Skip to main content

Advertisement

Log in

The Role of Carotid and Femoral Plaque Burden in the Diagnosis of Coronary Artery Disease

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

With limitations of cardiovascular disease risk stratification by traditional risk factors, the role of noninvasive imaging techniques, such as vascular ultrasound, has emerged as a prominent utility for decision-making in coronary artery disease. A review of current guidelines and contemporary approaches for carotid and femoral plaque assessment is needed to better inform the diagnosis, management, and treatment of atherosclerosis in clinical practice.

Recent Findings

The recent consensus-based guidelines for carotid plaque assessment in coronary artery disease have been established, supported by some outcomes-based research. Currently, there is a gap of evidence on the use of femoral ultrasound to detect atherosclerosis, as well as predict adverse cardiovascular outcomes.

Summary

The quantification and characterization of individualized plaque burden are important to stratify risk in asymptomatic or symptomatic atherosclerosis patients. Standardized quantification guidelines, supported by further outcomes-based research, are required to assess disease severity and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wang H, Naghavi M, Allen C, Barber RM, Carter A, Casey DC, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1459–544.

    Google Scholar 

  2. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010;35(2):72–115.

    PubMed  PubMed Central  Google Scholar 

  3. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: the task force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2020;41(3):407–77.

    PubMed  Google Scholar 

  4. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;140(11):e596–646.

    PubMed  PubMed Central  Google Scholar 

  5. Anderson TJ, Gregoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32(11):1263–82.

    PubMed  Google Scholar 

  6. Heo R, Nakazato R, Kalra D, Min JK. Noninvasive imaging in coronary artery disease. Semin Nucl Med. 2014;44(5):398–409.

    PubMed  PubMed Central  Google Scholar 

  7. Mangla A, Oliveros E, Williams KA, Kalra DK. Cardiac imaging in the diagnosis of coronary artery disease. Curr Probl Cardiol. 2017;42(10):316–66.

    PubMed  Google Scholar 

  8. Fernández-Friera L, Fuster V, López-Melgar B, Oliva B, Sánchez-González J, Macías A, et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI. J Am Coll Cardiol. 2019;73(12):1371–82.

    PubMed  Google Scholar 

  9. Kastelein JJP, De Groot E. Ultrasound imaging techniques for the evaluation of cardiovascular therapies. Eur Heart J. 2008;29(7):849–58.

    PubMed  Google Scholar 

  10. Steinl DC, Kaufmann BA. Ultrasound imaging for risk assessment in atherosclerosis. Int J Mol Sci. 2015;16(5):9749–69.

    PubMed  PubMed Central  Google Scholar 

  11. Landry A, Spence JD, Fenster A. Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke. 2004;35(4):864–9.

    PubMed  Google Scholar 

  12. •• Johri AM, Nambi V, Naqvi TZ, Feinstein SB, Park MM, Becher H, et al. Recommendations for the Assessment of Carotid Arterial Plaque by Ultrasound for the Characterization of Atherosclerosis and Evaluation of Cardiovascular Risk: From the American Society of Echocardiography (in press). J Am Soc Echocardiogr. 2020. This document provides consensus-based recommendations for focused 2D and 3D carotid arterial plaque ultrasound image acquisition, quantification, and characterization for the purpose of CVD stratification.

  13. Ainsworth CD, Blake CC, Tamayo A, Beletsky V, Fenster A, Spence JD. 3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies. Stroke. 2005;36(9):1904–9.

    PubMed  Google Scholar 

  14. Mantella LE, Colledanchise KN, Hétu M-F, Feinstein SB, Abunassar J, Johri AM. Carotid intraplaque neovascularization predicts coronary artery disease and cardiovascular events. Eur Hear J Cardiovasc Imaging. 2019;20(11):1239–47.

    Google Scholar 

  15. Ahmadvazir S, Pradhan J, Khattar RS, Senior R. Long-term prognostic value of simultaneous assessment of atherosclerosis and ischemia in patients with suspected angina: implications for routine use of carotid ultrasound during stress echocardiography. J Am Soc Echocardiogr. 2020;33(5):559–69.

    PubMed  Google Scholar 

  16. Hussain A, Johri AM, Misra A, Nambi V. “Sound” advice—let’s “stress” the importance of prevention: combining carotid ultrasound and stress echocardiography for cardiovascular risk assessment. J Am Soc Echocardiogr. 2020;33(5):570–2.

    PubMed  Google Scholar 

  17. Park TH. Evaluation of carotid plaque using ultrasound imaging. J Cardiovasc Ultrasound. 2016;24(2):91–5.

    PubMed  PubMed Central  Google Scholar 

  18. Johri AM, Behl P, Hétu M-F, Haqqi M, Ewart P, Day AG, et al. Carotid ultrasound maximum plaque height-a sensitive imaging biomarker for the assessment of significant coronary artery disease. Echocardiography. 2016;33(2):281–9.

    PubMed  Google Scholar 

  19. Spence JD. Ultrasound measurement of carotid plaque as a surrogate outcome for coronary artery disease. Am J Cardiol. 2002;89(4A):10B–6B.

    PubMed  Google Scholar 

  20. Johri AM, Calnan CM, Matangi MF, MacHaalany J, Hétu M-F. Focused vascular ultrasound for the assessment of atherosclerosis: a proof-of-concept study. J Am Soc Echocardiogr. 2016;29(9):842–9.

    PubMed  Google Scholar 

  21. Ebrahim S, Papacosta O, Whincup P, Wannamethee G, Walker M, Nicolaides AN, et al. Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women. Stroke. 1999;30(4):841–50.

    PubMed  CAS  Google Scholar 

  22. Rundek T, Arif H, Boden-Albala B, Elkind MS, Paik MC, Sacco RL. Carotid plaque, a subclinical precursor of vascular events: the northern Manhattan study. Neurology. 2008;70(14):1200–7.

    PubMed  CAS  Google Scholar 

  23. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the atherosclerosis risk in communities (ARIC) study, 1987-1993. Am J Epidemiol. 1997;146(6):483–94.

    PubMed  CAS  Google Scholar 

  24. Mathiesen EB, Johnsen SH, Wilsgaard T, Bonaa KH, Lochen ML, Njolstad I. Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke: a 10-year follow-up of 6584 men and women: the Tromso study. Stroke. 2011;42(4):972–8.

    PubMed  Google Scholar 

  25. Inaba Y, Chen JA, Bergmann SR. Carotid plaque, compared with carotid intima-media thickness, more accurately predicts coronary artery disease events: a meta-analysis. Atherosclerosis. 2012;220(1):128–33.

    PubMed  CAS  Google Scholar 

  26. Park HW, Kim WH, Kim K-H, Yang DJ, Kim JH, Song IG, et al. Carotid plaque is associated with increased cardiac mortality in patients with coronary artery disease. Int J Cardiol. 2013;166(3):658–63.

    PubMed  Google Scholar 

  27. Sillesen H, Sartori S, Sandholt B, Baber U, Mehran R, Fuster V. Carotid plaque thickness and carotid plaque burden predict future cardiovascular events in asymptomatic adult Americans. Eur Hear J Cardiovasc Imaging. 2018;19(9):1042–50.

    Google Scholar 

  28. Gepner AD, Young R, Delaney JA, Budoff MJ, Polak JF, Blaha MJ, et al. Comparison of carotid plaque score and coronary artery calcium score for predicting cardiovascular disease events: the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2017;6(2):1–10.

    Google Scholar 

  29. Mitchell C, Korcarz CE, Gepner AD, Kaufman JD, Post W, Tracy R, et al. Ultrasound carotid plaque features, cardiovascular disease risk factors and events: the multi-ethnic study of atherosclerosis. Atherosclerosis. 2018;276:195–202.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Laclaustra M, Casasnovas JA, Fernández-Ortiz A, Fuster V, León-Latre M, Jiménez-Borreguero LJ, et al. Femoral and carotid subclinical atherosclerosis association with risk factors and coronary calcium: the AWHS study. J Am Coll Cardiol. 2016;67(11):1263–74.

    PubMed  Google Scholar 

  31. Postley JE, Perez A, Wong ND, Gardin JM. Prevalence and distribution of sub-clinical atherosclerosis by screening vascular ultrasound in low and intermediate risk adults: the New York physicians study. J Am Soc Echocardiogr. 2009;22(10):1145–51.

    PubMed  Google Scholar 

  32. Postley JE, Luo Y, Wong ND, Gardin JM. Identification by ultrasound evaluation of the carotid and femoral arteries of high-risk subjects missed by three validated cardiovascular disease risk algorithms. Am J Cardiol. 2015;116(10):1617–23.

    PubMed  Google Scholar 

  33. López-Melgar B, Fernández-Friera L, Oliva B, García-Ruiz JM, Peñalvo JL, Gómez-Talavera S, et al. Subclinical atherosclerosis burden by 3D ultrasound in mid-life: the PESA study. J Am Coll Cardiol. 2017;70(3):301–13.

    PubMed  Google Scholar 

  34. Lekakis JP, Papamichael CM, Cimponeriu AT, Stamatelopoulos KS, Papaioannou TG, Kanakakis J, et al. Atherosclerotic changes of extracoronary arteries are associated with the extent of coronary atherosclerosis. Am J Cardiol. 2000;85(8):949–52.

    PubMed  CAS  Google Scholar 

  35. Kocyigit D, Gurses KM, Taydas O, Poker A, Ozer N, Hazirolan T, et al. Role of femoral artery ultrasound imaging in cardiovascular event risk prediction in a primary prevention cohort at a medium-term follow-up. J Cardiol. 2020;75(5):537–43.

    PubMed  Google Scholar 

  36. • Colledanchise KN, Mantella LE, Bullen M, Hétu MF, Abunassar JG, Johri AM. Combined femoral and carotid plaque burden identifies obstructive coronary artery disease in women. J Am Soc Echocardiogr. 2020;33(1):90–100 This original investigation highlights the importance of sex-specific femoral and carotid plaque burden assessment in CAD.

    PubMed  Google Scholar 

  37. Norris CM, Yip CYY, Nerenberg KA, Clavel MA, Pacheco C, Foulds HJA, et al. State of the science in women’s cardiovascular disease: a Canadian perspective on the influence of sex and gender. J Am Heart Assoc. 2020;9(4).

  38. Belcaro G, Nicolaides AN, Ramaswami G, Cesarone MR, De Sanctis M, Incandela L, et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study). Atherosclerosis. 2001;156(2):379–87.

    PubMed  CAS  Google Scholar 

  39. Davidsson L, Fagerberg B, Bergström G, Schmidt C. Ultrasound-assessed plaque occurrence in the carotid and femoral arteries are independent predictors of cardiovascular events in middle-aged men during 10 years of follow-up. Atherosclerosis. 2010;209(2):469–73.

    PubMed  CAS  Google Scholar 

  40. Lamina C, Meisinger C, Heid IM, Löwel H, Rantner B, Koenig W, et al. Association of ankle-brachial index and plaques in the carotid and femoral arteries with cardiovascular events and total mortality in a population-based study with 13 years of follow-up. Eur Heart J. 2006;27(21):2580–7.

    PubMed  Google Scholar 

  41. Nissen SE. Vulnerable plaque and Einstein’s definition of insanity. J Am Coll Cardiol. 2020;75(12):1383–5.

    PubMed  Google Scholar 

  42. van der Meer IM, Bots ML, Hofman A, del Sol AI, van der Kuip DAM, Witteman JCM. Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam study. Circulation. 2004 Mar;109(9):1089–94.

    PubMed  Google Scholar 

  43. Hollander M, Bots ML, Del Sol AI, Koudstaal PJ, Witteman JCM, Grobbee DE, et al. Carotid plaques increase the risk of stroke and subtypes of cerebral infarction in asymptomatic elderly: the Rotterdam study. Circulation. 2002;105(24):2872–7.

    PubMed  CAS  Google Scholar 

  44. Lloyd-Jones DM, Tian L. Predicting cardiovascular risk: so what do we do now? Arch Intern Med. 2006;166(13):1342–4.

    PubMed  Google Scholar 

  45. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European Society of Cardiology and Other Societies on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37(29):2315–81.

    PubMed  PubMed Central  Google Scholar 

  46. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115(4):459–67.

    PubMed  Google Scholar 

  47. Touboul P-J, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis. 2007;23(1):75–80.

    PubMed  Google Scholar 

  48. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the Advisory Board of the 3rd, 4th and 5th Watching the Risk Symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, B. Cerebrovasc Dis. 2012;34(4):290–6.

    PubMed  Google Scholar 

  49. Lorenz MW, Polak JF, Kavousi M, Mathiesen EB, Völzke H, Tuomainen T-P, et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet. 2012 Jun;379(9831):2053–62.

    PubMed  PubMed Central  Google Scholar 

  50. Baldassarre D, Veglia F, Hamsten A, Humphries SE, Rauramaa R, De Faire U, et al. Progression of carotid intima-media thickness as predictor of vascular events: results from the IMPROVE study. Arterioscler Thromb Vasc Biol. 2013;33(9):2273–9.

    PubMed  CAS  Google Scholar 

  51. Crouse JR, Raichlen JS, Riley WA, Evans GW, Palmer MK, O’Leary DH, et al. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR trial. J Am Med Assoc. 2007;297(12):1344–53.

    CAS  Google Scholar 

  52. Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke [Internet]. 2002;33(12):2916–22. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12468791.

  53. Wannarong T, Parraga G, Buchanan D, Fenster A, House AA, Hackam DG, et al. Progression of carotid plaque volume predicts cardiovascular events. Stroke. 2013;44(7):1859–65.

    PubMed  Google Scholar 

  54. Lovett JK, Gallagher PJ, Hands LJ, Walton J, Rothwell PM. Histological correlates of carotid plaque surface morphology on lumen contrast imaging. Circulation. 2004;110(15):2190–7.

    PubMed  CAS  Google Scholar 

  55. Heliopoulos J, Vadikolias K, Piperidou C, Mitsias P. Detection of carotid artery plaque ulceration using 3-dimensional ultrasound. J Neuroimaging. 2011;21(2):126–31.

    PubMed  Google Scholar 

  56. Schminke U, Motsch L, Hilker L, Kessler C. Three-dimensional ultrasound observation of carotid artery plaque ulceration. Stroke. 2000;31(7):1651–5.

    PubMed  CAS  Google Scholar 

  57. Madani A, Beletsky V, Tamayo A, Munoz C, Spence JD. High-risk asymptomatic carotid stenosis ulceration on 3D ultrasound vs TCD microemboli. Neurology. 2011;77(8):744–50.

    PubMed  CAS  Google Scholar 

  58. Sandholt BV, Collet-Billon A, Entrekin R, Sillesen HH. Inter-scan reproducibility of carotid plaque volume measurements by 3-D ultrasound. Ultrasound Med Biol. 2017;44(3):670–6.

    PubMed  Google Scholar 

  59. Spence JD. Approaching automated 3-dimensional measurement of atherosclerotic plaque volume. J Am Coll Cardiol. 2017;70(3):314–7.

    PubMed  Google Scholar 

  60. Spence JD. 3D ultrasound for imaging and quantifying carotid ulcers. AJNR Am J Neuroradiol. 2017;38(5):E34–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Johri AM, Chitty DW, Matangi M, Malik P, Mousavi P, Day A, et al. Can carotid bulb plaque assessment rule out significant coronary artery disease? A comparison of plaque quantification by two- and three-dimensional ultrasound. J Am Soc Echocardiogr. 2013;26(1):86–95.

    PubMed  Google Scholar 

  62. van Engelen A, Wannarong T, Parraga G, Niessen WJ, Fenster A, Spence JD, et al. Three-dimensional carotid ultrasound plaque texture predicts vascular events. Stroke. 2014;45(9):2695–701.

    PubMed  Google Scholar 

  63. Porter TR, Abdelmoneim S, Belcik JT, McCulloch ML, Mulvagh SL, Olson JJ, et al. Guidelines for the cardiac sonographer in the performance of contrast echocardiography: a focused update from the American Society of Echocardiography. J Am Soc Echocardiogr. 2014;27(8):797–810.

    PubMed  Google Scholar 

  64. Staub D, Patel MB, Tibrewala A, Ludden D, Johnson M, Espinosa P, et al. Vasa vasorum and plaque neovascularization on contrast-enhanced carotid ultrasound imaging correlates with cardiovascular disease and past cardiovascular events. Stroke. 2010;41(1):41–7.

    PubMed  Google Scholar 

  65. ten Kate GL, van Dijk AC, van den Oord SC, Hussain B, Verhagen HJ, Sijbrands EJ, et al. Usefulness of contrast-enhanced ultrasound for detection of carotid plaque ulceration in patients with symptomatic carotid atherosclerosis. Am J Cardiol. 2013;112(2):292–8.

    PubMed  Google Scholar 

  66. van den Oord SC, Akkus Z, Renaud G, Bosch JG, van der Steen AF, Sijbrands EJ, et al. Assessment of carotid atherosclerosis, intraplaque neovascularization, and plaque ulceration using quantitative contrast-enhanced ultrasound in asymptomatic patients with diabetes mellitus. Eur Hear J Cardiovasc Imaging. 2014;15(11):1213–8.

    Google Scholar 

  67. Staub D, Partovi S, Schinkel AF, Coll B, Uthoff H, Aschwanden M, et al. Correlation of carotid artery atherosclerotic lesion echogenicity and severity at standard US with intraplaque neovascularization detected at contrast-enhanced US. Radiology. 2010;258(2):618–26.

    PubMed  Google Scholar 

  68. Lal BK, Hobson RW, Pappas PJ, Kubicka R, Hameed M, Chakhtoura EY, et al. Pixel distribution analysis of B-mode ultrasound scan images predicts histologic features of atherosclerotic carotid plaques. J Vasc Surg [Internet]. 2002;35(6):1210–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12042733.

  69. Kyriacou EC, Pattichis C, Pattichis M, Loizou C, Christodoulou C, Kakkos SK, et al. A review of noninvasive ultrasound image processing methods in the analysis of carotid plaque morphology for the assessment of stroke risk. IEEE Trans Inf Technol Biomed. 2010;14(4):1027–38.

    PubMed  Google Scholar 

  70. Wintermark M, Jawadi SS, Rapp JH, Tihan T, Tong E, Glidden DV, et al. High-resolution CT imaging of carotid artery atherosclerotic plaques. AJNR Am J Neuroradiol. 2008;29(5):875–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Wintermark M, Arora S, Tong E, Vittinghoff E, Lau BC, Chien JD, et al. Carotid plaque computed tomography imaging in stroke and nonstroke patients. Ann Neurol. 2008;64(2):149–57.

    PubMed  PubMed Central  Google Scholar 

  72. Ajduk M, Pavic L, Bulimbasic S, Sarlija M, Pavic P, Patrlj L, et al. Multidetector-row computed tomography in evaluation of atherosclerotic carotid plaques complicated with intraplaque hemorrhage. Ann Vasc Surg. 2009;23(2):186–93.

    PubMed  Google Scholar 

  73. Cappendijk VC, Cleutjens KB, Kessels AG, Heeneman S, Schurink GW, Welten RJ, et al. Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience. Radiology. 2005;234(2):487–92.

    PubMed  Google Scholar 

  74. Puppini G, Furlan F, Cirota N, Veraldi G, Piubello Q, Montemezzi S, et al. Characterisation of carotid atherosclerotic plaque: comparison between magnetic resonance imaging and histology. Radiol Med. 2006;111(7):921–30.

    PubMed  CAS  Google Scholar 

  75. Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging. 2003;17(4):410–20.

    PubMed  Google Scholar 

  76. Gupta A, Baradaran H, Schweitzer AD, Kamel H, Pandya A, Delgado D, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke. 2013;44(11):3071–7.

    PubMed  Google Scholar 

  77. Huibers A, de Borst GJ, Wan S, Kennedy F, Giannopoulos A, Moll FL, et al. Non-invasive carotid artery imaging to identify the vulnerable plaque: current status and future goals. Eur J Vasc Endovasc Surg. 2015;50(5):563–72.

    PubMed  CAS  Google Scholar 

  78. Chowdhury MM, Tarkin JM, Evans NR, Le E, Warburton EA, Hayes PD, et al. (18)F-FDG uptake on PET/CT in symptomatic versus asymptomatic carotid disease: a meta-analysis. Eur J Vasc Endovasc Surg. 2018;56(2):172–9.

    PubMed  PubMed Central  Google Scholar 

  79. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11.

    PubMed  CAS  Google Scholar 

  80. Graebe M, Pedersen SF, Hojgaard L, Kjaer A, Sillesen H. 18FDG PET and ultrasound echolucency in carotid artery plaques. JACC Cardiovasc Imaging. 2010;3(3):289–95.

    PubMed  Google Scholar 

  81. Bucerius J, Hyafil F, Verberne HJ, Slart RH, Lindner O, Sciagra R, et al. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 2016;43(4):780–92.

    PubMed  Google Scholar 

  82. Ouriel K. Peripheral arterial disease. Lancet. 2001;358(9289):1257–64.

    PubMed  CAS  Google Scholar 

  83. Resnick HE, Lindsay RS, McDermott MMG, Devereux RB, Jones KL, Fabsitz RR, et al. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: the strong heart study. Circulation. 2004;109(6):733–9.

    PubMed  Google Scholar 

  84. Newman AB, Tyrrell KS, Kuller LH. Mortality over four years in SHEP participants with a low ankle-arm index. J Am Geriatr Soc. 1997;45(12):1472–8.

    PubMed  CAS  Google Scholar 

  85. Rehring TF, Sandhoff BG, Stolcpart RS, Merenich JA, Hollis HW. Atherosclerotic risk factor control in patients with peripheral arterial disease. J Vasc Surg. 2005;41(5):816–22.

    PubMed  Google Scholar 

  86. The Heart Outcomes Prevention Evaluation Study Investigators. Effect of angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342(1):145–53.

    Google Scholar 

  87. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American college of cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2017;135(12):e686–725.

    PubMed  Google Scholar 

  88. Belcaro G, Geroulakos G, Laurora G, Cesarone MR, De Sanctis MT, Incandela L, et al. Subclinical arteriosclerosis screening. The PAP/PEA study. J. Cardiovasc Surg (Torino). 1994;35(2):123–8.

    CAS  Google Scholar 

  89. Schmidt C, Fagerberg B, Hulthe J. Non-stenotic echolucent ultrasound-assessed femoral artery plaques are predictive for future cardiovascular events in middle-aged men. Atherosclerosis. 2005;181(1):125–30.

    PubMed  CAS  Google Scholar 

  90. Flanigan DP, Ballard JL, Robinson D, Galliano M, Blecker G, Harward TRS. Duplex ultrasound of the superficial femoral artery is a better screening tool than ankle-brachial index to identify at risk patients with lower extremity atherosclerosis. J Vasc Surg. 2008;47(4):789–93.

    PubMed  Google Scholar 

  91. Riley WA, Barnes RW, Bond MG, Evans G, Chambless LE, Heiss G. High-resolution B-mode ultrasound reading methods in the atherosclerosis risk in communities (ARIC) cohort. J Neuroimaging. 1991;1(4):168–72.

    Google Scholar 

  92. Gariepy J, Salomon J, Denarié N, Laskri F, Mégnien JL, Levenson J, et al. Sex and topographic differences in associations between large-artery wall thickness and coronary risk profile in a French working cohort: the AXA study. Arterioscler Thromb Vasc Biol. 1998;18(4):584–90.

    PubMed  CAS  Google Scholar 

  93. Yerly P, Marquès-Vidal P, Owlya R, Eeckhout E, Kappenberger L, Darioli R, et al. The atherosclerosis burden score (ABS): a convenient ultrasound-based score of peripheral atherosclerosis for coronary artery disease prediction. J Cardiovasc Transl Res. 2015;8(2):138–47.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of Julia Herr toward figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer M. Johri.

Ethics declarations

Conflict of Interest

Nicholas Grubic, Kayla N. Colledanchise, Kiera Liblik, and Amer M. Johri have no conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grubic, N., Colledanchise, K.N., Liblik, K. et al. The Role of Carotid and Femoral Plaque Burden in the Diagnosis of Coronary Artery Disease. Curr Cardiol Rep 22, 121 (2020). https://doi.org/10.1007/s11886-020-01375-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01375-1

Keywords

Navigation