeth.1403.

    Article  CAS  PubMed  Google Scholar 

  37. Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2013;12(1):127–37. https://doi.org/10.1016/j.stem.2012.09.013.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104(4):e30-41. https://doi.org/10.1161/CIRCRESAHA.108.192237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524–8. https://doi.org/10.1038/nature06894.

    Article  CAS  PubMed  Google Scholar 

  40. Ivashchenko CY, Pipes GC, Lozinskaya IM, Lin Z, Xiaoping X, Needle S, et al. Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. Am J Physiol Heart Circ Physiol. 2013;305(6):H913–22. https://doi.org/10.1152/ajpheart.00819.2012.

    Article  CAS  PubMed  Google Scholar 

  41. Lewandowski J, Rozwadowska N, Kolanowski TJ, Malcher A, Zimna A, Rugowska A, et al. The impact of in vitro cell culture duration on the maturation of human cardiomyocytes derived from induced pluripotent stem cells of myogenic origin. Cell Transplant. 2018;27(7):1047–67. https://doi.org/10.1177/0963689718779346.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kamakura T, Makiyama T, Sasaki K, Yoshida Y, Wuriyanghai Y, Chen J, et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J. 2013;77(5):1307–14. https://doi.org/10.1253/circj.cj-12-0987.

    Article  CAS  PubMed  Google Scholar 

  43. Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22(14):1991–2002. https://doi.org/10.1089/scd.2012.0490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12(1):101–13. https://doi.org/10.1016/j.stem.2012.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chong JJH, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273–7. https://doi.org/10.1038/nature13233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futakuchi-Tsuchida A, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol. 2018;36(7):597–605. https://doi.org/10.1038/nbt.4162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Yu-Feng Hu reports support for the present manuscript from Academia Sinica (AS-TM-110-01-01) and National Science and Technology Council (111-2628-B-A49A-502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Ching-Ho Hsieh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YY., Hu, YF. & Hsieh, P.CH. The Role of Large Animal Models in Cardiac Regeneration Research Using Human Pluripotent Stem Cell-Derived Cardiomyocytes. Curr Cardiol Rep 25, 325–331 (2023). https://doi.org/10.1007/s11886-023-01857-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01857-y

Keywords

Navigation