Skip to main content
Log in

New Insights into the Role of Visit-to-Visit Glycemic Variability and Blood Pressure Variability in Cardiovascular Disease Risk

  • Diabetes and Cardiovascular Disease (D Bruemmer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There is evidence from epidemiologic studies that variability in cardiovascular risk factors influences risk of cardiovascular disease. We review new studies and novel findings in the relationship between visit-to-visit glycemic variability and blood pressure variability and risk of adverse outcomes.

Recent Findings

Visit-to-visit glycemic variability is consistently linked to macrovascular disease. This relationship has been observed in both clinical trials and retrospective studies of electronic health records. Long-term blood pressure variability also predicts cardiovascular outcomes, and the association appears stronger in those with lower levels of systolic and diastolic function.

Summary

As epidemiologic evidence increases in support of a role for metabolic risk factor variability in cardiovascular risk, there is a corresponding rise in interest in applying this information toward improving risk factor prediction and treatment. Future investigation of underlying mechanisms for these associations as well as implications for therapy is also warranted. The potential additive contribution of variability of multiple parameters also merits additional scrutiny. As our technology for capturing risk factor variability continues to improve, this will only enhance our understanding of its links with vascular disease and how to best utilize this information to reduce cardiovascular outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59. https://doi.org/10.1056/NEJMoa0802743.

    Article  CAS  PubMed  Google Scholar 

  2. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72. https://doi.org/10.1056/NEJMoa0802987.

    Article  CAS  PubMed  Google Scholar 

  3. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39. https://doi.org/10.1056/NEJMoa0808431.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou JJ, Schwenke DC, Bahn G, Reaven P. Glycemic variation and cardiovascular risk in the Veterans Affairs Diabetes trial. Diabetes Care. 2018;41:2187–94.

    Article  CAS  Google Scholar 

  5. Zhou JJ, Koska J, Bahn G, Reaven P. Glycaemic variation is a predictor of all-cause mortality in the Veteran Affairs Diabetes Trial. Diab Vasc Dis Res. 2019;16:178–85.

    Article  Google Scholar 

  6. Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: Systematic review and meta-analysis. BMJ. 2016. https://doi.org/10.1136/bmj.i4098.

  7. Wang J, Shi X, Ma C, Zheng H, Xiao J, Bian H, et al. Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease: A systematic review and meta-analysis. J Hypertens. 2017;35:10–7. https://doi.org/10.1097/HJH.0000000000001159.

    Article  CAS  PubMed  Google Scholar 

  8. Poortvliet RKE, Ford I, Lloyd SM, Sattar N, Mooijaart SP, de Craen AJM, et al. Blood Pressure Variability and Cardiovascular Risk in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). PLoS One. 2012;7:e52438. https://doi.org/10.1371/journal.pone.0052438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. • Mehlum MH, Liestøl K, Kjeldsen SE, Julius S, Hua TA, Rothwell PM, et al. Blood pressure variability and risk of cardiovascular events and death in patients with hypertension and different baseline risks. Eur Heart J. 2018;39:2243–51 Results from this study strongly suggest that the role of blood pressure variability in cardiovascular risk is more pronounced in individuals with low baseline blood pressure levels.

    Article  CAS  Google Scholar 

  10. • Kwon S, Lee SR, Choi EK, et al. Visit-to-visit variability of metabolic parameters and risk of heart failure: A nationwide population-based study. Int J Cardiol. 2019. https://doi.org/10.1016/j.ijcard.2019.06.035Kwon and colleagues use data from an ultra-large cohort to suggest that variabilities of multiple metabolic parameters have an additive effect on heart failure risk.

  11. Levitan EB, Kaciroti N, Oparil S, Julius S, Muntner P. Relationships between metrics of visit-to-visit variability of blood pressure. J Hum Hypertens. 2013;27:589–93. https://doi.org/10.1038/jhh.2013.19.

    Article  CAS  PubMed  Google Scholar 

  12. Gabbay MAL, Rodacki M, Calliari LE, Vianna AGD, Krakauer M, Pinto MS, et al. Time in range: A new parameter to evaluate blood glucose control in patients with diabetes. Diabetol Metab Syndr. 2020;12:22. https://doi.org/10.1186/s13098-020-00529-z.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lachin JM, Bebu I, Bergenstal RM, Pop-Busui R, Service FJ, Zinman B, et al. Association of glycemic variability in type 1 diabetes with progression of microvascular outcomes in the diabetes control and complications trial. Diabetes Care. 2017;40:777–83. https://doi.org/10.2337/dc16-2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hirakawa Y, Arima H, Zoungas S, Ninomiya T, Cooper M, Hamet P, et al. Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: The ADVANCE trial. Diabetes Care. 2014;37:2359–65. https://doi.org/10.2337/dc14-0199.

    Article  CAS  PubMed  Google Scholar 

  15. Gorst C, Kwok CS, Aslam S, Buchan I, Kontopantelis E, Myint PK, et al. Long-term glycemic variability and risk of adverse outcomes: A systematic review and meta-analysis. Diabetes Care. 2015;38:2354–69. https://doi.org/10.2337/dc15-1188.

    Article  CAS  PubMed  Google Scholar 

  16. Echouffo-Tcheugui JB, Zhao S, Brock G, Matsouaka RA, Kline D, Joseph JJ. Visit-to-visit glycemic variability and risks of cardiovascular events and all-cause mortality: The ALLHAT study. Diabetes Care. 2019;42:486–93. https://doi.org/10.2337/dc18-1430.

    Article  PubMed  PubMed Central  Google Scholar 

  17. •• Segar MW, Patel KV, Vaduganathan M, Caughey MC, Butler J, Fonarow GC, et al. Association of long-term change and variability in glycemia with risk of incident heart failure among patients with type 2 diabetes: A secondary analysis of the ACCORD trial. Diabetes Care. 2020. https://doi.org/10.2337/dc19-2541A novel approach in this study is to adjust for variability of other metabolic risk factors (BMI, blood pressure, LDL-c) in the association between HbA1c variability and heart failure. The association was robust to these adjustments.

  18. Zinman B, Marso SP, Poulter NR, et al. Day-to-day fasting glycaemic variability in DEVOTE: associations with severe hypoglycaemia and cardiovascular outcomes (DEVOTE 2). Diabetologia. 2018;61:48–57. https://doi.org/10.1007/s00125-017-4423-z.

    Article  PubMed  Google Scholar 

  19. Critchley JA, Carey IM, Harris T, DeWilde S, Cook DG. Variability in glycated hemoglobin and risk of poor outcomes among people with type2diabetesinalargeprimary care cohort study. Diabetes Care. 2019;42:2237–46. https://doi.org/10.2337/dc19-0848.

    Article  CAS  PubMed  Google Scholar 

  20. Ghouse J, Skov MW, Kanters JK, Lind B, Isaksen JL, Blanche P, et al. Visit-to-visit variability of hemoglobin A 1c in people without diabetes and risk of major adverse cardiovascular events and all-cause mortality. Diabetes Care. 2019;42:134–41. https://doi.org/10.2337/dc18-1396.

    Article  CAS  PubMed  Google Scholar 

  21. Wan EYF, Yu EYT, Chin WY, Ng FTY, Chia SMC, Wong ICK, et al. Age-specific associations of glycated haemoglobin variability with cardiovascular disease and mortality in patients with type 2 diabetes mellitus: A 10- year cohort study. Diabetes Obes Metab. 2020;22:1316–27. https://doi.org/10.1111/dom.14034.

    Article  CAS  PubMed  Google Scholar 

  22. Yu JH, Han K, Park S, Lee DY, Nam GE, Seo JA, et al. Effects of long-term glycemic variability on incident cardiovascular disease and mortality in subjects without diabetes: A nationwide population-based study. Medicine (Baltimore). 2019;98:e16317. https://doi.org/10.1097/MD.0000000000016317.

    Article  Google Scholar 

  23. Ceriello A, Rossi MC, De Cosmo S, et al. Overall quality of care predicts the variability of key risk factors for complications in type 2 diabetes: An observational, longitudinal retrospective study. Diabetes Care. 2019;42:514–9. https://doi.org/10.2337/dc18-1471.

    Article  PubMed  Google Scholar 

  24. Kohnert KD, Augstein P, Zander E, Heinke P, Peterson K, Freyse EJ, et al. Glycemic variability correlates strongly with postprandial β-cell dysfunction in a segment of type 2 diabetic patients using oral hypoglycemic agents. Diabetes Care. 2009;32:1058–62. https://doi.org/10.2337/dc08-1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoo S, Chin SO, Lee SA, Koh G. Factors associated with glycemic variability in patients with type 2 diabetes: Focus on oral hypoglycemic agents and cardiovascular risk factors. Endocrinol Metab. 2015;30:352–60. https://doi.org/10.3803/EnM.2015.30.3.352.

    Article  CAS  Google Scholar 

  26. Ebe K, Bando H, Menuta T, Bando M, Yonei Y. Remarkable improvement of glucose variability by sodium-glucose cotransporter 2 (SGLT2) inhibitors using continuous glucose monitoring. Diabetes Case Rep. 2019:4;139. https://doi.org/10.4172/2572-5629.1000139.

  27. Bajaj HS, Venn K, Ye C, Patrick A, Kalra S, Khandwala H, et al. Lowest glucose variability and hypoglycemia are observed with the combination of a GLP-1 receptor agonist and basal insulin (VARIATION Study). Diabetes Care. 2017;40:194–200. https://doi.org/10.2337/dc16-1582.

    Article  CAS  PubMed  Google Scholar 

  28. Nishimura R, Osonoi T, Kanada S, Jinnouchi H, Sugio K, Omiya H, et al. Effects of luseogliflozin, a sodium-glucose co-transporter 2 inhibitor, on 24-h glucose variability assessed by continuous glucose monitoring in Japanese patients with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled, crossover study. Diabetes Obes Metab. 2015;17:800–4. https://doi.org/10.1111/dom.12481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Niskanen L, Virkamäki A, Hansen JB, Saukkonen T. Fasting plasma glucose variability as a marker of nocturnal hypoglycemia in diabetes: Evidence from the PREDICTIVETM study. Diabetes Res Clin Pract. 2009;86:e15–8. https://doi.org/10.1016/j.diabres.2009.08.005.

    Article  CAS  PubMed  Google Scholar 

  30. Monnier L, Wojtusciszyn A, Colette C, Owens D. The contribution of glucose variability to asymptomatic hypoglycemia in persons with type 2 diabetes. Diabetes Technol Ther. 2011;13:813–8. https://doi.org/10.1089/dia.2011.0049.

    Article  CAS  PubMed  Google Scholar 

  31. Ceriello A, Ihnat MA. “Glycaemic variability”: A new therapeutic challenge in diabetes and the critical care setting. Diabet Med. 2010;27:862–7. https://doi.org/10.1111/j.1464-5491.2010.02967.x.

    Article  CAS  PubMed  Google Scholar 

  32. Keating ST, van Diepen JA, Riksen NP, El-Osta A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia. 2018;61:6–20. https://doi.org/10.1007/s00125-017-4490-1.

    Article  CAS  PubMed  Google Scholar 

  33. Saremi A, Bahn GD, Reaven PD. A link between hypoglycemia and progression of atherosclerosis in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care. 2016;39:448–54. https://doi.org/10.2337/dc15-2107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodrigues R, de Medeiros LA, Cunha LM, da Silva Garrote-Filho M, Bernardino Neto M, Jorge PT, et al. Correlations of the glycemic variability with oxidative stress and erythrocytes membrane stability in patients with type 1 diabetes under intensive treatment. Diabetes Res Clin Pract. 2018;144:153–60. https://doi.org/10.1016/j.diabres.2018.01.031.

    Article  CAS  PubMed  Google Scholar 

  35. Ohara M, Fukui T, Ouchi M, Watanabe K, Suzuki T, Yamamoto S, et al. Relationship between daily and day-to-day glycemic variability and increased oxidative stress in type 2 diabetes. Diabetes Res Clin Pract. 2016;122:62–70. https://doi.org/10.1016/j.diabres.2016.09.025.

    Article  CAS  PubMed  Google Scholar 

  36. Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 2019;15:327–45. https://doi.org/10.1038/s41581-019-0135-6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Costantino S, Paneni F, Battista R, Castello L, Capretti G, Chiandotto S, et al. Impact of glycemic variability on chromatin remodeling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target HbA1c levels. Diabetes. 2017;66:2472–82. https://doi.org/10.2337/db17-0294.

    Article  CAS  PubMed  Google Scholar 

  38. Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7. https://doi.org/10.1056/NEJMoa003417.

    Article  CAS  PubMed  Google Scholar 

  39. MacMahon S, Peto R, Collins R, et al. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990. https://doi.org/10.1016/0140-6736(90)90878-9.

  40. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905. https://doi.org/10.1016/S0140-6736(10)60308-X.

    Article  PubMed  Google Scholar 

  41. Muntner P, Whittle J, Lynch AI, Colantonio LD, Simpson LM, Einhorn PT, et al. Visit-to-visit variability of blood pressure and coronary heart disease, stroke, heart failure, and mortality a cohort study. Ann Intern Med. 2015;163:329–38.

    Article  Google Scholar 

  42. Chiriacò M, Pateras K, Virdis A, Charakida M, Kyriakopoulou D, Nannipieri M, et al. Association between blood pressure variability, cardiovascular disease and mortality in type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab. 2019;21:2587–98. https://doi.org/10.1111/dom.13828.

    Article  PubMed  Google Scholar 

  43. Nuyujukian DS, Koska J, Bahn G, Reaven PD, Zhou JJ. Blood pressure variability and risk of heart failure in ACCORD and the VADT. Diabates Care. 2020;43(7):1471–8. https://doi.org/10.2337/dc19-2540.

  44. Miao CY, Xie HH, Zhan LS, Su DF. Blood pressure variability is more important than blood pressure level in determination of end-organ damage in rats. J Hypertens. 2006;24:1125–35. https://doi.org/10.1097/01.hjh.0000226203.57818.88.

    Article  CAS  PubMed  Google Scholar 

  45. Miao CY, Su DF. The importance of blood pressure variability in rat aortic and left ventricular hypertrophy produced by sinoaortic denervation. J Hypertens. 2002;20:1865–72. https://doi.org/10.1097/00004872-200209000-00033.

    Article  CAS  PubMed  Google Scholar 

  46. Nwabuo CC, Yano Y, Moreira HT, Appiah D, Vasconcellos HD, Aghaji QN, et al. Association Between Visit-to-Visit Blood Pressure Variability in Early Adulthood and Myocardial Structure and Function in Later Life. JAMA Cardiol. 2020;5:795–801. https://doi.org/10.1001/jamacardio.2020.0799.

    Article  PubMed  Google Scholar 

  47. Shimbo D, Shea S, McClelland RL, Viera AJ, Mann D, Newman J, et al. Associations of aortic distensibility and arterial elasticity with long-term visit-to-visit blood pressure variability: The multi-ethnic study of atherosclerosis (MESA). Am J Hypertens. 2013;26:896–902. https://doi.org/10.1093/ajh/hpt040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vidal-Petiot E, Stebbins A, Chiswell K, Ardissino D, Aylward PE, Cannon CP, et al. Visit-to-visit variability of blood pressure and cardiovascular outcomes in patients with stable coronary heart disease. Insights from the STABILITY trial. Eur Heart J. 2017;38:2813–22. https://doi.org/10.1093/eurheartj/ehx250.

    Article  CAS  PubMed  Google Scholar 

  49. Hansen TW, Li Y, Staessen JA. Blood pressure variability remains an elusive predictor of cardiovascular outcome. Am J Hypertens. 2009;22:3–4. https://doi.org/10.1038/ajh.2008.322.

    Article  PubMed  Google Scholar 

  50. McEvoy JW, Chen Y, Rawlings A, Hoogeveen RC, Ballantyne CM, Blumenthal RS, et al. Diastolic Blood Pressure, Subclinical Myocardial Damage, and Cardiac Events: Implications for Blood Pressure Control. J Am Coll Cardiol. 2016;68:1713–22.

    Article  Google Scholar 

  51. Danzi GB, Cuspidi C. Diastolic Blood Pressure and Myocardial Damage: What About Coronary Perfusion Time? J Am Coll Cardiol. 2017;69:1645–6. https://doi.org/10.1016/j.jacc.2016.11.086.

    Article  PubMed  Google Scholar 

  52. De Courson H, Leffondré K, Tzourio C. Blood pressure variability and risk of cardiovascular event: Is it appropriate to use the future for predicting the present? Eur Heart J. 2018;39:4220.

    Article  Google Scholar 

  53. Monnier L, Colette C, Wojtusciszyn A, Dejager S, Renard E, Molinari N, et al. Toward defining the threshold between low and high glucose variability in diabetes. Diabetes Care. 2017;40:832–8. https://doi.org/10.2337/dc16-1769.

    Article  CAS  PubMed  Google Scholar 

  54. Smith TR, Drozda JP, Vanslette JA, Hoeffken AS, Nicholson RA. Medication class effects on visit-to-visit variability of blood pressure measurements: Analysis of electronic health record data in the “real world.”. J Clin Hypertens. 2013;15:655–62. https://doi.org/10.1111/jch.12165.

    Article  CAS  Google Scholar 

  55. Zhao J, Feng QP, Wu P, Lupu RA, Wilke RA, Wells QS, et al. Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction. Sci Rep. 2019;9:717. https://doi.org/10.1038/s41598-018-36745-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Nuyujukian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J.J., Nuyujukian, D.S. & Reaven, P.D. New Insights into the Role of Visit-to-Visit Glycemic Variability and Blood Pressure Variability in Cardiovascular Disease Risk. Curr Cardiol Rep 23, 25 (2021). https://doi.org/10.1007/s11886-021-01454-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01454-x

Keywords

Navigation