Skip to main content

Advertisement

Log in

Increased Cardiovascular Risk in Young Patients with CKD and the Role of Lipid-Lowering Therapy

  • Review
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic kidney disease (CKD) is associated with a significantly increased risk of cardiovascular disease (CVD). This review summarizes known risk factors, pathophysiological mechanisms, and current therapeutic possibilities, focusing on lipid-lowering therapy in CKD.

Recent Findings

Novel data on lipid-lowering therapy in CKD mainly stem from clinical trials and clinical studies.

Summary

In addition to traditional CVD risk factors, patients with CKD often present with non-traditional risk factors that include, e.g., anemia, proteinuria, or calcium-phosphate imbalance. Dyslipidemia remains an important contributing CVD risk factor in CKD, although the mechanisms involved differ from the general population. While statins are the most commonly used lipid-lowering therapy in CKD patients, some statins may require dose reduction. Importantly, statins showed diminished beneficial effect on cardiovascular events in patients with severe CKD and hypercholesterolemia despite high CVD risk and effective reduction of LDL cholesterol. Ezetimibe enables the reduction of the dose of statins and their putative toxicity and, in combination with statins, reduces CVD endpoints in CKD patients. The use of novel drugs such as PCSK9 inhibitors is safe in CKD, but their potential to reduce cardiovascular events in CKD needs to be elucidated in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Flora G, Nayak DrM. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des. 2019;25:4063.

    Article  CAS  PubMed  Google Scholar 

  2. Rucker D, Tonelli M. Cardiovascular risk and management in chronic kidney disease. Nat Rev Nephrol [Internet]. 2009;5:287–96. https://doi.org/10.1038/nrneph.2009.42.

    Article  PubMed  Google Scholar 

  3. Roehm B, Weiner DE. Blood pressure targets and kidney and cardiovascular disease: same data but discordant guidelines. Curr Opin Nephrol Hypertens [Internet]. 2019;28. Available from: https://journals.lww.com/co-nephrolhypertens/fulltext/2019/05000/blood_pressure_targets_and_kidney_and.8.aspx.

  4. Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease. Circulation [Internet]. 2021;143:1157–72. https://doi.org/10.1161/CIRCULATIONAHA.120.050686. This overview article summarizes the current understanding and clinical consequences of cardiovascular disease in CKD.

    Article  CAS  PubMed  Google Scholar 

  5. Rangaswami J, Bhalla V, de Boer IH, Staruschenko A, Sharp JA, Singh RR, et al. Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: a scientific statement from the American Heart Association. Circulation [Internet]. 2020;142:e265-86. https://doi.org/10.1161/CIR.0000000000000920.

    Article  CAS  PubMed  Google Scholar 

  6. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med [Internet]. 2004;351:1296–305. https://doi.org/10.1056/NEJMoa041031.

    Article  CAS  PubMed  Google Scholar 

  7. Mann JFE, Gerstein HC, Pogue J, Bosch J, Yusuf S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med [Internet]. 2001;134:629–36. Available from: https://www.acpjournals.org/doi/abs/10.7326/0003-4819-134-8-200104170-00007.

  8. Anavekar NS, McMurray JJV, Velazquez EJ, Solomon SD, Kober L, Rouleau J-L, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med [Internet]. 2004;351:1285–95. https://doi.org/10.1056/NEJMoa041365.

    Article  CAS  PubMed  Google Scholar 

  9. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS One [Internet]. 2016;11:e0158765-. https://doi.org/10.1371/journal.pone.0158765.

    Article  CAS  PubMed  Google Scholar 

  10. Prevalence of CKD among U.S. adults [Internet]. [cited 2023 Sep 29]. Available from: https://nccd.cdc.gov/CKD/detail.aspx?Qnum=Q9&topic=1#refreshPosition. Accesed 29 Sep 2023.

  11. Kim K, Oh H, Choi H, Lee H, Ryu D-R. Impact of chronic kidney disease on mortality: a nationwide cohort study. Kidney Res Clin Pract. 2019;38:382.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 Clinical Practice Guideline. Ann Intern Med [Internet]. 2013;158:825–30. Available from: https://www.acpjournals.org/doi/abs/10.7326/0003-4819-158-11-201306040-00007.

  13. Neild GH. Primary renal disease in young adults with renal failure. Nephrol Dial Transplant [Internet]. 2010;25:1025–32. https://doi.org/10.1093/ndt/gfp653.

    Article  PubMed  Google Scholar 

  14. Durham A, Speer M, Scatena M, Giachelli C, Shanahan C. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114:590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tuka V, Slavikova M, Kasalova Z, Malik J. Factors associated with impaired arterial adaptation to chronically high wall shear rate in the feeding artery of PTFE grafts. Am J Nephrol [Internet]. 2008;28:847–52. https://doi.org/10.1159/000137685.

    Article  PubMed  Google Scholar 

  16. Park S, Lee SH, Shin D, Hong D, Joh HS, Choi KH, et al. Prognostic impact of coronary flow reserve in patients with CKD. Kidney Int Rep [Internet]. 2023;8:64–74. https://doi.org/10.1016/j.ekir.2022.10.003.

    Article  PubMed  Google Scholar 

  17. Tankó LB, Christiansen C, Cox DA, Geiger MJ, McNabb MA, Cummings SR. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Min Res [Internet]. 2005;20:1912–20. https://doi.org/10.1359/JBMR.050711.

    Article  Google Scholar 

  18. Townsend RR, Anderson AH, Chirinos JA, Feldman HI, Grunwald JE, Nessel L, et al. Association of pulse wave velocity with chronic kidney disease progression and mortality. Hypertension [Internet]. 2018;71:1101–7. https://doi.org/10.1161/HYPERTENSIONAHA.117.10648.

    Article  CAS  PubMed  Google Scholar 

  19. London GM. Cardiovascular disease in chronic renal failure: pathophysiologic aspects. Semin Dial [Internet]. 2003;16:85–94. Available from: http://europepmc.org/abstract/MED/12641870.

  20. Malík J, Kudlicka J, Tuka V, Chytilova E, Adamec J, Rocinova K, et al. Common carotid wall shear stress and carotid atherosclerosis in end-stage renal disease patients. Physiol Res [Internet]. 2012;61(4):355–61. Available from: https://api.semanticscholar.org/CorpusID:23256505.

  21. Malik J, Novakova L, Valerianova A, Chytilova E, Lejsek V, Buryskova Salajova K, et al. Wall shear stress alteration: a local risk factor of atherosclerosis. Curr Atheroscler Rep [Internet]. 2022;24:143–51. https://doi.org/10.1007/s11883-022-00993-0.

    Article  Google Scholar 

  22. Speer T, Ridker PM, von Eckardstein A, Schunk SJ, Fliser D. Lipoproteins in chronic kidney disease: from bench to bedside. Eur Heart J [Internet]. 2021;42:2170–85. https://doi.org/10.1093/eurheartj/ehaa1050. This overview article highlights the current knowledge about lipoproteins in CKD.

    Article  CAS  PubMed  Google Scholar 

  23. Miller WG, Myers GL, Sakurabayashi I, Bachmann LM, Caudill SP, Dziekonski A, et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin Chem [Internet]. 2010;56:977–86. https://doi.org/10.1373/clinchem.2009.142810.

    Article  CAS  PubMed  Google Scholar 

  24. Kastarinen H, Hörkkö S, Kauma H, Karjalainen A, Savolainen MJ, Kesäniemi YA. Low-density lipoprotein clearance in patients with chronic renal failure. Nephrol Dial Transplant [Internet]. 2009;24:2131–5. https://doi.org/10.1093/ndt/gfp026.

    Article  CAS  PubMed  Google Scholar 

  25. Reis A, Rudnitskaya A, Chariyavilaskul P, Dhaun N, Melville V, Goddard J, et al. Top-down lipidomics of low density lipoprotein reveal altered lipid profiles in advanced chronic kidney disease [S]. J Lipid Res [Internet]. 2015;56:413–22. https://doi.org/10.1194/jlr.M055624.

    Article  CAS  PubMed  Google Scholar 

  26. Yamamoto S, Yancey PG, Ikizler TA, Jerome WG, Kaseda R, Cox B, et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol [Internet]. 2012;60:2372–9. Available from: https://www.sciencedirect.com/science/article/pii/S0735109712046517.

  27. Wang K, Zelnick LR, Hoofnagle AN, Vaisar T, Henderson CM, Imrey PB, et al. Alteration of HDL protein composition with hemodialysis initiation. Clinical Journal of the American Society of Nephrology [Internet]. 2018;13. Available from: https://journals.lww.com/cjasn/fulltext/2018/08000/alteration_of_hdl_protein_composition_with.15.aspx.

  28. Speer T, Rohrer L, Blyszczuk P, Shroff R, Kuschnerus K, Kränkel N, et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of toll-like receptor-2. Immunity [Internet]. 2013;38:754–68. Available from: https://www.sciencedirect.com/science/article/pii/S1074761313000885.

  29. Mayer O Jr, Seidlerová J, Wohlfahrt P, Filipovský J, Vaněk J, Cífková R, et al. Desphospho-uncarboxylated matrix Gla protein is associated with increased aortic stiffness in a general population. J Hum Hypertens [Internet]. 2016;30:418–23. https://doi.org/10.1038/jhh.2015.55.

    Article  CAS  PubMed  Google Scholar 

  30. Wanner C, Quaschning T. Dyslipidemia and renal disease: pathogenesis and clinical consequences. Curr Opin Nephrol Hypertens [Internet]. 2001;10. Available from: https://journals.lww.com/co-nephrolhypertens/fulltext/2001/03000/dyslipidemia_and_renal_disease__pathogenesis_and.7.aspx.

  31. Palmer SC, Navaneethan SD, Craig JC, Johnson DW, Perkovic V, Hegbrant J, et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database of Systematic Reviews [Internet]. 2014. https://doi.org/10.1002/14651858.CD007784.pub2.

  32. Rosenstein K, Tannock LR. Dyslipidemia in chronic kidney disease. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com Inc; 2000.

  33. Shepherd J, Kastelein JJP, Bittner V, Deedwania P, Breazna A, Dobson S, et al. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (treating to new targets) study. J Am Coll Cardiol [Internet]. 2008;51:1448–54. Available from: https://www.sciencedirect.com/science/article/pii/S0735109708003549.

  34. Wanner C, Krane V, März W, Olschewski M, Mann J, Ruf G, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–48.

    Article  CAS  PubMed  Google Scholar 

  35. Fellström BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med [Internet]. 2009;360:1395–407. https://doi.org/10.1056/NEJMoa0810177.

    Article  CAS  PubMed  Google Scholar 

  36. März W, Genser B, Drechsler C, Krane V, Grammer TB, Ritz E, et al. Atorvastatin and low-density lipoprotein cholesterol in type 2 diabetes mellitus patients on hemodialysis. Clinical Journal of the American Society of Nephrology [Internet]. 2011;6. Available from: https://journals.lww.com/cjasn/fulltext/2011/06000/atorvastatin_and_low_density_lipoprotein.14.aspx.

  37. Holdaas H, Holme I, Schmieder RE, Jardine AG, Zannad F, Norby GE, et al. Rosuvastatin in diabetic hemodialysis patients. Journal of the American Society of Nephrology [Internet]. 2011;22. Available from: https://journals.lww.com/jasn/fulltext/2011/07000/rosuvastatin_in_diabetic_hemodialysis_patients.21.aspx.

  38. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. The Lancet [Internet]. 2011;377:2181–92. https://doi.org/10.1016/S0140-6736(11)60739-3.

    Article  CAS  Google Scholar 

  39. Palmer SC, Navaneethan SD, Craig JC, Johnson DW, Perkovic V, Nigwekar SU, et al. HMG CoA reductase inhibitors (statins) for dialysis patients. Cochrane Database Syst Rev [Internet]. 2013. https://doi.org/10.1002/14651858.CD004289.pub5.

  40. Vaziri ND, Norris KC. Reasons for the lack of salutary effects of cholesterol-lowering interventions in end-stage renal disease populations. Blood Purif [Internet]. 2013;35:31–6. https://doi.org/10.1159/000345176.

    Article  CAS  PubMed  Google Scholar 

  41. Wanner C, Tonelli M, Members the KDIGOLGDWG. KDIGO Clinical Practice Guideline for Lipid Management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int [Internet]. 2014;85:1303–9. https://doi.org/10.1038/ki.2014.31.

    Article  CAS  PubMed  Google Scholar 

  42. Vavlukis M, Vavlukis A. Adding ezetimibe to statin therapy: latest evidence and clinical implications. Drugs Context. 2018;212534. https://doi.org/10.7573/dic.212534.

  43. Morita T, Morimoto S, Nakano C, Kubo R, Okuno Y, Seo M, et al. Renal and vascular protective effects of ezetimibe in chronic kidney disease. Intern Med. 2014;53:307–14.

    Article  PubMed  Google Scholar 

  44. Stanifer J, Charytan D, White J, Lokhnygina Y, Cannon C, Roe M, et al. Benefit of ezetimibe added to simvastatin in reduced kidney function. J Am Soc Nephrol. 2017;28:ASN.2016090957.

  45. Sica DA. Fibrate therapy and renal function. Curr Atheroscler Rep [Internet]. 2009;11:338–42. https://doi.org/10.1007/s11883-009-0051-5.

    Article  CAS  PubMed  Google Scholar 

  46. Jun M, Zhu B, Tonelli M, Jardine M, Patel A, Neal B, et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60:2061.

    Article  CAS  PubMed  Google Scholar 

  47. Harper CR, Jacobson TA. Managing dyslipidemia in chronic kidney disease. J Am Coll Cardiol [Internet]. 2008;51:2375–84. Available from: https://www.sciencedirect.com/science/article/pii/S0735109708012035.

  48. He Y-M, Feng L, Huo D-M, Yang Z-H, Liao Y-H. Benefits and harm of niacin and its analog for renal dialysis patients: a systematic review and meta-analysis. Int Urol Nephrol [Internet]. 2014;46:433–42. https://doi.org/10.1007/s11255-013-0559-z.

    Article  CAS  PubMed  Google Scholar 

  49. Boden W, Probst-Field J, Anderson T, Chaitman B, Koprowicz K, Re-Search A, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy The members of the Writing Group. N Engl J Med. 2011;365:2255.

    Article  PubMed  Google Scholar 

  50. Landray M, Haynes R, Hopewell J, Parish S, Aung T, Tomson J, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.

    Article  PubMed  Google Scholar 

  51. Furtado R, Giugliano R. What lessons have we learned and what remains to be clarified for PCSK9 inhibitors? A review of FOURIER and ODYSSEY outcomes trials. Cardiol Ther. 2020;9:59.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee E, Gibbs JP, Emery MG, Block G, Wasserman SM, Hamilton L, et al. Influence of renal function on evolocumab exposure, pharmacodynamics, and safety. Clin Pharmacol Drug Dev [Internet]. 2019;8:281–9. https://doi.org/10.1002/cpdd.650.

    Article  CAS  PubMed  Google Scholar 

  53. Igweonu-Nwakile EO, Ali S, Paul S, Yakkali S, Teresa Selvin S, Thomas S, et al. A systematic review on the safety and efficacy of PCSK9 inhibitors in lowering cardiovascular risks in patients with chronic kidney disease. Cureus [Internet]. 2022;14:e29140. https://doi.org/10.7759/cureus.29140.

    Article  PubMed  Google Scholar 

  54. Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med [Internet]. 2020;382:1507–19. https://doi.org/10.1056/NEJMoa1912387.

    Article  CAS  PubMed  Google Scholar 

  55. Wright RS, Collins MG, Stoekenbroek RM, Robson R, Wijngaard PLJ, Landmesser U, et al. Effects of renal impairment on the pharmacokinetics, efficacy, and safety of inclisiran: an analysis of the ORION-7 and ORION-1 studies. Mayo Clin Proc [Internet]. 2020;95:77–89. https://doi.org/10.1016/j.mayocp.2019.08.021.

    Article  PubMed  Google Scholar 

  56. Ray K, Bays H, Catapano A, Lalwani N, Bloedon L, Sterling L, et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019;380:1022–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are supported by a grant from the Ministry of Health, Czech Republic, RVO (MH CZ-DRO-VFN64165).

Author information

Authors and Affiliations

Authors

Contributions

VK and JM performed the literature review and prepared the manuscript. AV, ZH, and VT critically reviewed the article and provided suggestions and corrections. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Zdenka Hruskova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest in relation to the topic of this paper.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kratky, V., Valerianova, A., Hruskova, Z. et al. Increased Cardiovascular Risk in Young Patients with CKD and the Role of Lipid-Lowering Therapy. Curr Atheroscler Rep 26, 103–109 (2024). https://doi.org/10.1007/s11883-024-01191-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-024-01191-w

Keywords

Navigation