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Abstract
Purpose of Review Artificial intelligence (AI) applications in (interventional) cardiology continue to emerge. This review 
summarizes the current state and future perspectives of AI for automated imaging analysis in invasive coronary angiography 
(ICA).
Recent Findings Recently, 12 studies on AI for automated imaging analysis In ICA have been published. In these studies, 
machine learning (ML) models have been developed for frame selection, segmentation, lesion assessment, and functional 
assessment of coronary flow. These ML models have been developed on monocenter datasets (in range 31–14,509 patients) 
and showed moderate to good performance. However, only three ML models were externally validated.
Summary Given the current pace of AI developments for the analysis of ICA, less-invasive, objective, and automated 
diagnosis of CAD can be expected in the near future. Further research on this technology in the catheterization laboratory 
may assist and improve treatment allocation, risk stratification, and cath lab logistics by integrating ICA analysis with other 
clinical characteristics.
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Introduction

Artificial intelligence (AI) has an emerging role in health-
care in general, and the same holds for cardiology spe-
cifically, with numerous solutions in cardiac imaging 
modalities on image acquisition and reconstruction, diag-
nosis, and prognosis [1]. For example, AI applications are 
now being utilized to accelerate acquisition and reduce 
reconstruction time of cardiac MRI, to automate disease 
classification in echocardiography, and to improve con-
ventional risk prediction models based on coronary CT 
angiography features [2–5]. Despite growing applications 
in general cardiology, the role of AI in automated analysis 
of invasive coronary angiography (ICA) is less clear. ICA 
is an indispensable step in the diagnosis of coronary artery 
disease (CAD) in symptomatic patients [6]. This invasive 
imaging modality assesses the severity of stenoses by 
X-ray imaging of contrast-filled coronary arteries. In case 
of significant CAD, a multidisciplinary heart team decides 
on an appropriate treatment strategy, either conservative 
management or percutaneous or surgical revascularization. 
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The heart team assessment is largely based on ICA assess-
ment in combination with clinical parameters. Further-
more, percutaneous coronary interventions (PCIs) are 
guided by ICA for identification of target lesions; deter-
mining wiring, lesion preparation, and stenting strategies; 
and evaluation of procedural success based on residual 
stenosis, absence of significant dissection, and flow [6].

After a general introduction of AI (as an application), we 
summarize the current state of AI for ICA imaging analysis 
and discuss its clinical implications for diagnosis, (real-time) 
treatment guidance, and risk stratification. We conclude this 
review with a discussion of its current limitations and future 
perspectives.

Artificial Intelligence: a Deeper 
Understanding

Artificial intelligence (AI) has become a collective term 
for applications that perform complex tasks that previously 
required human intelligence. Machine learning (ML), a 
subfield of AI, is performing complex tasks by learning 
from experience. Training of an ML algorithm creates an 
ML model, which represents what was learned by the ML 
algorithm to make predictions on new data. Most com-
mon ML applications in cardiac imaging can be broadly 
subdivided into two categories: supervised learning and 
unsupervised learning. In supervised learning, catego-
rized data are used to classify unseen data. An example 
of supervised learning is the training of ML algorithms to 
predict a patient’s response to certain treatment. In unsu-
pervised learning, ML algorithms are trained to find pat-
terns or conclusions through unlabeled training data. A 
well-known unsupervised learning method is clustering in 

which data/patients are grouped on similarity, for example, 
to identify distinct clinical subgroups of patients which 
may benefit from targeted therapy [7, 8].

Deep learning (DL) is a subfield of ML in which mul-
tilayered neural networks are trained to learn a supervised 
or unsupervised task. A neuron is a mathematical func-
tion that provides an output based on the input. During 
training, weights of the neurons in a neural network are 
optimized to map the input(s) to a desired output. Feature 
selection is an important processing step to select rele-
vant input variables before training an AI algorithm. The 
selection of features that are most related to the outcomes 
reduces the complexity of the model and increases training 
speed. Moreover, noisy and redundant features are elimi-
nated which increases the performance of the model. In 
contrary to ML, neural networks can automatically select 
features. Therefore, DL can be trained directly on unstruc-
tured data like text, sound, video, and images. DL is a 
computationally expensive subfield of ML and requires 
large datasets to avoid generalization errors [9]. The num-
ber of neurons, number of layers, and connections between 
neurons determine the complexity and architecture of a DL 
algorithm [10]. The convolutional neural network (CNN) 
is a class of DL (Fig. 1) that is widely used for imag-
ing applications. Trained CNNs have the ability to detect 
and classify distinctive features (e.g., edges of anatomical 
structures) on images, for example, to classify views of 
echocardiograms [3, 11].

ML models are reported with a variety of metrics, which 
are selected for the ML application. Examples of metrics 
are the F1 score, accuracy, sensitivity, dice similarity coeffi-
cient (DSC), area under the receiver operating characteristic 
curve (AUC), and concordance statistic (C). These metrics 
are explained in detail elsewhere [12].

Fig. 1  Conceptual framework 
of artificial intelligence with its 
subfields machine learning and 
deep learning
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Automated Interpretation of ICA

Search and Selection Strategy

A literature search was performed in the following data-
bases: PubMed, Web of Science, Embase, and Google 
Scholar. The databases were searched in the publication 
period July 30, 2011 until July 30, 2021 with the follow-
ing combined terms: (1) Coronary angiography AND (2) 
Artificial intelligence NOT (3) computed tomography. The 
exact search strategy is shown in the Appendix. Relevant 
studies were selected using machine learning–driven selec-
tion software called ASReview, which is further explained 
in the Appendix [13]. Relevant peer-reviewed articles were 
included if artificial intelligence models were developed 
on coronary angiography imaging data. Articles that solely 
focused on automated segmentation without other AI appli-
cations, reviews, and letters to editor were excluded. Records 
classified as non-relevant and reference lists were exam-
ined to find additional relevant studies. The search strategy 
resulted in 1335 studies. After deduplications and screening 
on title and abstract, 12 studies were included. A flow chart 
of study inclusion is shown in Fig. 3 (see Appendix). The 
included studies reported on ML models for the following 
(diagnostic) applications: automated frame selection, seg-
mentation, lesion assessment, and functional assessment of 
coronary flow. These applications will be summarized after 
a short introduction into ICA interpretation in daily clinical 
practice and its current limitations.

ICA Interpretation in Daily Clinical Practice

The interpretation of ICA is highly standardized and con-
sists of the assessment of multiple components including 
coronary flow (Thrombolysis in Myocardial Infarction 
(TIMI) flow), lesion severity (percentage of stenosis and 
length), and other characteristics such as the presence of 
thrombi and calcifications. Despite standardized interpre-
tation, ICA has well-known limitations. Coronary arteries 
are three-dimensional (3D) structures that are captured in 
two-dimensional (2D) images, which may result in over-
lap, foreshortening, and difficulty in assessing true (3D) 
stenosis grade. ICA image quality is further affected by 
low-dose radiation, commonly used in these procedures, 
heart motions and X-ray absorbing tissues (e.g., ribs and 
vertebrae), which leads to low signal-to-noise ratio, low-
contrast regions, and blur [14–18]. These limitations 
make ICA prone to subjective interpretation, which may 
have important diagnostic and therapeutic repercussions 
[19, 20].

Frame Selection

ICA analysis is preferably performed during the end-diastolic 
phase of the cardiac cycle to minimize coronary artery motion 
and herewith prevent artifacts. Selection of contrast-filled frames 
in end-diastolic phase is a manual and time-consuming task, 
which lends itself for automation. Researchers demonstrated 
that a CNN could be trained on 56,655 coronary angiograms 
from 6820 patients to detect the end-diastolic phase [21•]. Elec-
trocardiography signals were used as ground truth. The CNN 
yielded good performance with an F1 score of 0.995. Instead 
of selecting one frame, other investigators trained a CNN on 90 
ICA sequences in which three consecutive, contrast-filled frames 
were selected [22]. The rationale of training with three consecu-
tive frames was to reduce the number of false-positive obser-
vations of significant stenosis. These nonexistent stenoses are 
often visible on a single frame and caused by heterogeneity of 
contrast filling, curved vessels, coronary motion, or background 
noise. With an accuracy of 0.87 to select contrast-filled frames, 
the network performed better than conventional segmentation-
based methods.

Segmentation

Selected frames can be segmented, which is a process to clas-
sify pixels as coronary arteries or irrelevant structures. Train-
ing an algorithm to identify relevant structures is crucial for 
detecting, localizing and classifying coronary lesions. To date, 
most studies on automated ICA image analysis have trained 
DL algorithms to automatically segment coronary arteries in 
coronary angiography [15, 16, 23–28]. Segmented coronary 
arteries can be partitioned into smaller structures based on, 
for example, location or anatomy. Recently, Du et al. trained a 
neural network (cGAN [29]) on 12,323 angiograms collected 
from 2834 patients to label coronary arteries into 20 segments 
[30••]. Although not specified, this 20-segment model looks 
similar to the segment model of the globally accepted SYN-
TAX (Synergy Between Percutaneous Coronary Intervention 
With Taxus and Cardiac Surgery) score [30••]. The SYNTAX 
score is an objective tool to grade complexity of CAD and 
guides decision-making between PCI and coronary artery 
bypass graft (CABG). The recognition model was tested 
using an additional 1050 angiograms and showed a recogni-
tion accuracy of 98% and sensitivity of 85%. Both training 
and test data were collected from a single medical center. 
Aforementioned studies on automated frame selection and 
segmentation are shown in Table 1.

Despite limitations of ICA images on image quality, 
aforementioned studies show that it is feasible to train an 
AI algorithm to select frames of interest and automatically 
segment coronary arteries in a proper fashion.
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Lesion Detection, Localization, and Classification

Several efforts have been made to improve ICA interpreta-
tion. Quantitative coronary angiography (QCA) software 
is already available for over three decades and can provide 
objective and quantitative assessment of anatomical lesion 
severity. However, QCA requires manual, time-consuming 
input and has therefore not been widely implemented into 
clinical practice [31, 32]. In recent years, software has 
been developed to reduce noise and improve detection 
of stenosis in coronary arteries [14, 33–36]. However, 
these methods are often computationally expensive [22, 
37–39], semi-automatic, and have long processing times 
[22, 39–41].

The inter- and intra-observer variability of visual assess-
ment of lesions by clinicians could be minimalized if lesion 
detection, localization, and classification are automated. Du 
and colleagues trained a CNN on 6239 lesions to improve 
lesion detection and categorize lesions into stenotic lesions, 
total occlusions, calcific lesions, and the presence of throm-
bus or dissection. Internal validation of CNN performance 
on 1000 ICA images demonstrated F1 scores between 0.80 
and 0.85. Other studies performed classification on the 
degree of stenosis (mild, moderate, severe), or elements 
of SYNTAX, such as the presence and type (blunt/tapered 
stump) of total occlusion with moderate to good results 
(Table 1) [42–44].

Large amounts of labeled data are needed to train an algo-
rithm that generalizes well to unseen data [45]. In a study 
by Yabushita et al. training on 199 ICA images resulted in 
modest performance (C = 0.61) to detect the presence of 
clinically significant coronary stenoses [46]. In the setting 
of lower volume datasets, diagnostic accuracy of ML mod-
els could be enhanced by several strategies. As an example, 
training of CNNs on sequences of frames improved the rate 
of false-positive stenoses. Researchers demonstrated that 
by incorporating temporal information, F1 scores increased 
by 30–40% [22, 47]. Transfer learning and data augmen-
tation are other strategies that can increase performance. 
In transfer learning, an AI model, already being trained for 
another task, will be further made ready for other purposes. 
Data augmentation is a technique to increase the amount 
of data without collecting new data. For example, an AI 
model pre-trained on a large image database (ImageNet) was 
further trained on 45,125 frames to localize stenoses with 
a cut-off of 50% in the right coronary artery [48].The ICA 
frames were derived from 452 ICA frames by cropping and 
pixel intensity value adjustments. Validation on an external 
dataset yielded an excellent AUC of 0.96. Other researchers 
also demonstrated the power of pre-training by employing 
an automated lesion detection CNN by means of training 
on only 125 images. Despite the limited amount of training 
data, F1 score was as high as 0.95 [49].

Real-time detection of coronary stenoses can facilitate 
operators to identify lesions that might have otherwise been 
unnoticed. However, the processing time of such an AI 
model is an important constraint which is often not reported 
in studies. As a fact, a better ML model accuracy often 
means a higher complexity of its architecture and processing 
time [50••]. Real-time application of AI should not result in 
time delays, which may affect the outcome of patients [51]. 
Therefore, there should be a trade-off between accuracy and 
speed in deployed models [50••].

In summary, there has been a great deal of progression 
in automated detection and classification of CAD in the last 
decade. These developments are attributable to gains in 
computing power, advances in ML algorithms, and avail-
ability of large ICA datasets [52]. Automated detection and 
classification of CAD may provide physicians objective 
and reproducible information and may prevent significant 
lesions to be missed [22, 30••, 50••]. All studies on auto-
mated lesion detection, localization, and classification are 
shown in Table 1.

Functional Assessment of Coronary Flow

Functional sufficiency of coronary flow and plaque char-
acterization are fundamental elements that guide treatment 
decisions but cumbersome features to assess on ICA [20, 
53]. There is a discrepancy between visual assessment and 
intracoronary pressure measurement for assessment of func-
tional sufficiency of coronary flow [54, 55]. Therefore, intra-
coronary pressure measurements are performed to assess 
whether a stenosis is functionally significant and herewith 
causes myocardial ischemia [56]. Fractional flow reserve 
(FFR) is the most used metric and records the mean distal 
coronary pressure divided by the mean proximal pressure 
during maximal hyperemia. Although evidence shows that 
FFR-based decision-making for revascularization leads to 
improved cardiovascular outcomes [57, 58], the FFR tech-
nique has its limitations. Major limitations of this technique 
are its invasive nature and necessity of use of costly pressure 
wires. In addition, prolonged procedural time and operator’s 
preference for visual assessment limit the implementation 
of routine intracoronary measurements during ICA [54, 
55, 59, 60•]. To overcome these limitations, quantitative 
flow ratio (QFR) applications have been developed to add 
functional assessment to anatomic imaging analysis. QFR 
is a non-invasive method to calculate functional sufficiency 
based on 3D-angiographic reconstruction and computational 
fluid dynamics [61, 62]. To date, QFR analysis is not read-
ily available for daily clinical practice at the catheterization 
laboratory (cath lab) and requires computationally expensive 
post-processing.

AI-based FFR estimation is likely to have less processing 
time compared to QFR estimation based on computational 
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fluid dynamics, as demonstrated by studies on AI-based FFR 
estimation on coronary CT [63, 64]. Recently, a ML model 
(XGBoost [65]) was developed on data of 1501 patients 
to classify intermediate lesions as having a FFR ≤ 0.8 or 
FFR > 0.8 [59]. Feature selection resulted in a set of 12 
features including body surface area, sex, and 10 features 
extracted from ICA images (lengths and diameters of lumen 
and stenosis). Evaluation of this classification model on an 
external dataset yielded an AUC of 0.87. More recently, a 
feasibility study was conducted to compare novel AI-based 
FFR software to invasive FFR measurements [60•]. This 
software, called AutocathFFR, was able to detect coro-
nary lesions and predict their FFR value without coronary 
artery annotation or view selection. The diagnostic value of 
AutocathFFR to classify a lesion as functional significant 
was evaluated in 31 patients, with the left anterior descend-
ing artery as the most frequent target (25 of 31 patients). 
The sensitivity, specificity, positive predictive value, and 
negative predictive value were 0.88, 0.93, 0.94, and 0.87, 
respectively. These results are similar to the performance 
of QFR and demonstrate the feasibility for automated FFR 
estimation. All studies on AI-based functional assessment 
of coronary flow are shown in Table 1.

Although automated assessment of FFR directly from 
ICA images has potential to speed up procedures, studies 
investigating real-time QFR-based PCI versus standard of 
care (i.e., FFR-guided PCI) are still ongoing. Successful 
introduction of QFR-based coronary treatment might even-
tually reduce over- and under-treatment. Furthermore, the 
need to perform intracoronary hemodynamic measurements 
will diminish, which might result in lower incidence of com-
plications and lower healthcare costs.

Limitations and Challenges in Development 
of Automated ICA Analysis

AI has the potential to increase diagnostic performance and 
support clinicians in therapeutic decision-making by auto-
matically assessing the extent and functional significance 
of CAD in the cath lab. However, multiple barriers have to 
be overcome before these models can be implemented into 
clinical practice.

AI Bias

A key challenge in development of smart technology is to work 
toward generalizable AI applications, which are externally val-
idated and trained on large and variable patient populations 
from multiple centers [66]. However, because most studies 
are proof-of-concept studies, external validation is often not 
performed [67]. Results of only three out of the 12 studies 
mentioned in Table 1 have been externally validated [46, 48, 

59]. Therefore, datasets should be shared between research 
centers or made open-access according to FAIR (Findability, 
Accessibility, Interoperability, and Reusability) data principles 
[68]. To avoid the risk of algorithmic bias, subgroup analysis 
on populations (e.g., age, ethnicity, sex, and medical center) 
should be performed. These analyses will show whether popu-
lation subgroups were underrepresented in the training data 
and whether more data for training should be collected [66].

AI Interpretability

Diagnosis and therapeutic decision making has a tremendous 
impact on clinical outcomes in the cath lab. There is a need 
for AI applications in which algorithmic decisions are clearly 
explained (explainable AI), so that eventual inaccurate analysis 
can be back traced. However, algorithmic decisions are often 
difficult to understand due to its “black box” nature. Currently, 
ongoing research on explainable AI is likely to enhance trust 
among users and facilitate adoption of AI applications [69-71].

AI in ICA versus Other Cardiac Modalities

To our best knowledge, no studies have been published on AI 
applications developed for treatment guidance, risk stratification, 
or prognosis based on ICA imaging. This is in contrast to the 
cardiac imaging modalities echocardiography, coronary com-
puted tomography angiography (CCTA) and magnetic resonance 
imaging (MRI), in which the first AI applications to predict prog-
nosis have emerged [5, 72–76]. This development delay could be 
explained by several factors. In ICA, registration of 3D structures 
in 2D images results in overlapping coronary arteries, which 
hinder AI models to find coronary artery specific features. This 
overlap in coronary arteries with anatomical variation and het-
erogeneity among operators regarding X-ray beam projections 
results in the need for large ICA datasets in order to develop a 
well-performing AI model in the setting of ICA. Pre-processing 
(selection, segmentation, classification) of these datasets is a 
time-consuming and tedious process. Another possible explana-
tion is that ICA has a different role in the diagnostic and treatment 
trajectory of patients with (suspected) ischemic heart disease 
compared to other, noninvasive imaging modalities. Its invasive 
nature makes ICA a second-line diagnostic test, only applied in 
patients with high a priori probability of CAD. This might favor 
development of AI models for other cardiac imaging modalities  
earlier in the diagnostic trajectory compared to ICA.

Future Perspective of AI in the Cath Lab

Growing Healthcare Utilization

ICA has numerous important challenges to overcome in the 
next decades. Growing burden of cardiovascular disease is 
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likely to increase the number of interventions being per-
formed. As a consequence, workload and healthcare costs 
will further increase. Without smart solutions, personnel 
exhaustion and delayed or cancelled interventions will jeop-
ardize quality of care [77]. AI as a smart technology has 
the potential to alleviate pressure on healthcare services in 
general and to improve cath lab diagnoses, treatment, and 
logistics in particular.

AI‑Guided ICA Interpretation for Logging 
and Reporting

The amount of administrative work of employees of the cath 
lab is increasing swiftly and ensures that time available for 
efficient patient care is minimized [78]. Automated log-
ging and reporting of procedures by automated, AI-based 
ICA interpretation can reduce this administrative burden 
(see Fig. 2). Some examples of mundane tasks that may 
be reported automatically are the location and significance 
of the lesion and whether implants (e.g., stents) have been 
placed.

AI‑Guided Treatment Planning

AI models that allow accurate and fast evaluation of coro-
nary anatomy and noninvasive functional sufficiency will 

offer an opportunity to further develop AI technology 
that will be able to guide real-time PCI procedures. Peri-
procedural analysis of ICA images, including automated 
functional assessment, could optimize PCI outcomes by 
providing a lesion-specific recommendation on a revas-
cularization strategy, eventually with advice on stent size, 
length, location, and preferred strategy (Fig. 2). After stent-
ing, automated measurements on the proportion of stent 
under expansion and hemodynamic function may inform 
the operator and patient about the expected short- and long-
term outcome [79, 80].

AI‑Guided Risk Stratification and Prognosis

The SYNTAX score, and subsequently the SYNTAX II score 
(which adds clinical characteristics to the anatomical assess-
ment of the coronary tree), are examples of available strati-
fication tools to guide clinical decision-making in complex 
CAD. However, these scores are time-consuming (5–10 min) 
to calculate and therefore underutilized in daily clinical prac-
tice, especially during ICA. Improved SYNTAX-like scores, 
integrating automated AI-based ICA imaging analysis and 
key clinical characteristics (extracted from electronic patient 
dossiers by intelligent and complex AI applications), might 
improve risk stratification of the individual patient and 
herewith enhance patient-tailored treatment, and ultimately 
prognosis (Fig. 2).

Fig. 2  Example of future, 
automated invasive coronary 
angiography analysis: artificial 
intelligence (AI) for automated 
quantitative coronary angiogra-
phy (QCA) with FFR estima-
tion, (syntax-based) clinical risk 
scoring and reporting

 Current Cardiology Reports (2022) 24:365–376370



1 3

Other AI‑Guided Applications

Other AI applications in ICA, beyond the scope of this review, 
may reduce radiation exposure by focusing on image acqui-
sition and reconstruction [81]. In addition, AI in intracoro-
nary imaging (e.g., intravascular ultrasound (IVUS), optical 

coherence tomography (OCT), near-infrared spectroscopy 
(NIRS)) may lead to improved identification of truly vulner-
able coronary plaques and may further elucidate the genesis 
of in-stent restenosis [82]. Ultimately, AI-based integration of 
upstream diagnostic modalities (i.e., CCTA), ICA, and intra-
coronary imaging may lead to optimal outcomes after PCI.

Table 1  Studies on artificial intelligence for automated coronary angiography imaging analysis (if multiple AI architectures were valuated, the 
best performing model was reported)

ACC  accuracy, AUC  area under curve, cGAN conditional generative adversarial network, CNN convolutional neural network, DSC dice similar-
ity coefficient, EC experienced cardiologist, F1 F1 score, ICA invasive coronary angiography, NS not specified, SE sensitivity, SP specificity, 
SMT segmentation, TPR true-positive rate, PPV positive predictive value, QA qualified analyst

First author Publication 
year

AI application Data Classifier Metric value Labeled/annotated by

Segmentation
Du T [30••] 2021 Segmentation 20,612 ICA images of 

10,073 patients
cGAN ACC = 98%, SE = 85% QA

Zhao C [42] 2021 Segmentation 314 ICA images of 99 
patients

CNN DSC = 0.89 EC

Frame selection
Ciusdel C [21•] 2020 End-diastolic frame 

detection
56,655 ICA sequences 

of 6820 patients
CNN F1 = 99.5% ECG

Wu W [22] 2020 Segmentation for 
frame selection

148 ICA sequences of 
63 patients

CNN SMT: visually, FS: 
ACC = 0.87

EC

Lesion detection, localization, and classification
Moon JH [48] 2021 Lesion detection, 

localization, and 
classification

452 ICA images CNN AUC = 0.96 QA and EC

Danilov VV 
[50••]

2021 Lesion detection and 
localization

8325 ICA images of 
100 patients

CNN F1 = 0.96 EC

Du T [30••] 2021 Lesion detection, 
localization, and 
classification

20,612 ICA images of 
10,073 patients

CNN F1 = 0.80–0.85 QA

Zhao C [42] 2021 Lesion detection, 
localization, and 
classification

314 ICA images of 99 
patients

CNN TPR = 0.68, 
PPV = 0.70

EC

Pang K [47] 2021 Lesion detection and 
localization

166 ICA sequences CNN F1 = 0.88 QA

Chen S [44] 2020 Lesion detection and 
classification

21,631 ICA sequences 
of 14,509 patients

CNN F1 = 0.91 − 0.97 NS

Wu W [22] 2020 Lesion detection 148 ICA sequences of 
63 patients

CNN F1 = 0.83 EC

Yabushita H [46] 2020 Lesion detection 1838 ICA sequences 
199 patients

CNN C = 0.61 EC

Ovalle-
Magallanes E 
[49]

2020 Lesion detection 250 ICA images CNN F1 = 0.95 NS

Liu X [43] 2019 Lesion detection, 
localization, and 
classification

2059 ICA images CNN F1 = 0.89,
AUC = 0.98

EC

Functional assessment of coronary flow
Roguin A [60•] 2021 Fractional flow reserve 

estimation
31 patients NS SE = 88%,

SP = 93%
EC

Cho H [59] 2019 Fractional flow reserve 
estimation

1717 patients XGBoost AUC = 0.87 NS
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Conclusion

The cath lab is on the verge of a new era in which AI-based 
state-of-the-art models are being developed for diagnostic 
and treatment guidance, optimized risk stratification, and 
automated cath lab logistics. We are still in an early stage 
of development, as most models are constructed on single-
center datasets and external validation is often lacking. 
Large multicenter datasets are necessary to develop more 
generalizable models and cath lab field-labs, mirrored to 
real-life cath labs, are indispensable to readily test them.

Appendix

Fig. 3  Flowchart of study 
inclusion

Search Strategy

PubMed

("Coronary Angiography"[Mesh] OR "coronary 
angiogra*"[tiab] OR "Coronary Vessels"[Mesh] OR "Coronary 
Stenosis"[Mesh] OR "coronary stenosis"[tiab]) AND ("Artifi-
cial Intelligence"[Mesh] OR "Artificial Intelligence"[tiab] OR 
"AI"[tiab] OR "machine learning"[tiab] OR "deep learning"[tiab] 
OR "neural network"[tiab] OR "CNN"[tiab] OR "automatic 
image analysis"[tiab] OR "computer-aided diagnosis"[tiab]) 
NOT ("CT"[ti] OR "tomogr*"[ti])
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Web of Science Search

TS = ("Coronary Angiography" OR "coronary angiogra*" 
OR "Coronary Vessels" OR "coronary stenosis") AND 
TI = ("Artificial Intelligence" OR "AI" OR "machine 
learning" OR "deep learning" OR "neural network" OR 
"CNN" OR "automatic image analysis" OR "computer-
aided diagnosis") NOT TI = ("CT" OR "tomogr*")

Embase

(((coronary angiography OR coronary vessels OR coronary 
sten*).ti,ab OR exp coronary angiography/) and (exp arti-
ficial intelligence/ or artificial intelligence.ti,ab,kw. or exp 
deep learning/ or deep learning.ti,ab,kw. or exp machine 
learning/ or machine learning.ti,ab,kw. or exp artificial 
neural network/ or artificial intelligence.ti,ab,kw.)) NOT 
(ct OR computed tomography OR computed tomographic 
angiography).ti

Google Scholar

"coronary angiography" AND ("artificial intelligence"|"deep 
learning") -"ct" -"tomography"

The search was limited to studies written in English, 
human studies, and articles published in a peer-reviewed 
journal. The titles and abstracts of full text available articles 
were assessed on eligibility by a single researcher.

Study Selection

ASReview selects relevant records by active learning, which 
is an interactive tool to train an algorithm with less data. 
Feature selection was performed with a natural language 
processing method called frequency-inverse document fre-
quency. A Naïve Bayes classifier was iteratively trained to 
label records as relevant and non-relevant.
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