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Abstract

Purpose of Review This review aims to highlight the past and more current literature related to the multifaceted pathogenic
programs that contribute to calcific aortic valve disease (CAVD) with a focus on the contribution of developmental programs.
Recent Findings Calcification of the aortic valve is an active process characterized by calcific nodule formation on the aortic
surface leading to a less supple and more stiffened cusp, thereby limiting movement and causing clinical stenosis. The mecha-
nisms underlying these pathogenic changes are largely unknown, but emerging studies have suggested that signaling pathways
common to valvulogenesis and bone development play significant roles and include Transforming Growth Factor-f3 (TGF-f3),
bone morphogenetic protein (BMP), Wnt, Notch, and Sox9.

Summary This comprehensive review of the literature highlights the complex nature of CAVD but concurrently identifies key
regulators that can be targeted in the development of mechanistic-based therapies beyond surgical intervention to improve patient

outcome.

Keywords Heart valve - Calcification - Valvulogenesis - Cell signaling - Extracellular matrix

Introduction

Calcific aortic valve disease (CAVD) is a public health prob-
lem affecting up to 13% of the population over the age of 65,
and prevalence increases in the general population as the me-
dian age rises [1]. Twenty five percent of people aged over 65
have a 50% increased risk of cardiovascular related events,
and if untreated, there is an associated risk of 80% over 5 years
of progression to heart failure or death [2]. This common
cardiovascular disorder is characterized by an abnormal accu-
mulation of calcium-rich nodules on the aortic surface and/or
within the annular region of the valve cusp, leading to thick-
ening termed sclerosis, limited movement, and stenosis (left
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ventricular outflow obstruction) [3]. At present, surgical valve
replacement remains the standard treatment option which
comes with insuperable complications, financial burdens,
and no guarantee of long-term success. Furthermore, there
are no approved pharmacological treatments available to stop
the progression or treat (reverse) CAVD. Therefore, there is an
increasing critical need to develop new medical therapies.
The underlying etiology of CAVD is poorly understood,
but clinical risk factors have been identified; many of these
are common to other cardiovascular disorders including ath-
erosclerosis. Elevated total cholesterol, low-density lipopro-
tein (LDL) triglycerides, decreased high-density lipoproteins,
male sex, tobacco use, hypertension, and diabetes mellitus
have been reported to increase the incidence of aortic stenosis
[4, 5]. Tt is not yet clear how these environmental risk factors
promote CAVD onset, but in atherosclerosis, infiltration of
inflammatory response cells and endothelial cell dysfunction
(oxidative stress) are associated [6, 7¢]. In addition to these
factors, there are reports of a genetic component with muta-
tions in Notchl being identified [8]. Two percent of the pop-
ulation is born with bicuspid aortic valve (BAV), and approx-
imately 50% of these patients will develop CAVD at an earlier
age than individuals with tricuspid aortic valves [9, 10]. This
premature onset is thought to be attributed to changes in the
biomechanical environment and the abnormal mechanical

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11886-018-0968-9&domain=pdf
mailto:joy.lincoln@nationwidechildrens.org

21 Page2of 13

Curr Cardiol Rep (2018) 20: 21

stress elicited by the morphological defect. While this has
been the accepted dogma in the field, the cause of abnormal
mechanical stress in affected patients is largely unknown, and
the mechanosensory pathways that promote calcific changes
in susceptible patients have not been identified. This review
provides a concise overview of the current literature related to
the importance of structure-function relationships in healthy
valves and the key molecular players that contribute to their
formation. In addition, we discuss the re-activation of
valvulogenesis and bone development signaling pathways in
the onset and progression of CAVD.

Structure-Function Relations of Healthy
Aortic Heart Valves

Heart valves are dynamic structures opening and closing over
100,000 times a day to regulate unidirectional blood flow
from the left ventricle to the rest of the body. There are two
sets of cardiac valves: the atrioventricular (AV) valves, includ-
ing the mitral and tricuspid that separate the atria from the
ventricles, and the aortic and pulmonic semilunar valves that
separate the ventricles from the great arteries. Although the
functional demand of each valve set is similar, their anatomies
are different. The AV valves are situated in the atrioventricular
canal separating the atria from the ventricles. Structurally,
these valves consist of two (mitral) or three (tricuspid) leaflets,
with external supporting chordae tendineae that attach the
leaflet to papillary muscles within the ventricles (reviewed in
[L1]). In contrast, the semilunar valves located at the base of
the aorta and pulmonary trunk are comprised of three leaflets
termed cusps and lack external chordae and papillary muscles,
although a unique internal support structure has been de-
scribed [12]. It is the coordinated movement of these dynamic
valvular structures that maintain unidirectional blood flow
during the cardiac cycle. In diastole, the papillary muscles
are relaxed and high pressure in the atrium causes opening
of the mitral (left) and tricuspid (right) valve leaflets to pro-
mote blood flow into the respective ventricle. Once ventricular
pressure increases during diastole, the chordae pul// the atrio-
ventricular valve leaflets closed and maintain coaptation to
prevent eversion of the valve into the atria. As the ventricle
contracts, blood exits through the now open semilunar valves
and the ventricle relaxes to begin the cycle again. Therefore,
throughout the cardiac cycle, the heart valve structures are
exposed to constant changes in hemodynamic force as a result
of pressure differences between systole to diastole. To with-
stand this complex mechanical environment, the valve
leaflets/cusps develop and maintain an intricate and highly
ordered connective tissue system [11].

Opening and closing of the valve leaflets or cusps is
largely achieved by three organized layers of extracellular
matrix (ECM) arranged according to blood flow direction,
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that each provide a unique biomechanical property to with-
stand the complex hemodynamics experienced with every
cardiac cycle [12]. The fibrosa layer is situated furthest
away from blood flow and is largely composed of bundles
of aligned fibrillar collagens that provide strength.
Organized elastic fibers make up the ventricularis/atrialis
(semilunar/atrioventricular) layer situated adjacent to
blood flow. This matrix component allows for valve exten-
sion and recoil during each heartbeat [13]. The
proteoglycan-rich spongiosa layer is sandwiched between
the fibrosa and ventricularis and provides compressibility
in these load-bearing regions [14].

The overall valve structure, matrix composition, and orga-
nization are conserved across many species with more appar-
ent order being observed in larger animals (see Fig. 1) [12].
Interestingly, there are exceptions presumably due to differ-
ences in physiological demand. For example, the tricuspid
valve of the avian species is largely composed of myocardial
tissue and this may be attributed, in part, to variation in size
and hemodynamic burden [15]. Alligators and crocodilians
have a cog-wheel valve, and this differential structure supports
the anatomical design that consists of left and right ventricles
that directly connect to the great vessels [16]. Furthermore, in
a comparative study, it was found that the aortic valves in
giraffes are significantly stiffer than those in bovine due to
increased elastin content and more compact collagen, which
likely favors their naturally high blood pressure which is twice
that of humans [17]. These collective studies highlight the
importance of the valve structure and composition for adap-
tive function throughout life.

Homeostasis of the valve ECM is maintained by a hetero-
geneous population of valve interstitial cells (VICs) that, in
healthy adults, are phenotypically similar to fibroblasts and
express vimentin [18]. The VICs largely serve to mediate
physiological ECM remodeling within the leaflet/cusp in re-
sponse to the normal wear and tear of aging. This is achieved
through a balanced secretion of matrix degradation enzymes,
including matrix metalloproteinases (MMPs) and their inhib-
itors (TIMPs), and deposition of structural matrix components
within the three layers [19, 20]. Therefore, the VIC population
plays a critical role in preserving the architecture of the valve
for functional biomechanics. In addition to this cell popula-
tion, the valve leaflet or cusp is encapsulated by a single cell
layer of valve endothelial cells (VECs) that primarily func-
tions as a barrier between the blood and the inner valve tissue,
thereby protecting against the physical mechanical stress of
the hemodynamic environment and preventing excess infiltra-
tion of circulating risk factors and inflammatory cells [21, 22].
In addition, VECs have been shown to molecularly commu-
nicate with underlying VICs to regulate their phenotype [23,
24]. VEC-specific disruption of essential signaling pathways
in mice can alter VIC function and ECM organization leading
to dysfunction [23, 25-28]. Therefore, the integrity and
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Fig. 1 Overview of conserved
mature heart valve structure.
Pentachrome staining to show
extracellular matrix organization
within the aortic valve structure of
mice (a) and sheep (b). Note more
defined stratification in the larger
animal model. F = Fibrosa S =
Spongiosa V = Ventricularis

function of the valve endothelium appears to be essential for
maintaining structure-function relationships throughout life.

Aortic Valve Development

Formation of the highly ordered mature valve structure be-
gins during embryonic (E) stages, around E9.5 in the mouse
and E27 in humans. Prior to septation, the looped heart
predominantly consists of cardiac myocytes and an overly-
ing layer of endocardial cells that are separated by a
hyaluronan-rich matrix, termed cardiac jelly. Specific to
the atrioventricular canal and outflow tract regions, a subset
of endocardial cells undergoes endocardial-to-
mesenchymal transformation (EMT) and gives rise to
swellings known as endocardial cushions, composed of
mesenchymal cells embedded within a hyaluronan-rich
ECM. Previous lineage tracing studies using
endocardium-specific Cre mouse lines demonstrate that
endothelially derived mesenchymal cells serve as precur-
sors to the mature valve structures [29, 30]. The process of
EMT is initiated in response to signals largely emanating
from the adjacent myocardium and predominantly includes
transforming growth factor-3 (TGF-3) signaling. Studies in
chick indicate important roles for the ligands TGF-32 and
TGF-B3 in early initiation steps [31-33], while in mice,
endocardium-specific deletion of canonical Wnt signaling
(-catenin dependent) inhibits TGF-{3-mediated induction
of EMT, suggesting crosstalk between these signaling path-
ways [34]. Bone morphogenetic protein (BMP) receptors
and ligands are another major source of myocardially de-
rived signals for EMT initiation [32, 35—42]. Myocardium-
specific knockdown of BMP?2 severely disrupts VEC trans-
formation, particularly in the atrioventricular canal, sug-
gesting specificity to this valvular position [43].

Furthermore, Notch signaling, predominantly in VECs, is
a potent activator of EMT and roles for both receptors and
ligands have been identified [27, 44-51].

Following initiation of EMT, newly transformed mesen-
chymal cells then migrate and proliferate within expanded
cardiac jelly and give rise to swellings known as endocardi-
al cushions [33, 52]. In mice lacking TGF-52, EMT is ini-
tiated; however, cushions are variably hypoplastic as a re-
sult of defects in migration and/or proliferation [53, 54],
therefore suggesting differential roles for TGF-f3 signaling
during cushion formation. Similar cushion defects are also
observed in other mouse models with targeted downregula-
tion of TGF-f3 signaling including endocardial deletion of
TGF-BRI (AlkS) [55] and global deletion of the long form of
latent TGF-{3-binding protein 1, in which EMT initiation is
impaired [56]. In addition to TGF-f3 signaling, the tran-
scription factor Sox9 has been shown to be a key player of
proliferation of newly transformed mesenchymal cells.
Targeted loss of Sox9 function using the endocardial
Tie2cre line results in premature lethality around E11.5
due to a failure to expand the valve precursor cell pool with-
in the endocardial cushions [57]. The temporal window of
EMT is somewhat diffuse, and while many positive regula-
tors have been reported, few regulators to stop the process
are known. Fate mapping using a valve endothelium-
specific Cre mouse line shows that cells expressing a
Nfatc1-enhancing region do not undergo EMT and remain
in the endothelium [58]. Therefore, EMT is a finely tuned
process and studies in mice highlight the critical need to
balance positive and negative regulators as genetically al-
tered mice with severe cushion defects suffer premature
lethality (reviewed in [11]).

The contribution of endocardially derived cells to the aortic
valve precursor cell pool in the outflow tract and atrioventric-
ular canal region was first demonstrated using the
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Tie2cre;Rosa26R reporter model, although it was noted that
not all precursor cells recombine with the 7ie2cre transgene
[29, 30]. Following these studies, it was later shown that cells
originating from the neural crest (Wntlcre) and second heart
field (Mef2ccre) also contribute to the semilunar valve precur-
sor cell pool [59-61]. Interestingly, significantly less neural
crest and secondary heart field-derived cells contribute to the
mitral and tricuspid positions. However, these valves, unlike
the semilunar valves, receive WT1-positive cells derived from
the adjacent epicardium [62]. While these developmental
studies are informative, the field has yet to delineate the pur-
pose or function of differential cell lineage contributions to the
primitive atrioventricular and semilunar valve structures.

Once the valve precursor pool of mesenchymal cells has
been established (around E14.5 in the mouse), the endocardial
cushions undergo extensive remodeling as they elongate and
thin into primordia. Cell proliferation is significantly reduced
at this time, although proliferative cells remain enriched at the
tip [12]. Concurrently, precursor cells loose mesenchymal mo-
lecular markers including Twistl but gain the activated
myofibroblast marker, a-smooth muscle actin (x-SMA)
[18]. This phenotypic change is thought to reflect transition
towards an activated valve interstitial cell (aVIC) that medi-
ates physiological remodeling of the ECM during this stage of
maturation. This includes breakdown of primitive cardiac jelly
and synthesis of new ECM components that will later form the
fibrosa, spongiosa, and ventricularis layers. However, direct
evidence of embryonic aVIC function is lacking. The molec-
ular regulators of mid-to-late valve development are largely
unknown, but pathways important for EMT including TGF-f3,
BMP, Wnt, and Sox9 are also active during remodeling and
have been shown to play differential roles at this stage
(Gallina and Lincoln, unpublished) [57, 63—65]. More recent-
ly, additional regulators have been reported including hypox-
ia, cadherin-11 (cell adhesion), the chemokine receptor
CXCR7, and the matrix remodeling enzyme ADAM17
[66-69]. While mouse models with targeted genetic disrup-
tions that result in valve remodeling defects are viable, it is
considered that defects at this stage could underlie congenital
valve malformations present at birth or potentially acquired
disease manifested later in life.

The primitive valve continues to grow and mature after
birth, and in the mouse, the three layers of predominant
ECM components (collagen, proteoglycan, elastin) are appar-
ent between postnatal days (PNDs) 7 and 10. At this time, cell
proliferation is around 16.3% in VECs and ~15.2% in VICs
(based on the 7-h pulse change of EdU) and cell division
remains at this frequency until around PND 4 [12, 22]
(Nordquist and Lincoln, unpublished). Concurrently, VICs
lose x-SMA but maintain vimentin expression, suggesting
transition towards a quiescent (or non-activated) fibroblast-
like cell type [18]. This quiescent phenotype is maintained
throughout life in the absence of disease with cell proliferation
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estimated at a lower frequency of ~2.0% in VECs and ~ 1.1%
in VICs (7-h pulse chase) [22]. This level of normal adult cell
turnover in the valve might be considered high compared to
other cardiac cell types (< 1% in cardiac myocytes) [70]; how-
ever, the overall valve cell number does not appear to increase
with aging (but matrix synthesis does) and, therefore, cell
death likely occurs at a similar frequency; however, further
studies are needed to determine this. The mechanism for main-
taining adult valve cell population during the normal wear and
tear of aging relies not only on resident cell proliferation but
also on the contribution of extracardiac cells. Using mouse
models to fate map CD45-positive cells, we and others have
shown that under homeostatic conditions, ~2.3% of the valve
cell population is derived from this lineage at postnatal stages
and up to 10.3% at 6 weeks [71-74]. It is speculated that loss
or gain of VEC and VIC number might lead to perturbations in
ECM homeostasis and subsequent biomechanical defects. In
addition, the function of these cells is also important. In many
cardiovascular disorders, endothelial cell dysfunction has
been shown to play a major role. In the valves, we have shown
that VECs have an overall decrease in nitric oxide availability,
metabolism, membrane self-repair, and endothelial-to-
mesenchymal transition potential with aging [22].
Furthermore, studies have reported an age-associated loss in
ECM organization and hemostatic protein regulation [75, 76],
therefore suggesting that physiological regulators of valve ho-
meostasis are sufficient to maintain structure-function rela-
tionships until the age of ~65 in otherwise healthy subjects
or earlier in patients carrying known risk factors.

Calcific Aortic Valve Disease

CAVD is the most predominant form of valve pathology af-
fecting more than 5.2 million people in the USA, particularly
those over the age of 65 [77]. In 2013, 50,222 deaths occurred
due to valvular heart diseases in the USA, out of which 67.5%
were due to aortic valve disorders [78]. Traditionally, CAVD
was seen as a degenerative process, as a result of aging of the
aortic valve. However, several lines of evidence suggest that
CAVD is an active disease with discernible initiating factors,
including clinical and genetic predisposition, and dysregula-
tion of molecular and cellular pathways that facilitate disease
progression [79]. Many of these factors are thought to be
shared with atherosclerotic plaque formation and vascular cal-
cification; however, parallels in pathogenic mechanisms re-
main elusive but warrant further investigation. At present,
effective pharmacological treatments are lacking and interven-
tional surgery or procedures to replace calcified or stenotic
valves are the only effective option with no long-life guarantee
[80]. This clinical limitation has been largely attributed to our
lack in understanding of CAVD pathogenesis. However, the
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field is growing and the mechanisms underlying disease onset
and progression are emerging.

Calcification of the aortic valve is characterized by overall
thickening of the valve cusp and the presence of calcium-rich
nodules on the aortic valve surface and/or within the annulus
region, leading to functional stiffening and stenosis [81].
CAVD is slow and progressive, and in human pathology, early
stages are associated with (i) endothelial dysfunction as indi-
cated by oxidative stress following exposure to known risk
factors (aging, high LDL levels, etc.) [22, 82, 83]. Worthy of
mention, oxidative stress is the standard measure of endothe-
lial cell dysfunction in diseased valves, but recent reports from
our group have identified additional parameters that should be
considered when defining this pathogenic phenotype [22]; and
(i) inflammation leading to infiltration of immune cells in-
cluding T cells and monocyte-derived macrophages [84, 85],
which could be the result of endothelial dysfunction and fail-
ure to maintain the physical barrier between the inner cusp and
circulating blood. Collectively, these abnormalities in endo-
thelial cell function, other cell contribution, and likely other
currently unknown mechanisms trigger pro-osteogenic pro-
cesses. [t remains unclear how known risk factors progressive-
ly lead to calcific nodule formation; however, genetic manip-
ulation studies in mice, often with added risk factors including
diet, have identified key regulators that contribute at some
stage of the pathogenic program and these are summarized
in Table 1. In addition to in vivo models, many groups have
developed in vitro assays to study the mechanisms of CAVD.
The most well-established protocol involves culturing VICs in
osteogenic media (ascorbic acid, (3-glycerophosphate, and
dexamethasone) to stimulate calcific nodule formation. In ad-
dition, others have supplemented media with inorganic phos-
phate (sodium phosphate dibasic), mimicking
hyperphosphatemia in chronic kidney disease largely associ-
ated with increased CAVD [86, 87]. We and others have
shown that altered biomechanics can also promote calcific
nodule formation when VICs are cultured on stiff matrices
such as glass [24, 88, 89], or tissue culture polystyrene pre-
coated with fibrin, laminin, and heparin also leads to an in-
crease in the number of calcific nodules [90] or the addition of
TGF-{3 [91]. In most assays, investigators utilize VICs isolat-
ed from human, porcine, and ovine models as these have been
previously reported to have potential to undergo calcification
in vitro (reviewed in [92]). Similar protocols for murine VICs
have been more technically challenging, although intact,
whole aortic valve explants can undergo osteogenic changes
upon stimulation [93, 94]. Interestingly, rat VICs exhibit com-
paratively low calcification potential (as indicated by Alizarin
Red staining) but do express pro-osteogenic molecular pro-
files when stimulated [95], suggesting a species-dependent
limitation to reach end-stage calcium deposition.

As discussed, the mechanisms that promote abnormal pro-
osteogenic changes in valvular structures following exposure

to risk factors or genetic predispositions are largely unknown.
However, there are several reports that shed light on the bio-
logical processes that might be involved. One theory is that in
response to pathological stimuli, resident VICs become
activated as identified by positive x-SMA staining and
transdifferentiate towards an osteoblast-like lineage. This is
associated with abnormal activation of signaling pathways
common to valve and bone development and expression of
molecular markers observed in mineralized tissue, including
Runx2, osteopontin, osteocalcin, bone sialoprotein, matrix
Gla protein, and others [108, 109]. Although CAVD and bone
mineralization share common mediators, they are quite differ-
ent anatomically based on crystal size, mineral morphology,
and elemental composition [110].

Several signaling pathways and transcription factors in-
volved in endocardial cushion formation and bone develop-
ment are reported to be dysregulated in CAVD. It remains
unclear if abnormalities in these developmental regulators
cause pro-osteogenic changes or are the effect of CAVD.
Such pathways include TGF-[3, implicated in the positive reg-
ulation of «-SMA during early VIC activation [111].
However, it should be mentioned that the requirement of
VIC activation for subsequent pro-osteogenic differentiation
of VICs has not been directly tested. Explanted human aortic
valves from CAVD patients with end-stage disease show in-
creased expression of TGF-f1, and TGF-f31 treatment of
ovine VICs is sufficient to promote calcification when cul-
tured in osteogenic media, suggesting positive regulation
[112, 113]. Similarly in developing bone, TGF-f3s are pro-
osteogenic, although it is the TGF-32, but not TGF-31 or
TGF-[33, that is critical for inducing osteogenesis in mice
[53, 114-116]. In contrast to this role, our group showed that
TGF-{31 treatment of porcine VICs cultured on glass to pro-
mote pro-osteogenic changes prevented calcific nodule forma-
tion, and deletion of TGF-/31 in VECs causes CAVD in mice
[25]. These findings suggest that TGF-f3 plays pivotal roles in
calcification which could be dependent on differential concen-
trations of endogenous or exogenous ligands, as previously
described in osteoblast systems (reviewed in [117]).

The BMP family is named accordingly due to their require-
ment for bone formation. BMP2 is the major inducer of bone
formation, but other ligands such as BMP7 may also mediate
the osteogenic response through BMPR1A/ALK3, BMPR1B/
ALK®6, and AcvR1/ALK2 receptors [118—128]. Studies of
calcified human valves show increased BMP2 and BMP4 ex-
pression and the expression of canonical BMP signaling me-
diator, pSmad1/5/8 [129—131]. The direct contribution of ac-
tivated BMP signaling to CAVD pathogenesis has not been
extensively examined. However, inhibition of BMP signaling
by genetic inactivation of BMPRIA prevents CAVD in a sus-
ceptible mouse model (Klotho ), and tissue-specific deletion
of the Acvrl/ALK?2 receptor leads to bicuspid aortic valve in
mice and enhance pro-osteogenic changes during adulthood
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Table 1 Published mouse models of calcific aortic valve disease
Mouse model Associated human disease Valve phenotype References
Apoe ™ Apoe”” on atherogenic diet AoV calcification Thickened AoV, calcification, AS thickened AoV [96, 97]
Chml ™"~ Thickened AoV, calcification [98]
B6-Egfi®™2 gy Va2, ppn 11+ AoV hyperplasia Thickened AoV, calcification [99, 100]
Valve thickening Thickened AoV and PV
Klotho null AoV calcification AoV calcification [101]
LDLR ";Apob'0%100 AoV calcification [102]
NOS3 7 ":Notch1™" fed Western diet BAV, AoV calcification AoV calcification, BAV [23]
Notch1™™ on Western diet BAV and AoV calcification Thickened and calcified AoV [103]
Sox9*'";Col2al-Cre AoV calcification AoV calcification [57, 94]
RBPJkI™" fed HCVD diet BAYV, AoV calcification Thickened AoV, calcification [104, 105]
RBP-J"-MxCre (RBPKO) Enlarged AoV
C57BL/6] fed excess vitamin A diet AoV calcification AoV calcification [106]
VDR fed Western diet AoV calcification AoV calcification [107]

LDLR " fed Western diet with low vitamin D

AoV aortic valve; PV pulmonary valve; BAV bicuspid aortic valve; HCVD high cholesterolemic and vitamin D supplement

[132]. Hence, BMPRIA is required for the valvular calcifica-
tion while Acvrl prevents BAV and subsequent nodule
formation.

Canonical Wnt signaling ([3-catenin dependent) is in-
creased in calcified valves from human patients, mouse
models, and cultured VICs [133—-138]. As with TGF-{3 signal-
ing, it is not known if increased Wnt underlies the cause of
CAVD or is a read-out of the end-stage process. Wnt activa-
tion promotes VIC activation [81] and, in other systems, pro-
motes osteogenic differentiation of progenitor cells [139, 140]
and induces calcification of vascular smooth muscle cells
through (-catenin-mediated regulation of Runx2 [141]. At
present, the direct contribution of Wnt signaling to CAVD
remains unclear, but these studies warrant further
investigation.

As shown in Table 1, genetic alterations in Notch signaling
family members promote CAVD in mice and human patients
with Notchl mutations correlate with aortic valve disease in-
cluding calcification [8]. Several groups have shed light on the
mechanisms underlying the role of endothelially derived
Notchl receptor in calcification, and these include positive
regulation of osteogenic inhibitors including matrix gla pro-
tein and Sox9 [95, 142]. At the level of the ligand, deletion of
Jagl in endothelially derived cells in mice leads to calcifica-
tion associated with valve development defects [143]. Notch
activation favors BMP-induced osteoblast differentiation dur-
ing skeletal development, and Notch inhibition represses BMP
target genes [144—146]. Furthermore, BMP2 and TGF-f3 reg-
ulate expression of Notch pathway signaling proteins [147].
Together, these findings highlight the crosstalk between Notch
and osteogenic signaling pathways.

In addition to its role in valvulogenesis, Sox9 is an impor-
tant mediator of CAVD. Initial studies of skeletal development
identified Sox9 as a critical regulator of cartilage formation. In
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mouse chimeras, Sox9" cells are excluded from all cartilage
tissues and fail to express chondrocyte-specific markers [148].
In addition, Sox9 haploinsufficiency leads to defective carti-
lage primordia and premature skeletal mineralization [149].
The mechanisms of this inhibitory role for Sox9 in bone for-
mation remain largely unknown, but Sox9 is known to inhibit
Runx?2 function at the protein level and directly represses its
transactivation function on target genes [150, 151]. In the
valves, we showed that reduced function of Sox9 during
mid-stages of valvulogenesis is sufficient to promote early-
onset CAVD in mice [57, 94], and this was mediated, in part,
through de-repression of the osteogenic matrix protein Spp!/
[93]. The transcriptional activity of Sox9 on Runx2, Spp1, and
potentially, other markers requires its nuclear localization. We
have shown that reduced nuclear Sox9 precedes calcification
of both mouse valves in vivo and pAVICS in vitro, and this is
likely modulated through paracrine signals emanating from
overlying VECs including TGF-31, as well as regulation via
nuclear export and import signals [24] (Dutta and Lincoln,
unpublished).

Studies have shown that in parallel with pro-osteogenic fate
changes in VICs during the development of CAVD, a signif-
icant contribution by extracellular vesicles (EVs) to the for-
mation of calcific nodules is found and is localized at sites
within the valve structure. EVs are membrane vesicles that
are secreted from cells containing intracellular contents
[152]. They encompass a broad range of vesicles with varied
features. Major types of EVs include microvesicles which are
released from the budding of plasma membrane, and
exosomes which originate from endosomes [152]. The evi-
dence of their presence has been validated via ultrastructural
analysis and is found to be localized within medial arterial
calcifications, atherosclerotic intimal plaques, and calcified
human aortic valves [153]. EVs serve as nucleating foci for
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calcific mineral crystallization via interacting with fibrillar
collagen; however, the mechanism of this interaction and ini-
tiation of micro/macrocalcification remains unclear [153].
Specific to aortic valve calcification and following endothelial
cell dysfunction of diseased valves, EVs are thought to be
derived from inflammatory cells including leukocytes, plate-
lets, and endothelial cells themselves. These EVs promote
VIC activation and subsequent fibrosis and mineralization
[152]. The molecular regulation of EVs in calcification is
not well known, but recently, Aikawa’s group reported a novel
role for the glycoprotein sortilin, which resides in calcifying
vessels in human and mouse atheromata. Sortilin contributes
to the formation of microcalcifications in smooth muscle cell
culture through interaction with caveolin-1 and tissue non-
specific alkaline phosphatase [154¢]. While EVs have been
observed in CAVD, the presence of vascular regulators re-
mains unclear.

As discussed, there is a growing interest in discovering
new molecular pathways in CAVD pathogenesis and the
contribution of mechanical stress and flow to disease onset
and progression continues to be an active area of investiga-
tion among biomedical engineering groups. The mechanical
stimuli experienced by the aortic valve include shear stress
strain, and pressure that alter strain/stress in the leaflet tissue
[155]. The aortic valve largely faces two kinds of stress:
oscillatory flow or shear stress on the fibrosa side of the
valve and laminar on the ventricularis side [155]. The
fibrosa layer of the valve predominantly experiences oscil-
latory shear, and this region is more prone to calcification
than the ventricularis area that senses laminar shear.
Simmons’ group has previously shown that endothelial cells
on the fibrosa side express pro-osteogenic mediators while
cells on the ventricularis surface express calcification inhib-
itors [156]. However, it is not clear if the differential biome-
chanical environment, the diversity between VEC popula-
tions and location, and potentially, the development origin
influence the profile of their mRNA expression. While the
observation of oscillatory and laminar flow patterns has been
known for many years, Dasi’s group more recently showed
patient-specific differences in aorta anatomy that lead to dif-
ferential flow patterns associated with calcific nodule forma-
tion at localized sites [157]. These findings may help to
explain the increased susceptibility in certain individuals in-
cluding those with BAV that experience a drastic change in
flow momentum caused by the eccentricity of the orifice jet
as a result of two leaflets instead of three. More specific to
strain, Merryman’s group has shown that subjecting VICs to
strain using the Flexcell tension system following TGF-f31
treatment augments calcific nodule formed compared to no
strain (with TGF-31 treatment) [158]. In addition, the posi-
tive contribution of mechanical strain to calcification has
more recently been shown using the finite element method
[159].

In conclusion, it remains unclear whether mechanical stress
initiates pro-osteogenic changes or subtle changes in valve
morphology and stiffness that lead to changes in flow pattern.
Several decades ago, the fields of valve biology and valve
bioengineering were distinct entities. Today, however, these
two fields have been highly integrated in recent years in order
to fully understand the multifaceted process of CAVD. While
this is advantageous to those elucidating pathogenesis, the
complexity of the biology makes the development of an alter-
native therapy challenging.

Clinical Management

The management of CAVD has received increased attention
over the last decade due to an increase in disease prevalence as
the global population lives longer [160, 161]. In addition, there
is a significant cohort of patients with severe symptomatic
aortic stenosis that are left untreated, and others that develop
left ventricular dysfunction before the onset of detectable aortic
valve regurgitation [5, 80, 162, 163]. While the fiecld works
towards identifying biomarkers of CAVD and discovering
new pharmacological-based treatment strategies, conventional
surgery to replace the calcified and dysfunctional aortic valves
remains the gold standard intervention for patients. However,
data from large registries still show a mortality rate of 2-3%
and this risk is increased in patients with comorbidities
[164—-166]. Mechanical and bioprosthetic valves are generally
available for valve replacement surgeries. Mechanical valves
are rigid and largely free from structural failure and therefore
common in younger (aged under 50) CAVD patients with
normal hemodynamics. However, due to the material compos-
ite, mechanical valves fail to remodel in the patient and are
thrombogenic, requiring life-long anticoagulation therapy
[80]. The use of biological replacement valves has increased
from 43.6% in 1997 to 78.4% in 2006 [167]. These are the
most commonly implanted xenograft material made from a
native porcine valve or root or from bovine pericardium.
Long-term anticoagulation is not required, and the hemody-
namics is superior. However, unlike the mechanical valve, bi-
ological valves are prone to degenerative wear and tear like the
native valve. In summary, the implantation of prosthetic aortic
valves is not a perfect solution to CAVD and the field is in
critical need of more effective alternatives.

Pharmacological initiatives in the treatment of CAVD have
focused on targeting risk factors of CAVD in affected individuals,
particularly elevated lipoprotein levels. The outcomes of admin-
istering oral statin therapy to lower LDL levels have been mixed.
Despite some studies initially reporting benefits [168—173],
others have shown conflicting results, with some stating no ben-
eficial effects on valve structure and function despite a significant
drop in LDL cholesterol levels [174—181]. Therefore, statin ther-
apy for CAVD remains underprescribed and the field continues

@ Springer



21 Page 8 of 13

Curr Cardiol Rep (2018) 20: 21

to explore better alternatives. Unfortunately, none to date has
been found to work better than prosthetic valve replacement,
which is likely due to the complex, multifactorial nature of this
disease and the difficulty in targeting multiple contributing sig-
naling pathways discussed in this review.

Conclusions

The pathogenesis of CAVD is complex, and its manifestations
appear later in life likely resulting from long-term exposure to
known risk factors, leading to altered biomechanics and re-
activation of signaling pathways important in developing
valves and bone. In addition to acquired diseases, it is also
important to consider that CAVD in the elderly may have
origins during valvulogenesis that increase susceptibility to
changes after birth. The clinical management of CAVD pa-
tients is ever changing with advancements in imaging capa-
bilities to improve diagnosis; however, treatment options re-
main a challenge and non-invasive approaches are limited. By
gaining a more complete understanding of the molecular and
cellular processes that prevent calcification in healthy valves
and promote osteogenic-like changes in at-risk valves, we can
move forward in developing alternative, mechanistic-based
therapies to improve patient long-term outcome.
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