Skip to main content
Log in

Physiologic Assessment of Coronary Stenosis: Current Status and Future Directions

  • Interventional Cardiology (SR Bailey and T Helmy, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Percutaneous coronary intervention (PCI) is a commonly used treatment option in coronary artery disease (CAD). Reduced major adverse cardiovascular events (MACE) in those randomized to PCI compared to optimal medical therapy have been demonstrated only if it is performed for physiologically significant coronary lesions. Despite data demonstrating improved outcomes primarily in stable CAD and then acute settings, physiology-guided PCI remains underutilized. This review summarizes the evidence and commonly used methods for physiologic assessment of coronary stenosis.

Recent Findings

Fractional flow reserve (FFR) is the gold standard for the analysis of lesion severity. Its use is limited by the need for adenosine, which adds time, complexity, and potential adverse effects. Non-hyperemic instantaneous wave-free ratio-guided revascularization and quantitative flow reserve ratio assessment both have shown safety and effectiveness with improved patient outcomes.

Summary

Coronary physiological assessment solves the ambiguity of coronary angiography. Detecting physiologically significant stenoses is crucial to decide which lesion needs to be treated. Technological advances have led to the development of new assessment indices in addition to FFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87–165. https://doi.org/10.1093/eurheartj/ehy394This document provides the evidence based guidelines for patient-centred practice on myocardial revascularization.

    Article  PubMed  Google Scholar 

  2. • Zimmermann FM, Omerovic E, Fournier S, Kelbaek H, Johnson NP, Rothenbuhler M, et al. Fractional flow reserve-guided percutaneous coronary intervention vs. medical therapy for patients with stable coronary lesions: meta-analysis of individual patient data. Eur Heart J. 2019;40(2):180–6. https://doi.org/10.1093/eurheartj/ehy812This meta-analysis shown that FFR-guided PCI resulted in a reduction of the MACE, which was driven by a decreased risk of MI.

    Article  PubMed  Google Scholar 

  3. Zimmermann FM, Ferrara A, Johnson NP, van Nunen LX, Escaned J, Albertsson P, et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J. 2015;36(45):3182–8. https://doi.org/10.1093/eurheartj/ehv452.

    Article  PubMed  Google Scholar 

  4. Chowdhury M, Osborn EA. Physiological Assessment of Coronary Lesions in 2020. Curr Treat Options Cardiovasc Med. 2020;22(1):2. https://doi.org/10.1007/s11936-020-0803-7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91. https://doi.org/10.1161/CIRCULATIONAHA.107.743963.

    Article  PubMed  Google Scholar 

  6. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16. https://doi.org/10.1056/NEJMoa070829.

    Article  CAS  PubMed  Google Scholar 

  7. Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382(15):1395–407. https://doi.org/10.1056/NEJMoa1915922.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103(24):2928–34. https://doi.org/10.1161/01.cir.103.24.2928.

    Article  CAS  PubMed  Google Scholar 

  9. •• Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F. van’ t Veer M et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24. https://doi.org/10.1056/NEJMoa0807611This study demonstrated that an FFR-guided PCI strategy resulted in a significant decrease of MACE.

    Article  CAS  PubMed  Google Scholar 

  10. Spertus JA, Jones PG, Maron DJ, O’Brien SM, Reynolds HR, Rosenberg Y, et al. Health-status outcomes with invasive or conservative care in coronary disease. N Engl J Med. 2020;382(15):1408–19. https://doi.org/10.1056/NEJMoa1916370.

    Article  PubMed  PubMed Central  Google Scholar 

  11. De Bruyne B, Pijls NH, Barbato E, Bartunek J, Bech JW, Wijns W, et al. Intracoronary and intravenous adenosine 5’-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation. 2003;107(14):1877–83. https://doi.org/10.1161/01.CIR.0000061950.24940.88.

    Article  CAS  PubMed  Google Scholar 

  12. Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92(11):3183–93. https://doi.org/10.1161/01.cir.92.11.3183.

    Article  CAS  PubMed  Google Scholar 

  13. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8. https://doi.org/10.1056/NEJM199606273342604.

    Article  CAS  PubMed  Google Scholar 

  14. Tebaldi M, Biscaglia S, Fineschi M, Musumeci G, Marchese A, Leone AM, et al. Evolving routine standards in invasive hemodynamic assessment of coronary stenosis: the Nationwide Italian SICI-GISE Cross-Sectional ERIS Study. JACC Cardiovasc Interv. 2018;11(15):1482–91. https://doi.org/10.1016/j.jcin.2018.04.037.

    Article  PubMed  Google Scholar 

  15. van Nunen LX, Zimmermann FM, Tonino PA, Barbato E, Baumbach A, Engstrom T, et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet. 2015;386(10006):1853–60. https://doi.org/10.1016/S0140-6736(15)00057-4.

    Article  PubMed  Google Scholar 

  16. •• De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371(13):1208–17. https://doi.org/10.1056/NEJMoa1408758This trial demonstrated the safety and effectiveness of FFR-guided multi-vessel PCI strategy in chronic coronary syndromes.

    Article  CAS  PubMed  Google Scholar 

  17. • Xaplanteris P, Fournier S, Pijls NHJ, Fearon WF, Barbato E, Tonino PAL, et al. Five-year outcomes with PCI guided by fractional flow reserve. N Engl J Med. 2018;379(3):250–9. https://doi.org/10.1056/NEJMoa1803538This study demonstrated that an FFR-guided PCI strategy for MVD decreased MACE at 5-year follow-up as compared with optimal medical therapy alone.

    Article  PubMed  Google Scholar 

  18. Zimmermann FM, De Bruyne B, Pijls NH, Desai M, Oldroyd KG, Park SJ, et al. Rationale and design of the fractional flow reserve versus angiography for multivessel evaluation (FAME) 3 trial: a comparison of fractional flow reserve-guided percutaneous coronary intervention and coronary artery bypass graft surgery in patients with multivessel coronary artery disease. Am Heart J. 2015;170(4):619–26 e2. https://doi.org/10.1016/j.ahj.2015.06.024.

    Article  PubMed  Google Scholar 

  19. Degrell P, Picard F, Varenne O. Percutaneous coronary intervention for stable angina in ORBITA. Lancet. 2018;392(10141):25. https://doi.org/10.1016/S0140-6736(18)31173-5.

    Article  PubMed  Google Scholar 

  20. Moscarella E, Gragnano F, Cesaro A, Ielasi A, Diana V, Conte M, et al. Coronary physiology assessment for the diagnosis and treatment of coronary artery disease. Cardiol Clin. 2020;38(4):575–88. https://doi.org/10.1016/j.ccl.2020.07.003.

    Article  PubMed  Google Scholar 

  21. Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, et al. Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur Heart J. 2015;36(2):100–11. https://doi.org/10.1093/eurheartj/ehu338.

    Article  PubMed  Google Scholar 

  22. Spitaleri G, Moscarella E, Brugaletta S, Pernigotti A, Ortega-Paz L, Gomez-Lara J, et al. Correlates of non-target vessel-related adverse events in patients with ST-segment elevation myocardial infarction: insights from five-year follow-up of the EXAMINATION trial. EuroIntervention. 2018;13(16):1939–45. https://doi.org/10.4244/EIJ-D-17-00608.

    Article  PubMed  Google Scholar 

  23. Moscarella E, Brugaletta S, Sabate M. Latest STEMI treatment: a focus on current and upcoming devices. Expert Rev Med Devices. 2018;15(11):807–17. https://doi.org/10.1080/17434440.2018.1538778.

    Article  CAS  PubMed  Google Scholar 

  24. Engstrom T, Kelbaek H, Helqvist S, Hofsten DE, Klovgaard L, Holmvang L, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomised controlled trial. Lancet. 2015;386(9994):665–71. https://doi.org/10.1016/s0140-6736(15)60648-1.

    Article  PubMed  Google Scholar 

  25. Smits PC, Abdel-Wahab M, Neumann FJ, Boxma-de Klerk BM, Lunde K, Schotborgh CE, et al. Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med. 2017;376(13):1234–44. https://doi.org/10.1056/NEJMoa1701067.

    Article  PubMed  Google Scholar 

  26. Biscaglia S, Guiducci V, Santarelli A, Amat Santos I, Fernandez-Aviles F, Lanzilotti V, et al. Physiology-guided revascularization versus optimal medical therapy of nonculprit lesions in elderly patients with myocardial infarction: rationale and design of the FIRE trial. Am Heart J. 2020;229:100–9. https://doi.org/10.1016/j.ahj.2020.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Verberne HJ, Piek JJ, van Liebergen RA, Koch KT, Schroeder-Tanka JM, van Royen EA. Functional assessment of coronary artery stenosis by doppler derived absolute and relative coronary blood flow velocity reserve in comparison with (99m)Tc MIBI SPECT. Heart. 1999;82(4):509–14. https://doi.org/10.1136/hrt.82.4.509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kolli KK, van de Hoef TP, Effat MA, Banerjee RK, Peelukhana SV, Succop P, et al. Diagnostic cutoff for pressure drop coefficient in relation to fractional flow reserve and coronary flow reserve: a patient-level analysis. Catheter Cardiovasc Interv. 2016;87(2):273–82. https://doi.org/10.1002/ccd.26063.

    Article  PubMed  Google Scholar 

  29. van de Hoef TP, Nolte F, EchavarrIa-Pinto M, van Lavieren MA, Damman P, Chamuleau SA, et al. Impact of hyperaemic microvascular resistance on fractional flow reserve measurements in patients with stable coronary artery disease: insights from combined stenosis and microvascular resistance assessment. Heart. 2014;100(12):951–9. https://doi.org/10.1136/heartjnl-2013-305124.

    Article  PubMed  Google Scholar 

  30. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol. 2010;55(3):173–85. https://doi.org/10.1016/j.jacc.2009.06.062.

    Article  PubMed  Google Scholar 

  31. Meuwissen M, Chamuleau SA, Siebes M, de Winter RJ, Koch KT, Dijksman LM, et al. The prognostic value of combined intracoronary pressure and blood flow velocity measurements after deferral of percutaneous coronary intervention. Catheter Cardiovasc Interv. 2008;71(3):291–7. https://doi.org/10.1002/ccd.21331.

    Article  PubMed  Google Scholar 

  32. Gotberg M, Cook CM, Sen S, Nijjer S, Escaned J, Davies JE. The evolving future of instantaneous wave-free ratio and fractional flow reserve. J Am Coll Cardiol. 2017;70(11):1379–402. https://doi.org/10.1016/j.jacc.2017.07.770.

    Article  PubMed  Google Scholar 

  33. Leone AM, Scalone G, De Maria GL, Tagliaferro F, Gardi A, Clemente F, et al. Efficacy of contrast medium induced Pd/Pa ratio in predicting functional significance of intermediate coronary artery stenosis assessed by fractional flow reserve: insights from the RINASCI study. EuroIntervention. 2015;11(4):421–7. https://doi.org/10.4244/EIJY14M07_02.

    Article  PubMed  Google Scholar 

  34. Davies JE, Sen S, Escaned J. Instantaneous Wave-free Ratio versus Fractional Flow Reserve. N Engl J Med. 2017;377(16):1597–8. https://doi.org/10.1056/NEJMc1711333.

    Article  PubMed  Google Scholar 

  35. Gotberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med. 2017;376(19):1813–23. https://doi.org/10.1056/NEJMoa1616540.

    Article  PubMed  Google Scholar 

  36. De Rosa S, Polimeni A, Petraco R, Davies JE, Indolfi C. Diagnostic performance of the instantaneous wave-free ratio: comparison with fractional flow reserve. Circ Cardiovasc Interv. 2018;11(1):e004613. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004613.

    Article  PubMed  Google Scholar 

  37. Hennigan B, Oldroyd KG, Berry C, Johnson N, McClure J, McCartney P, et al. Discordance between resting and hyperemic indices of coronary stenosis severity: the VERIFY 2 study (a comparative study of resting coronary pressure gradient, instantaneous wave-free ratio and fractional flow reserve in an unselected oopulation referred for invasive angiography). Circ Cardiovasc Interv. 2016;9(11). https://doi.org/10.1161/CIRCINTERVENTIONS.116.004016.

  38. Ahn JM, Park DW, Shin ES, Koo BK, Nam CW, Doh JH, et al. Fractional flow reserve and cardiac events in coronary artery disease: data from a prospective IRIS-FFR registry (Interventional Cardiology Research Incooperation Society Fractional Flow Reserve). Circulation. 2017;135(23):2241–51. https://doi.org/10.1161/CIRCULATIONAHA.116.024433.

    Article  PubMed  Google Scholar 

  39. Svanerud J, Ahn JM, Jeremias A. van ‘t Veer M, Gore A, Maehara A et al. Validation of a novel non-hyperaemic index of coronary artery stenosis severity: the Resting Full-cycle Ratio (VALIDATE RFR) study. EuroIntervention. 2018;14(7):806–14. https://doi.org/10.4244/EIJ-D-18-00342.

    Article  PubMed  Google Scholar 

  40. Kumar G, Desai R, Gore A, Rahim H, Maehara A, Matsumura M, et al. Real world validation of the nonhyperemic index of coronary artery stenosis severity-resting full-cycle ratio-RE-VALIDATE. Catheter Cardiovasc Interv. 2020;96(1):E53–E8. https://doi.org/10.1002/ccd.28523.

    Article  PubMed  Google Scholar 

  41. Cesaro A, Gragnano F, Di Girolamo D, Moscarella E, Diana V, Pariggiano I, et al. Functional assessment of coronary stenosis: an overview of available techniques. Is quantitative flow ratio a step to the future? Expert Rev Cardiovasc Ther. 2018;16(12):951–62. https://doi.org/10.1080/14779072.2018.1540303.

    Article  CAS  PubMed  Google Scholar 

  42. Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the International Multicenter FAVOR Pilot Study. JACC Cardiovasc Interv. 2016;9(19):2024–35. https://doi.org/10.1016/j.jcin.2016.07.013.

    Article  PubMed  Google Scholar 

  43. Westra J, Tu S, Winther S, Nissen L, Vestergaard MB, Andersen BK, et al. Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II Study (Wire-Free Functional Imaging II). Circ Cardiovasc Imaging. 2018;11(3):e007107. https://doi.org/10.1161/CIRCIMAGING.117.007107.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu B, Tu S, Qiao S, Qu X, Chen Y, Yang J, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis. J Am Coll Cardiol. 2017;70(25):3077–87. https://doi.org/10.1016/j.jacc.2017.10.035.

    Article  PubMed  Google Scholar 

  45. Westra J, Andersen BK, Campo G, Matsuo H, Koltowski L, Eftekhari A, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR II Europe-Japan Study. J Am Heart Assoc. 2018;7(14). https://doi.org/10.1161/JAHA.118.009603.

  46. Westra J, Tu S, Campo G, Qiao S, Matsuo H, Qu X, et al. Diagnostic performance of quantitative flow ratio in prospectively enrolled patients: an individual patient-data meta-analysis. Catheter Cardiovasc Interv. 2019;94(5):693–701. https://doi.org/10.1002/ccd.28283.

    Article  PubMed  Google Scholar 

  47. Cortes C, Carrasco-Moraleja M, Aparisi A, Rodriguez-Gabella T, Campo A, Gutierrez H, et al. Quantitative flow ratio-Meta-analysis and systematic review. Catheter Cardiovasc Interv. 2020;97:807–14. https://doi.org/10.1002/ccd.28857.

    Article  PubMed  Google Scholar 

  48. Emori H, Kubo T, Kameyama T, Ino Y, Matsuo Y, Kitabata H, et al. Diagnostic accuracy of quantitative flow ratio for assessing myocardial ischemia in prior myocardial infarction. Circ J. 2018;82(3):807–14. https://doi.org/10.1253/circj.CJ-17-0949.

    Article  PubMed  Google Scholar 

  49. Spitaleri G, Tebaldi M, Biscaglia S, Westra J, Brugaletta S, Erriquez A, et al. Quantitative flow ratio identifies nonculprit coronary lesions requiring revascularization in patients with ST-segment-elevation myocardial infarction and multivessel disease. Circ Cardiovasc Interv. 2018;11(2):e006023. https://doi.org/10.1161/CIRCINTERVENTIONS.117.006023.

    Article  PubMed  Google Scholar 

  50. Song L, Tu S, Sun Z, Wang Y, Ding D, Guan C, et al. Quantitative flow ratio-guided strategy versus angiography-guided strategy for percutaneous coronary intervention: rationale and design of the FAVOR III China trial. Am Heart J. 2020;223:72–80. https://doi.org/10.1016/j.ahj.2020.02.015.

    Article  CAS  PubMed  Google Scholar 

  51. Norgaard BL, Terkelsen CJ, Mathiassen ON, Grove EL, Botker HE, Parner E, et al. Coronary CT angiographic and flow reserve-guided management of patients with stable ischemic heart disease. J Am Coll Cardiol. 2018;72(18):2123–34. https://doi.org/10.1016/j.jacc.2018.07.043.

    Article  PubMed  Google Scholar 

  52. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol. 2014;63(12):1145–55. https://doi.org/10.1016/j.jacc.2013.11.043.

    Article  PubMed  Google Scholar 

  53. Patel MR, Norgaard BL, Fairbairn TA, Nieman K, Akasaka T, Berman DS, et al. 1-year impact on medical practice and clinical outcomes of FFRCT: the ADVANCE Registry. JACC Cardiovasc Imaging. 2020;13(1 Pt 1):97–105. https://doi.org/10.1016/j.jcmg.2019.03.003.

    Article  PubMed  Google Scholar 

  54. Collet C, Onuma Y, Andreini D, Sonck J, Pompilio G, Mushtaq S, et al. Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease. Eur Heart J. 2018;39(41):3689–98. https://doi.org/10.1093/eurheartj/ehy581.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yu W, Huang J, Jia D, Chen S, Raffel OC, Ding D, et al. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity. EuroIntervention. 2019;15(2):189–97. https://doi.org/10.4244/EIJ-D-19-00182.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cook CM, Warisawa T, Howard JP, Keeble TR, Iglesias JF, Schampaert E, et al. Algorithmic versus expert human interpretation of instantaneous wave-free ratio coronary pressure-wire pull back data. JACC Cardiovasc Interv. 2019;12(14):1315–24. https://doi.org/10.1016/j.jcin.2019.05.025.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Cilingiroglu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Interventional Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okutucu, S., Cilingiroglu, M. & Feldman, M.D. Physiologic Assessment of Coronary Stenosis: Current Status and Future Directions. Curr Cardiol Rep 23, 88 (2021). https://doi.org/10.1007/s11886-021-01521-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01521-3

Keywords

Navigation