
Vol.:(0123456789)1 3

Current Atherosclerosis Reports (2023) 25:979–994 
https://doi.org/10.1007/s11883-023-01165-4

REVIEW

Natural Sirtuin1 Activators and Atherosclerosis: an Overview

Karolina Łanoszka1 · Nimasha Vlčková1

Accepted: 27 October 2023 / Published online: 1 December 2023 
© The Author(s) 2023

Abstract
Purpose of Review The purpose of this review is to summarize the most recent findings investigating the impact of several 
natural sirtuin (SIRT) activators, particularly SIRT1, on atherosclerosis.
Recent Findings Sirtuins that belong to a family of class III histone deacetylases are believed to be novel therapeutic targets 
to treat age-related and chronic diseases. SIRT expression is regulated by small molecules called SIRT-activating compounds 
that can be found in natural food products. SIRT1 may exert protective effects in atherosclerosis, which is said to be a major 
cause of cardiovascular diseases. Most of the evidence supporting the beneficial effects of these natural compounds comes 
from in vitro or animal-based studies, while there have been particularly few or inconsistent human-based studies evaluating 
their long-term impact in recent years.
Summary SIRT1 activation has been demonstrated to mitigate or prevent atherosclerosis through various mechanisms. 
However, further research is required to determine the optimal SIRT activator dosage and to establish a stronger correlation 
between health effects and the administration of bioactive compounds. Additionally, conducting more human clinical trials 
is necessary to ensure the safety of these compounds for preventing atherosclerosis development.

Keywords SIRT1 · Natural compounds · SIRT1 activators · Atherosclerosis

Introduction

Noncommunicable diseases (NCDs) kill 41 million people 
each year, which is equivalent to 71% of all global deaths, 
as stated by the World Health Organization. Annually, more 
than 15 million people die from NCDs between the ages 
of 30 and 69; 85% of these “premature” deaths occur in 
low- and middle-income countries. Cardiovascular diseases 
(CVDs) account for the majority of NCD-related deaths, 
with 17.9 million people succumbing to them each year, 
followed by cancers (9.3 million), respiratory diseases (4.1 
million), and diabetes (1.5 million). Atherosclerosis is the 

primary underlying cause of most cardiovascular diseases 
[1].

Atherosclerosis is the most common form of CVD, where 
the disease’s main components are lipid accumulation and 
inflammation of the large arteries. These factors can even-
tually lead to clinical complications, such as myocardial 
infarctions (MIs) and strokes [2]. The exact causes and risk 
factors of atherosclerosis are not fully understood. However, 
certain conditions, traits, or habits may increase the like-
lihood of developing atherosclerosis. High levels of total 
cholesterol (TC) and low-density lipoprotein (LDL) levels, 
along with low levels of high-density lipoprotein (HDL) in 
the blood, hypertension, exposure to tobacco smoke, diabe-
tes mellitus, obesity, and a sedentary lifestyle are all risk fac-
tors. Therefore, atherosclerosis can be delayed or prevented 
by controlling these risk factors.

Members of the sirtuin (SIRT) family of proteins are 
class III histone deacetylases that are homologous to the 
yeast silent information regulator 2 (Sir2). Sirtuins mediate 
the deacetylation of histones and non-histone proteins in an 
 NAD+-dependent manner. SIRT1 was the first SIRT to be 
discovered in mammals and is the most extensively studied 
SIRT protein, playing a role in promoting longevity [3].
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Over the past few years, a healthy and balanced diet has 
been encouraged to prevent diseases in humans [4, 5], ath-
erosclerosis, and its development in particular [6–8]. Food 
bioactive compounds are extra nutritional constituents that 
typically occur in small quantities in foods [9]. Bioactive 
compounds in the diet can act as antioxidants and anti-
inflammatory agents, reducing the negative effects of oxi-
dative stress and the incidence of chronic diseases, such as 
obesity, diabetes, and cardiovascular disorders [9–11]. The 
beneficial effects of consuming foods rich in polyphenols 
have been widely discussed in relation to cardiovascular 
diseases, including atherosclerosis, high blood pressure, 
thrombotic diseases, stroke, or hyperlipidemia [12].

Many in vitro [13–15], animal [16, 17], and human stud-
ies [18, 19] have shown that SIRT1 has anti-atherogenic 
properties. Several plant-based bioactive compounds have 
demonstrated their ability to modulate SIRT1. These com-
pounds are found in many plants and foods, such as fruits, 
vegetables, tea, cereals, and wine, and long-term intake 
is associated with health benefits [20]. Interesting in vivo 
(Table 1) [21–31], in vitro (Table 2) [22–24, 30, 32–35], and 
human (Table 3) [36–39] clinical trial studies have shown 
their effects on atherosclerosis development and risk factors 
associated with atherosclerosis.

In the present review, we discuss novel insights into the 
effects of natural molecules considered as SIRT1-activating 
compounds and their impact on atherosclerosis in the last 
5 years.

SIRT1 Activators and Atherosclerosis

Resveratrol

Resveratrol (3,5,4′-trihydroxystilbene) is a polyphenolic 
chemical compound found in food products such as grapes, 
peanuts, and berries. It is biosynthesized in response to path-
ogens. Red wine is also a resveratrol-rich product, as the 
winemaking process involves crushing and mashing grapes, 
which leads to its release from the fruit [40]. The concentra-
tion of resveratrol in red wines ranges from 0.1 to 14.3 mg/L. 
Its concentration in red grape juice, fresh grape skin, and 
grapes (dry sample) is 0.5 mg/100 ml, 5–10 mg/100 g, 
and 0.64 mg/100 g, respectively [41]. Resveratrol exists 
in two isomeric structures: the cis and trans isoforms. The 
trans isoform can be converted to the cis isoform through 
heating [40]. Oral intake of high doses of resveratrol (5 g) 
from resveratrol-containing foods or supplements has been 
demonstrated to be safe, with no serious adverse effects 
reported. The concentration of unmetabolized resveratrol 
found in plasma after oral administration of various resver-
atrol-rich sources in various studies did not exceed 5 µM 
and ranged from plasma resveratrol levels of 1.8 to 4.2 µM 

[42]. Numerous studies have demonstrated its anti-aging and 
anti-inflammatory effects both in vivo (using yeasts, insects, 
mice, and other organisms) and in vitro (utilizing both ani-
mal and human cell lines)[43, 44].

Resveratrol treatment has been shown to reduce athero-
sclerosis in numerous in vivo studies using various animal 
models. Dietary enrichment with resveratrol resulted in a 
reduction in the size of atherosclerotic lesions [31, 45, 46]. 
A study demonstrated its protective effect on vascular struc-
ture by showing that resveratrol prevented TNF-α-induced 
damage to elastin fibers in aortic cross sections of C57BL/6 
mice [42]. Many experimental studies using atherosclerosis 
mouse models have shown that resveratrol lowers TC, TG, 
LDL-C, and very-low-density lipoprotein (VLDL)-C levels 
while increasing HDL-C [31, 45]. In contrast, a randomized 
clinical trial involving human subjects with dyslipidemia 
provided a counterexample to the aforementioned reports. 
During an 8-week supplementation period with resveratrol 
(at doses of 100 mg/day, 300 mg/day, or 600 mg/day), there 
were no significant changes observed in the lipid profile 
when compared to the placebo, regardless of the dosage 
used. The researchers noted no significant differences in tri-
glycerides, TC, HDL and LDL cholesterol, apoA1, apoB, 
or apoA1/apoB between baseline and follow-up in the four 
groups [47]. The anti-atherogenic effect of resveratrol was 
demonstrated in  ApoE−/− mice, where a reduction in mac-
rophage infiltration was observed in animals treated with 
resveratrol [31]. Resveratrol was found to reduce the expres-
sion and serum levels of various chemokines and adhesion 
molecules, such as CCL2, CXCL1/KC, MCP-1, ICAM-1, 
and VCAM-1, in both mice and human endothelial cells, as 
well as in THP-1 human monocytes. This effect has been 
demonstrated to influence the recruitment and adhesion of 
circulating blood monocytes [42, 46]. Atherosclerosis is 
regarded as an inflammatory disease, making compounds 
with anti-inflammatory properties, such as resveratrol, of 
paramount importance in the prevention of vascular athero-
sclerosis and the subsequent cardiovascular diseases that 
may arise [48]. The in vivo part of the experimental study, a 
type of study, first demonstrated that resveratrol attenuated 
vascular endothelial inflammation by reducing VCAM-1 and 
F4/80 expression in aortic cross sections of C57BL/6 mice 
after TNF-α stimulation. This effect was achieved through 
the inhibition of NF-κB factor activation [42]. A study using 
 ApoE−/− mice and umbilical vein endothelial cells (UVECs) 
isolated from  ApoE−/− mice demonstrated several positive 
effects of resveratrol. These effects included reduced ath-
erosclerotic plaques; lower levels of TC, TG, LDL-C, and 
HDL-C; as well as decreased levels of TNF-α, C-reactive 
protein, matrix metallopeptidase 9 (MMP-9), and CD40L 
expression in arterial lesion tissue. The study suggested that 
resveratrol’s anti-atherosclerotic properties were attributed 
to the modulation of the PI3K/AKT/mTOR pathway [45]. 
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CD4 + T cells, which are present in atherosclerotic lesions, 
play crucial roles in all stages of atherogenesis and have 
a significant impact on the regulation of the inflammatory 
process. A study demonstrated that the administration of 
resveratrol not only reduced atherosclerosis in vivo but also 
inhibited CD4 + T cell activation. Additionally, it reduced 
the expression of DNA-methyltransferase 1 (Dnmt1) and 
DNA-methyltransferase 3 beta (Dnmt3b) in CD4 + T cells 
[31]. In both animal- and human-based studies, resveratrol 
has demonstrated its ability to inhibit vascular smooth mus-
cle cell (VSMC) proliferation induced by various mitogens. 
The specific molecular mechanisms involved depend on the 
type of mitogenic stimuli and may include the inhibition of 
the PI3K/Akt/mTOR pathway or cell cycle arrest [49].

In a randomized controlled trial involving adults with type 
2 diabetes, researchers noted that resveratrol exhibited anti-
oxidant properties and influenced markers of oxidative stress 
by activating SIRT1. They observed a significant reduction 
in markers of oxidative stress, and a more efficient antioxi-
dant effect was evident in patients who received a resveratrol 
supplement at a dose of 1000 mg/day compared to those 
receiving 500 mg/day, which was associated with increased 
levels of SIRT1 [38]. In a recent study discussing the oxida-
tive stress effects of resveratrol, it was demonstrated that 
the depletion of SIRT1 abolished the beneficial effects of 
resveratrol and pterostilbene (PTS), a natural methylated 
analog of resveratrol. This was observed in the context of 
protection against mitochondrial reactive oxygen species 
overproduction, mitochondrial dysfunction, and apoptosis 
in an  H2O2-exposed intestinal porcine enterocyte cell line. 
These findings suggest that SIRT1 is essential for resveratrol 
and pterostilbene to protect against oxidative stress–induced 
intestinal injury [50]. In another recent study, it was demon-
strated that resveratrol activated SIRT1 to enhance endothe-
lial function in obese mice. This effect was achieved through 
the upregulation of peroxisome proliferator–activated recep-
tor delta (PPARδ) expression in wild-type Ppard-wt mice on 
a high-fat diet [51]. PPARδ plays a significant role in lipid 
absorption, muscle endurance, insulin sensitivity, and the 
suppression of atherogenic inflammation [52]. Additionally, 
it was demonstrated that the SIRT1-mediated activation of 
PPARδ contributes to the beneficial effects of SIRT1 [51]. 
A study revealed that resveratrol suppresses insulin-induced 
VSMC proliferation and migration, potentially through the 
activation of SIRT1 and the downregulation of the PI3K/
AKT pathway. This is supported by the fact that EX527, a 
specific inhibitor of SIRT1, nullified the role of resveratrol 
in inhibiting insulin-induced proliferation and migration 
while upregulating the phosphorylation of PI3K and Akt 
in VSMCs [53]. SIRT1 has been reported to prevent pre-
mature senescence of endothelial cells, thereby protecting 
them from dysfunction [54, 55]. In one study, the effect of 
resveratrol and its dimers, ε-viniferin and δ-viniferin, on NO 

production and wound repair in vascular endothelial cells 
was examined. All three compounds increased the wound 
repair of vascular endothelial cells (ECs) by promoting NO 
production and enhancing the expression of SIRT1 and heme 
oxygenase 1 (HO-1). These findings suggest a potential pre-
vention of atherosclerosis development [56].

Quercetin

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is the most 
common and widely distributed flavanol compound in our 
diet. It is commonly found in many fruits and vegetables, 
including apples, berries, red onions, grapes, cherries, broc-
coli, bell peppers, coriander, citrus fruits, and tea leaves 
(Camellia sinensis) [57, 58]. The estimated flavonoid intake 
ranges from 50 to 800 mg/day, with quercetin accounting 
for approximately 75% of that intake. This largely depends 
on the consumption of fruits and vegetables, as well as the 
intake of tea [59]. The bioavailability of quercetin is very 
low, primarily due to its extensive metabolism [60]. Another 
reason for its poor absorption is due to intestinal excretion 
[57]. Quercetin has antiradical activity due to the presence 
of reactive hydroxyl groups in its structure [61]. It reduces 
the formation of ROS by inhibiting NADPH oxidases and 
xanthine oxidases, decreases the activity of cyclooxygenases 
(COX) and lipoxygenases (LOX), and regulates the activ-
ity of intracellular signaling cascades involved in inflam-
matory reactions [62]. Quercetin metabolites are believed 
to be accumulated in tissues shortly after quercetin‐rich 
vegetables are consumed [63]. It was indicated that these 
metabolites, originating from enterocytes and the liver, serve 
as antioxidants by impeding oxidation of low‐density lipo-
protein cholesterol [63].

Quercetin acts as an anti-inflammatory [60, 64–66] and 
anti-atherogenic [67–69] agent. Recent animal and in vitro 
studies have shown that quercetin reduces the size of ath-
erosclerotic lesions [21, 22, 68, 70]. It has been suggested 
that excessive accumulation of oxidized LDL (ox-LDL) 
leads to an excessive inflammation in macrophages and a 
worsening condition of atherosclerosis by activating the 
nucleotide-binding oligomerization domain-like receptor 
protein 3 (NLRP3) inflammasome. It has also been noted 
that quercetin suppresses the galectin-3 NLR family pyrin 
domain containing 3 (Gal-3-NLRP3) proinflammatory sign-
aling pathways in macrophages, subsequently alleviating 
atherosclerotic lesions [67]. Quercetin reduced the levels 
of IL-1β, TNF-α, IL-10, and IκBα gene expression, indicat-
ing a decrease in the transcriptional activity of NF-κB in 
individuals with coronary artery disease [62]. The reverse 
cholesterol transport (RCT) of macrophages in atheroscle-
rotic plaques is a critical mechanism in the context of anti-
atherosclerosis [71]. LXRα, SR-BI, and ABCA1 play a vital 
role in promoting macrophage RCT and in maintaining 
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intracellular cholesterol homeostasis [58], and quercetin 
increased the expressions of PPARγ, LXRα, and ABCA1 
genes in RAW264.7 macrophages exposed to ox-LDL [72]. 
Quercetin also attenuated the expression of PPARγ, LXRα, 
and ABCA1 in the aortas and livers of  ApoE−/− mice fed a 
high-fat diet [73]. Quercetin can alleviate vascular endothe-
lial injury through multiple mechanisms. It can reverse 
endothelial damage caused by excessive NO by inhibiting 
nitrosative stress and protecting ECs. Additionally, it inhib-
its the promoting effect of ATP on NO production in vas-
cular ECs and reduces intracellular calcium concentration 
and eNOS activity, ultimately reducing vascular endothelial 
injury and stabilizing intravascular homeostasis [58]. In a 
new animal study utilizing aneurysm and dissection mouse 
models, quercetin was found to suppress the expression of 
VCAM-1 and pro-matrix metalloproteinase-9 activity in the 
aorta of mice, along with reducing macrophage infiltration 
into the aortic wall. Quercetin also significantly inhibited 
the enlargement of the abdominal aortic diameter, reduced 
the incidence of aortic aneurysms, and prevented death from 
rupture in mice. Moreover, quercetin suppressed the expres-
sion of VCAM-1 in response to TNF-α stimulation in human 
umbilical vein endothelial cells. These findings suggest that 
quercetin effectively prevents the onset of atherosclerosis-
related acute aortic syndromes through its anti-inflammatory 
properties [74].

Numerous in vivo and in vitro studies have demonstrated 
that quercetin increases the expression of SIRT1 [75–79]. A 
study showed that quercetin inhibited endoplasmic reticu-
lum stress through activating the SIRT1/AMPK signaling 
pathway [80]. In another study, the administration of 20 mg/
kg/day of quercetin for 8 weeks effectively reduced lipid 
deposition in arterial lumina and atherosclerotic lesions, 
concurrently decreasing the levels of serum ICAM-1, IL-6, 
and VCAM-1 in the aorta. Moreover, it increased the density 
of SIRT1 in the aorta of  ApoE−/− mice. In in vitro studies, 
quercetin reduced the expression of senescence-associated 
β-galactosidase and improved the cell morphology of human 
aortic endothelial cells (HAECs). Furthermore, quercetin 
reduced cellular apoptosis, increased mitochondrial mem-
brane potential (ΔΨm) in a dose-dependent manner, and 
decreased ROS generation [22]. In diabetic rats fed high-fat 
diet, treatment with quercetin was reported to improve the 
lipid profile, reduce atherosclerotic lesions, lower the athero-
genic index, decrease malondialdehyde (MDA) levels, and 
increase the activity of enzymatic antioxidants in the carotid 
artery. Additionally, quercetin suppressed the inflammatory 
response by reducing NF-κB and IL-1β levels, while increas-
ing IL-10 levels through the AMPK/SIRT1/NF-κB signaling 
pathway [21]. In a recent study, quercetin was shown to reg-
ulate mitophagy and endoplasmic reticulum stress through 
the SIRT1/TMBIM6 pathway, inhibiting oxidative stress 
damage in human cardiomyocytes. The study also revealed 

that the number of cell apoptosis in the quercetin-treated 
group was significantly reduced, with increased expression 
of SIRT1, PGC-1α, and Bcl-2 proteins [81].

Berberine

Berberine (BBR) is an isoquinoline quaternary alkaloid (or 
a 5,6-dihydrodibenzo(a,g)quinolizinium derivative) widely 
used in traditional Chinese herbal medicine isolated from 
several plants such Berberis vulgaris (barberry), Hydras-
tis canadensis (goldenseal), Coptis chinensis (Chinese 
goldthread), Cortex phellodendri (Huangbai), and Rhizoma 
coptidis (Huanglian) [82]. Berberine is a yellow powder, 
odorless with characteristic alkaloid bitterness. It is spar-
ingly soluble in water and slightly soluble in ethanol or 
methanol; however, the salt form is relatively water-soluble. 
Berberine can be easily obtained from medicinal plants or 
through total synthesis. Chlorides or sulfates of berberine 
are commonly used for clinical purposes [83]. Over the past 
few decades, berberine has gained significance in traditional 
Chinese medicine due to its wide range of applications. 
However, despite its strong pharmacological effects, its oral 
bioavailability is exceptionally low [84].

In recent years, numerous in vivo and in vitro studies 
have demonstrated that berberine effectively reduces plasma 
levels of TC, TG, LDL-C, and non-HDL-C while elevating 
HDL-C. It also mitigates lipid and cholesterol accumula-
tion in macrophages [85]. Furthermore, many studies have 
observed a reduction in atherosclerosis lesions, accompa-
nied by decreased TNF-α, IL-1β, and IL-6 levels, along with 
increased IL-10 and adiponectin levels [86–89]. Recently, 
the effects of berberine on trimethylamine N-oxide (TMAO) 
production in the gut microbiota and its impact on plaque 
development in atherosclerosis were investigated. This 
research encompassed studies involving animal intestinal 
bacterial cultures, HFD-fed hamsters, and atherosclerotic 
patients [90]. Twenty-one patients with atherosclerosis 
showed an average decrease in plaque score by 3.2% after 
taking 0.5 g of oral berberine for 4 months. Furthermore, tri-
methylamine (TMA) and TMAO levels in patients decreased 
by 38% and 29% in feces and by 37% and 35% in plasma 
after 4 months of berberine treatment [90]. Another study 
demonstrated that in C57BL/6 J and ApoE KO mice on a 
choline-supplemented chow diet, berberine attenuated TMA/
TMAO production. This treatment also reduced atheroscle-
rotic lesion areas in ApoE KO mice. Furthermore, berberine 
exhibited a significant inhibitory effect on TMA formation in 
the gut microbiota isolated from human fecal samples [91]. 
The berberine-induced inhibition of TMA/TMAO produc-
tion was observed in both in vivo and in vitro human-based 
studies. This has offered novel insights into the mechanisms 
responsible for the anti-atherosclerosis effects of berberine 
[90, 91]. In another study, berberine was found to reduce 
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serum lipid levels, counteract hepatic lipid accumulation, 
improve intima-media thickening, reduce aortic ROS gen-
eration, and decrease serum levels of MDA, ox-LDL, and 
IL-6 in  ApoE−/− mice fed a western-type diet for 12 weeks. 
Additionally, berberine ameliorated endothelial dysfunction 
and provided protection against atherosclerosis through its 
involvement in pathways associated with mitochondrial dys-
function, fatty acid β-oxidation, and FXR/RXR activation 
[92].

Recent studies, both in vivo and in vitro, have focused 
on the activities of berberine and SIRT1 [24, 93–95] and 
their underlying anti-atherogenic mechanisms. Berberine 
promoted autophagy of peritoneal macrophages by activat-
ing SIRT1 via the  NAD+ synthesis pathway, thus promot-
ing transcription factor EB (TFEB) nuclear translocation 
and deacetylation [94]. Berberine, through the activation 
of SIRT1 via the  NAD+ synthesis pathway, promotes the 
autophagy of peritoneal macrophages. This, in turn, facili-
tates TFEB nuclear translocation and deacetylation, contrib-
uting to its underlying anti-atherogenic mechanisms [23]. 
Klotho (KL) is an anti-aging protein known to promote 
health and extend the lifespan of individuals. Deficiency 
of KL has been correlated with cardiovascular disease, and 
low expression of KL is considered an early predictor of 
atherosclerosis [96]. Berberine increased KL expression 
and significantly reversed the downregulation of SIRT1 in 
the aging heart. This effect markedly suppressed the devel-
opment of doxorubicin (DOX)-induced cardiac senescence 
and protected the aging heart of male Sprague Dawley rats 
[23]. Furthermore, in H9c2 cells, berberine and KL were 
found to increase the expression of SIRT1 [23]. Berberine 
also demonstrated its ability to protect against DOX-induced 
cardiotoxicity and oxidative stress through the downregula-
tion of SIRT1-mediated p66Shc signaling. This protection 
was associated with the modulation of ROS both in vivo 
and in vitro [24].

Fisetin

Fisetin (3,3′,4′,7-tetrahydroxyflavon) is a naturally occur-
ring compound with the molecular formula  C15H10O6. It 
can be found in various fruits such as apples, strawberries, 
kiwis, mangoes, grapes, persimmons, and peaches, as well 
as in vegetables including onions, tomatoes, cucumbers, and 
kale. Additionally, fisetin is present in nuts and wine [20]. 
The average daily intake of fisetin is estimated to be 0.4 mg 
[97]. Fisetin is appreciated for its health-promoting proper-
ties and its potential use as a nutraceutical, as demonstrated 
in pre-clinical studies [98–102]. Fisetin is known for its anti-
inflammatory, antioxidant, anti-carcinogenic, anti-allergic, 
neuroprotective, and cardiovascular preventive properties 
[103–108].

Fisetin administered as an aqueous solution at a dose 
of 12.5  mg/kg was shown to reduce atherosclerosis in 
 ApoE−/− mice after 12 weeks. In the aortic sinus, athero-
sclerotic changes and lipid accumulation were significantly 
reduced compared to the control group when fisetin was 
administered. Fisetin also demonstrated the ability to reduce 
the expression of PCSK9 and LOX-1, as well as aging mark-
ers including p21 (cyclin-dependent kinase inhibitor 1A), 
p53 (tumor suppressor protein p53), and p16 (multiple 
tumor suppressor-1). These transcription factors are associ-
ated with apoptosis, cell cycle regulation, and senescence in 
 ApoE−/− mice [25, 109]. Fisetin exhibits anti-inflammatory 
properties. In a study using macrophages where inflamma-
tory responses were induced with lipopolysaccharide (LPS), 
fisetin reduced the expression of pro-inflammatory MCP-1, 
IL-1β, and iNOS. Additionally, fisetin prevented foam cell 
formation by impacting macrophage recruitment and infil-
tration through the reduction in the expression or activity of 
uPA, uPAR, MMP-2, and MMP-9, which are factors associ-
ated with macrophage recruitment and infiltration [32].

The relationship between fisetin and SIRT1 has been a 
topic of discussion for several years [110–112]. In a recent 
study involving mice, fisetin was found to suppress the acti-
vation of Toll-like receptor 4 (TLR4), myeloid differentia-
tion factor 88 (MyD88), and NF-κB and subsequently inac-
tivate pro-inflammatory factors, including IL-6 and TNF-α, 
with an increased expression of AMPK/SIRT1. Additionally, 
the study demonstrated that lead (Pb) exposure inhibited 
the expression of p-AMPK and SIRT1 [26]. Studies dem-
onstrate a link between non-alcoholic fatty liver disease 
(NAFLD) and atherosclerosis disease [113, 114]. Fisetin 
regulated lipid metabolism in vitro in FL83B hepatocytes 
and in male C57BL/6 mice with induced non-alcoholic fatty 
liver disease. The reduction of serum free fatty acid con-
centration and decreased lipid accumulation were observed. 
The mechanism of action indicated a significant increase in 
the phosphorylation of AMPKα, as well as increased SIRT1 
production in liver tissue [112].

Curcumin

Curcumin, with the chemical formula  C21H20O6, is a natural 
yellow pigment that can be isolated from turmeric (Cur-
cuma longa L.). It is also known as diferuloyl methane. The 
IUPAC (International Union of Pure and Applied Chem-
istry) name of curcumin is (1E,6E)-1,7-bis (4-hydroxy-
3-methoxyphenyl)-1,6-heptadiene-3,5-dione [115]. 
Researchers became particularly interested in curcumin 
due to its discovery of anticancer properties by Singh and 
Aggarwal [116]. Curcumin has demonstrated antioxidant, 
anti-inflammatory, antiapoptotic, antihypertensive, anti-
diabetes, anti-obesity, anti-carcinogenic, and anti-aging 
properties both in vivo and in vitro [117–119]. Turmeric 
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is a distinctive and essential spice for Indian cuisine. It is 
estimated that the usual intake of curcumin in India averages 
100 mg/day, and studies show that even consumption of up 
to 8 g/day is safe [120].

Recent in vivo and in vitro studies provide support for 
the potential of curcumin to reduce atherosclerosis and the 
pathogenic factors involved in its development [117, 118, 
121–123]. A study involving male New Zealand white rab-
bits demonstrated that the administration of curcumin-phos-
phatidylserine (100 mg/kg) solid dispersion significantly 
reduced the intima-media thickness ratio and the grading 
of atherosclerotic plaque. Rabbits exposed to the 100 mg/
kg dosage of curcumin-phosphatidylserine exhibited signifi-
cantly fewer inflammatory cells in the atherosclerotic lesions 
compared to the control group [124]. In  ApoE−/− mice, cur-
cumin reduced serum levels of LDL-C, TC, and TG and sig-
nificantly decreased the formation of atherosclerotic plaque 
in the aorta. It also reduced lipid deposition in the liver and 
mitigated inflammatory damage in the heart, lung, and kid-
ney [125]. Curcumin has also been shown to play a role in 
lipid metabolism, inflammation, and autophagy [126–133].

ox-LDL is responsible for impairment of autophagy [134] 
and the adverse effects of ox-LDL on macrophages can be 
reversed by the properties of curcumin [122]. Curcumin 
has demonstrated the ability to restore foam cell autophagy, 
thereby contributing to the inhibition of atherosclerosis. An 
in vitro study identified a novel axis, TFEB-P300-BRD4, 
that appears to be responsible for curcumin’s capacity to 
inhibit inflammation, reduce lipid content, and regulate 
autophagy [122]. The anti-inflammatory properties of cur-
cumin have been confirmed on human ECs and monocytes. 
Curcumin reduced IL-1β in human umbilical vein endothe-
lial cells (HUVECs) and reduced IL-6 and TNF-α in THP-1 
cells, resulting in reduced inflammation [33]. Curcumin 
attenuated VSMC migration by inhibiting NF-κB-mediated 
NLRP3 expression. It also inhibited NLRP3 expression and 
reduced IL-1β concentration in VSMCs [135].

The relationship between curcumin and SIRT1 has been a 
subject of discussion for years. In a study involving a high-
fat diet, curcumin inhibited age-related vascular changes by 
increasing SIRT1 expression and also led to decreased glu-
cose and TC levels [27]. A recent study demonstrated that 
curcumin treatment induced the activation of the SIRT1/
NRF2 pathway and inhibited TLR4 expression in newborn 
rats. This led to an improvement in the inflammatory condi-
tion of necrotizing enterocolitis, with reduced expression of 
inflammatory factors in the intestinal tissue of NEC new-
born rats. Furthermore, curcumin inhibited the expression of 
inflammatory factors in intestinal epithelial cells induced by 
LPS/ATP and attenuated the LPS/ATP-induced focal death 
pathway in intestinal epithelial cells through the SIRT1 
pathway [136]. Another study demonstrated that tetrahy-
drocurcumin, a natural curcumin metabolite, increased the 

expression of SIRT1 and deacetylated SOD2, both in in vitro 
and in vivo settings. This effect protected cardiomyocytes 
against oxidative damage [137].

Catechins

Catechins (flavan-3-ols) are polyphenols that naturally 
occur in some vegetables (e.g., legumes) and fruits (lychees, 
apples, grapes) and in other plant foods, such as teas (green 
tea (Camellia sinensis) and pu-erh), cocoa beans, and buck-
wheat [138, 139]. Green tea contains the following forms 
of catechins: ( −)-epigallocatechin-3-gallate (EGCG), 
( −)-epicatechin-3-gallate (ECG), ( −)-epigallocatechin 
(EGC), and epicatechin (EC) [140]. Today, catechins have 
garnered significant attention from researchers due to their 
anti-inflammatory, antihypertensive, antibacterial, antioxi-
dant, anti-atherosclerotic, and anticancer properties [139].

Catechins are known to influence vasodilation, a key 
factor in maintaining proper endothelial function and pre-
venting atherosclerosis development. Studies conducted 
in HUVECs, bovine coronary artery endothelial cells 
(BCAECs), and male Wistar rats have demonstrated that 
catechins can enhance eNOS expression and NO produc-
tion, offering protection against endothelial dysfunction 
and vasoconstriction [30, 34]. Catechins also exhibit anti-
atherosclerotic properties by influencing cellular aging and 
apoptosis [34, 141]. In the in vitro part of the study, epi-
catechin reduced β-galactosidase activity, a marker of cell 
aging [34]. Researchers found that ( +)-catechin had broad 
atheroprotective effects, including reducing oxidative stress 
and inhibiting monocyte and smooth muscle cell migration. 
It also mitigated inflammation and normalized the lipid pro-
file. In cell studies, it decreased ROS production in THP-1 
cells, HUVECs, and HASMCs. In a 3-week study with 
C57BL/6 J mice on a high-fat diet, ( +)-catechin reduced 
triacylglycerols, IL-1β, and IL-2 in plasma. It also influ-
enced liver gene expression, particularly genes related to cell 
proliferation, migration, and lipoprotein levels. The intake of 
catechins reduced atherosclerotic lesion size and increased 
plaque stability by 58.87% in  LDLR−/− mice [142]. ECG 
exhibits anti-atherosclerotic effects similar to ( +)-catechin. 
ECG reduces oxidative stress by lowering MDA levels and 
increasing SOD activity in both in vitro and in vivo studies. 
In  ApoE−/− mice, ECG reduces lipid accumulation in the 
aorta and aortic roots, stabilizes atherosclerotic plaques, and 
decreases MMP-2 and ICAM-1 expression [143]. In addi-
tion, ECG’s mechanism of action involves inhibiting the pro-
inflammatory NF-κB pathway, particularly the p65 subunit, 
resulting in the downregulation of inflammatory mediators. 
ECG also exerts anti-inflammatory and antioxidant effects 
by interacting with Nrf2 and increasing HO-1 expression 
[143]. The induction of autophagy and cholesterol efflux by 
oligomeric proanthocyanidins and ECG through the class III 
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PI3K/beclin1 pathway in foam cells represents a promising 
therapeutic strategy for combating atherosclerosis. Impaired 
autophagy is a significant contributor to atherosclerotic dis-
ease, and these compounds could potentially address this 
issue [144].

Many in vitro and in vivo studies have demonstrated that 
curcumin increased the expression of SIRT1 [95, 145, 146]. 
A recent study showed that EGCG reduced serum TG, TC, 
LDL-C, and free fatty acid levels; reduced lipid droplets in 
hepatocytes; and increased serum HDL-C levels, T-AOC, 
and SOD activity in hyperlipidemic rats. Additionally, it 
was shown that EGCG activated SIRT1, activated FoxO1 
protein, regulated SREBP-2 protein, and inhibited hepatic 
cholesterol synthesis with decreased SREBP-2 expression. 
Also, it was shown that EGCG reduced MDA and increased 
T-AOC and SOD in the liver, indicating that it improved 
the body’s antioxidant capacity, reducing the generation of 
peroxides [147].

Conclusions

In vitro and in vivo studies, as well as clinical trials in 
humans, have shown that SIRT1 activation might reduce or 
prevent atherosclerosis through various mechanisms. SIRT-
activating compounds derived from natural sources empha-
size the importance of dietary interventions to prevent ath-
erosclerosis. However, it remains unclear whether the effects 
of these compounds are mostly related to SIRT activation. It 
is important to determine the correct dose or concentration, 
as many of the effects are dose-dependent. Since most of the 
natural compounds described here exhibit pleiotropic effects, 
establishing a direct link between SIRT1 activation and the 
prevention or reduction of atherosclerosis is quite challeng-
ing. It is also evident that a more robust correlation between 
health effects and the administration of bioactive compounds 
needs to be established to understand their biological impact 
and their direct association with SIRT1 activation.

Additionally, the bioavailability and solubility of these 
natural compounds is very low. Treatment with higher con-
centrations of bioavailable, bioactive compounds may result 
in increased SIRT1-activating action, further substantiating 
the link between SIRT1, compounds, and their therapeutic 
effects. Despite the generally encouraging data from in vitro 
and in vivo studies, supporting molecular evidence that pro-
vides clues to these unanswered questions is still lacking. 
A better understanding of the molecular mechanisms of 
these natural molecules or their derivatives is needed for 
their preclinical and clinical usage. Berberine, fisetin, cur-
cumin, catechins, and resveratrol have shown the ability to 
activate sirtuins, particularly SIRT1. Our review focused on 
recent studies investigating the atheroprotective effect and 
the underlying molecular mechanisms. The conclusion of 

many studies is that it is necessary to better understand the 
molecular and epigenetic mechanisms of these compounds 
to prevent or treat atherosclerosis in humans.
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