
Vol.:(0123456789)1 3

Current Atherosclerosis Reports (2023) 25:839–859 
https://doi.org/10.1007/s11883-023-01154-7

Predictive Modeling and Structure Analysis of Genetic Variants 
in Familial Hypercholesterolemia: Implications for Diagnosis 
and Protein Interaction Studies

Asier Larrea‑Sebal1,2,3  · Shifa Jebari‑Benslaiman1,2  · Unai Galicia‑Garcia1,2  · Ane San Jose‑Urteaga1  · 
Kepa B. Uribe1  · Asier Benito‑Vicente1,2  · César Martín1,2

Accepted: 15 September 2023 / Published online: 17 October 2023 
© The Author(s) 2023

Abstract
Purpose of Review Familial hypercholesterolemia (FH) is a hereditary condition characterized by elevated levels of low-
density lipoprotein cholesterol (LDL-C), which increases the risk of cardiovascular disease if left untreated. This review 
aims to discuss the role of bioinformatics tools in evaluating the pathogenicity of missense variants associated with FH. 
Specifically, it highlights the use of predictive models based on protein sequence, structure, evolutionary conservation, and 
other relevant features in identifying genetic variants within LDLR, APOB, and PCSK9 genes that contribute to FH.
Recent Findings In recent years, various bioinformatics tools have emerged as valuable resources for analyzing missense 
variants in FH-related genes. Tools such as REVEL, Varity, and CADD use diverse computational approaches to predict the 
impact of genetic variants on protein function. These tools consider factors such as sequence conservation, structural altera-
tions, and receptor binding to aid in interpreting the pathogenicity of identified missense variants. While these predictive 
models offer valuable insights, the accuracy of predictions can vary, especially for proteins with unique characteristics that 
might not be well represented in the databases used for training.
Summary This review emphasizes the significance of utilizing bioinformatics tools for assessing the pathogenicity of FH-
associated missense variants. Despite their contributions, a definitive diagnosis of a genetic variant necessitates functional 
validation through in vitro characterization or cascade screening. This step ensures the precise identification of FH-related 
variants, leading to more accurate diagnoses. Integrating genetic data with reliable bioinformatics predictions and functional 
validation can enhance our understanding of the genetic basis of FH, enabling improved diagnosis, risk stratification, and 
personalized treatment for affected individuals. The comprehensive approach outlined in this review promises to advance 
the management of this inherited disorder, potentially leading to better health outcomes for those affected by FH.
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Introduction: Familial Hypercholesterolemia

Familial hypercholesterolemia (FH) is a common inher-
ited autosomal semi-dominant disorder primarily charac-
terized by high plasma levels of low-density lipoprotein 
cholesterol (LDL-C) due to impaired metabolism [1]. If 
left untreated, persistent elevation of LDL-C throughout 
a person’s lifetime can lead to the development of ath-
erosclerotic plaques and an increased risk of premature 
cardiovascular disease [2]. The major genetic determinants 
of FH correspond to pathogenic variants in 3 genes that 
cover the 99% of FH cases: LDLR, APOB (apolipoprotein 
B), and PCSK9 (Pro-protein Convertase Subtilisin/Kexin 
Type 9) [3]. The prevalence of FH in its heterozygous 
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form (HeFH) has traditionally been estimated to be 
around 1 in 500 individuals. However, the frequency can 
vary between 1 in 200 and 1 in 300 depending on the 
specific criteria used to define FH (such as genetic vari-
ants, LDL-C threshold, clinical score, or a combination 
of factors) and the populations under study [4]. In the 

case of the homozygous form of the disease (HoFH), the 
prevalence has traditionally been estimated at 1 in 1 mil-
lion individuals. However, recent studies have revealed a 
higher prevalence, with estimates reaching as high as 1 in 
300,000 individuals [4]. Despite its high prevalence, FH 
is still underdiagnosed, with less than 1% of the patients 
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diagnosed in most countries [5]. Although there is a con-
sensus on the criteria required to diagnose FH there are 
several clinical scoring systems that evaluate differently 
the consensus parameters [6, 7]. Among them, Dutch 
Lipid Clinic Network (DLCN)5 and Simon Broome Reg-
ister (SBR) [8] are the most used ones. Most FH clini-
cal algorithms consider lipid values (total cholesterol and 
LDL-C levels), the presence of physical stigmata (ten-
don xanthoma or corneal arcus), cascade screening and 
pathogenic DNA variants. Functional validation plays a 
crucial role in achieving a correct and early diagnosis of 
FH through genetic testing, which is considered the pre-
ferred method for FH diagnosis. However, the majority 
of FH variants lack functional characterization, requiring 
additional measures to complement genetic testing for an 
accurate and definitive diagnosis [9].

LDLR

The LDLR gene located on 19p13.2 chromosome encodes 
a type I transmembrane protein of 839 amino acids, the 
LDLR, which regulates cholesterol homeostasis in mam-
malian cells [1] and constitutes the main gene associated 
with FH. Genetic variants in LDLR represent more than 
90% of the FH causing variants, with more than 3000 vari-
ants annotated in ClinVar database [10]. LDLR is struc-
tured into functional subdomains organized within an ecto-
domain and intracellular domain (Fig. 1). The ectodomain 
contains the ligand binding domain (LBD), the epidermal 
growth factor precursor homology domain (EGF) and 
the O-linked domain. On the other hand, the intracellular 
domain harbors the transmembrane domain and the cyto-
plasmic domain, that targets the LDLR to clathrin-coated 
pits for the internalization of the LDLR-LDL complex 
[11, 12]. Binding of lipoproteins to the LDLR is mediated 

through the interaction of acidic residues in the LBD with 
basic residues of apoB-100 or ApoE [13]. Additionally, 
LDLR also interacts with PCSK9, a secreted protein that 
regulates membrane levels of LDLR through binding to 
EGF-LDLR domain, leading to degradation of LDLR in 
the endosome [14].

According to the region of the LDLR affected, the LDLR 
pathogenic variants can be classified into six sub-classes: 
class 1: LDLR is not synthesized, known as “null allele”; 
Class 2: LDLR is retained in the endoplasmic reticulum, 
completely or partially (2A and 2B, respectively); Class 3: 
Deficient binding to apoB-100; Class 4: Impaired endocyto-
sis due to a deficient recruitment of the LDLR into clathrin-
coated pits; Class 5: Impaired recycling; Class 6: impaired 
insertion in the membrane [3, 15]. LDLR pathogenic vari-
ants have been described along all domains and, depend-
ing on their location, they can affect the receptor function 
differently.

APOB

The APOB gene located on the 2p24.1chromosome is a 
large and polymorphic gene spanning 43 kb in length, 
which constitutes the second most common cause of FH. 
The APOB gene comprises 29 exons and 28 introns, and 
encodes two forms of apolipoprotein B (apoB) in circu-
lating lipoproteins, apoB-48 and apoB-100. ApoB-48 is 
produced by the small intestine, whereas full-length apoB-
100 is produced in the liver. The mature form of apoB-100 
is a protein of 4536 amino acids [16], which constitutes 
both the integral component of several lipoproteins (very 
low-density lipoprotein (VLDL) and LDL [17]) and the 
ligand for LDLR [18]. ApoB-100 interacts with lipids in a 
close manner, and the conformation that adopts the apoli-
poprotein within the lipid moiety confers the structure and 
physical properties to the lipoprotein [19] (Fig. 1). The 
apoB-100 domain that interacts with LDLR was first local-
ized between residues 3386 and 3396 [20]. Although not 
proven experimentally, an eight-domain model for apoB-
100 binding to LDLR was later proposed, in which the 
LDLR binding regions in apoB-100 expand between resi-
dues 2820–3202 and 3243–3498 [21]. The most frequent 
APOB pathogenic variant to date is p.R3527Q [22]. It has 
been shown that alterations in residue 3527 destabilize the 
protein, affecting the structure and, thus, the affinity for 
LDLR [23]. In addition to pathogenic variants within the 
putative binding domain, a growing number of pathogenic 
APOB variants are being described outside the putative 
binding regions, which complicates the identification of 
pathogenic variants [24]. In addition, this heterogeneity of 
pathogenic variants in APOB suggests that conformational 
modifications of the apolipoprotein could be a key player 
in the affinity of apoB-100 to LDLR [25].

Fig. 1  Cholesterol Homeostasis and Genetic Variants. (A) The LDLR 
gene encodes a transmembrane protein that regulates cholesterol 
homeostasis. LDLR has functional subdomains within its ectodomain 
and intracellular domain. It interacts with lipoproteins and PCSK9, 
leading to internalization and degradation. Pathogenic LDLR vari-
ants are classified into six subclasses based on their effects. (B) The 
APOB gene encodes apoB-100, a key component of lipoproteins and 
the primary ligand for LDLR. The conformation and binding regions 
of apoB-100 influence its affinity for LDLR. APOB pathogenic vari-
ants can occur outside these binding regions, making the identifica-
tion of pathogenic variants more challenging. This suggests that con-
formational modifications of apoB-100 may play a significant role 
in its interaction with LDLR. (C) PCSK9 is synthesized as a zymo-
gen and undergoes autocatalysis to release a peptide that inactivates 
its catalytic activity. Binding of PCSK9 to the LDLR-EGF domain 
prevents the conformational change required for receptor recycling. 
Upon endosome acidification, PCSK9’s affinity for LDLR increases, 
leading to the degradation of the LDLR-PCSK9 complex in the lyso-
some. GOF variants increase LDLR degradation, resulting in elevated 
LDL-C levels and increased risk of CVD

◂
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PCSK9

PCSK9 belongs to a family of 9 subtilisin-like serine pro-
teases and plays a key function in plasma cholesterol metab-
olism by regulating LDLR levels through the promotion of 
LDLR degradation [26]. The PCSK9 gene is located on the 
short arm of chromosome 1p32.3. PCSK9 is synthesized as 
a 72 kDa soluble zymogen (proPCSK9), which undergoes 
an autocatalytic process at the N-terminal domain. Upon 
autocatalysis, a 14 kDa peptide is released, which remains 
attached to the mature protein and inactivates the catalytic 
activity [27]. Upon binding to the LDLR-EGF domain, 
PCSK9 prevents the LDLR conformational change required 
to be recycled. This effect occurs after endosome acidifi-
cation, which increases the affinity of PCSK9 for LDLR 
and leads the LDLR-PCSK9 complex to degradation in the 
lysosome [28] (Fig. 1). Large cohort studies have shown the 
existence of two major PCSK9 variants, gain-of-function 
(GOF) and loss-of-function (LOF) [29, 30]. PCSK9 path-
ogenic variants leading to GOF activity have been identi-
fied as the third genetic cause of FH [29, 31]. PCSK9 GOF 
variants increase LDLR degradation, resulting in higher 
circulating LDL-C levels, which directly increases the risk 
of developing CVD. On the other hand, LOF variants have 
a diminished effect on LDLR degradation, thus leading to 
lower LDL-C levels and decreased CVD risk. Both types 
of variants are broadly distributed along the three domains 
of the protein: the prodomain, the catalytic domain, and the 
C-terminal domain. The mechanisms by which the GOF/
LOF PCSK9 variants affect LDLR degradation-rate are 

diverse, so predicting the effect of PCSK9 variants is com-
plex [32].

Bioinformatics as a Clinical Tool

Functional characterization is a direct method to assess the 
activity of a variant by analyzing its effect on the biological 
processes in which the molecule is involved [15]. However, 
this is an arduous, time-consuming, and costly process that 
involves obtaining samples from the patient for subsequent 
purification or cloning the variant to further characterize 
their functionality in vitro. Additionally, during the past few 
years, high-throughput next-generation sequencing (NGS)-
based methods have drastically increased the number of FH-
related gene variants, opening the floodgates for the develop-
ment of prediction models [33, 34]. On the other hand, the 
huge number of genetic variants being described through 
high-throughput NGS has increased to such an extent that 
it is almost impossible to functionally characterize all of 
them. Although functional characterization is essential for 
the proper analysis of a variant, in silico prediction tools 
offer a quick, cheap, and increasingly precise alternative.

Bioinformatic tools use the current knowledge about a 
protein or protein family to create in silico predictive mod-
els. These tools mostly rely on artificial intelligence (AI) to 
develop mathematical models capable of solving complex 
biological problems by analyzing vast datasets and intricate 
molecular interactions, ultimately aiding in the prediction of 
protein structure, function, and interactions [35]. AI involves 
the development of intelligent systems that act rationally in 
response to the given inputs. Machine learning (ML), one 
of the most well-known AI disciplines, applies statistical 
models and algorithms to analyze data. In contrast to clas-
sical programming, where known features (inputs) are used 
to create the algorithm, ML may use novel or different com-
binations of inputs and weights [36].

The most important parameters when developing a ML 
model are the dataset used in the training of the model and 
the approach used to optimize the results. Depending on the 
datasets used, an ML model can be supervised or unsuper-
vised [37]. Supervised models learn from labeled training 
data (pathogenic/benign) and try to fit the algorithm to give 
accurate predictions [38]. This type of training dataset is 
applied for regression and classification problems, so it is the 
most common in the field of pathogenicity prediction. Unsu-
pervised models, on the other hand, use unlabeled data, and 
are mainly used for clustering and anomaly detection [39].

In terms of the statistical methodology, the primary tech-
niques encompass classical methods, neural networks, and 
Bayesian regression [35] (Fig. 2). The most basic classi-
cal technique is linear regression, where the relationship 
between one or more numerical features is described using 
a straight line (Fig. 2A). A more complex classical technique 

Fig. 2  AI statistical models. Classical methods: (A) Linear regression 
describes the relationship between features with a straight line. (B) 
Logistic regression divides features using sigmoidal curves, a more 
complex approach. (C) In random forest, features are consequently 
divided to improve the classification accuracy. Each decision “tree” 
starts from a first split in the database called the “root,” and the divi-
sion continues creating “branches.” The classification output of each 
“tree” is combined with other “trees,” creating a “forest,” and the 
most voted option is the output of the model. Neural Networks: Neu-
ral networks draw inspiration from biological neural networks where 
nodes (neurons) communicate via connections (axons and dendrites) 
with weighted synapses, optimizing information flow. In contrast to 
classical techniques, neural networks can construct planes or hyper-
planes (in multiple dimensions) to effectively separate features. (D) A 
basic neural network includes an input layer, up to three hidden lay-
ers, and an output layer. (E) Deep neural networks can comprise hun-
dreds of layers, enhancing overall performance but requiring complex 
development. (F) Feed-back neural networks allow signals to trav-
erse layers bidirectionally. (G) Convolutional networks are primarily 
employed for image recognition. Bayes: This approach models rela-
tionships while quantifying uncertainty. The Bayes approach can be 
applied to classical models and neural networks, enabling predictions 
with probability distributions, and incorporating prior information of 
the problem into the model. Bayesian models enable a deeper under-
standing of the underlying data and facilitate informed decision-mak-
ing. In contrast to standard Bayesian models, Naïve Bayes assumes 
independence between features, simplifying models

◂
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is logistic regression since the relationship is estimated by a 
sigmoidal curve (Fig. 2B). Decision trees and random for-
est are also classical techniques. They are trained by super-
vised datasets and are mostly used for classification and 
regression. Each “tree” starts from a “root,” the first split 
in the dataset that best divides the data into their respective 
classes. After the split, the process can continue creating 
“branches.” To create a “forest,” the dataset can be divided 
into subsamples that are used to create multiple “trees,” and 
the majority vote among them is used as the final model 
[36] (Fig. 2C). Neural networks are inspired by biological 
neural networks, where each node (neuron) communicates 
with others via connections (axons and dendrites), and these 
connections are weighted to provide an optimized output. 
In contrast with classical techniques, neural networks can 
find planes or hyperplanes (more than three dimensions) to 
separate the features. The most basic neural network consists 
of an input layer, up to three hidden layers, and an output 
layer (Fig. 2D). However, deep neural networks can contain 
hundreds of layers. This structure gives deep neural network 
a better overall performance, but they are harder to develop 
(Fig. 2E). In addition to the number of layers, there are mul-
tiple types of neural networks, such as feedforward (stand-
ard, a layer communicates with the next one), feed-back (sig-
nals can go back in layers), or convolutional (mostly used for 
image recognition) [40] (Fig. 2F and G). Finally, the Bayes-
ian approach is a statistical method that models relationships 
between variables while quantifying uncertainty, enabling 
predictions with probability distributions, informed by prior 
beliefs, and observed data [41]. The Bayesian approach can 
be applied to other techniques such as classical regressions 
or neural networks, treating coefficients as probability distri-
butions, and capturing uncertainty in predictions. Bayesian 
methods give the possibility to incorporate prior information 
into the model, a probability distribution that represents bio-
logical knowledge, or assumptions about the possible values 
of a parameter before observing any data. Bayesian models 
enable a deeper understanding of the underlying data and 
facilitate informed decision-making, in contrast to black-box 
models that offer predictions without explicit uncertainty 
estimates. Naïve Bayes is a classification technique that 
assumes conditional independence between features, making 
it computationally efficient but potentially oversimplifying 
real-world relationships (Fig. 2 lower panel).

Pathogenicity Prediction Software for FH: 
Analysis of Human Genetic Variants

Single nucleotide variants (SNVs) represent most of the 
human genetic variants and constitute a major class of 
genetic risk across common and rare diseases [42]. The 

SNVs of special interest are those in which an amino acid 
is substituted, known as non-synonymous SNVs (nsSNV) 
since they can affect the biological function of a gene prod-
uct in several ways. In fact, most of the variants that cause 
FH described so far are missense, ranging from 46%, 52%, 
and 83% in LDLR, PCSK9, and APOB, respectively [43]. 
The effect introduced by a missense variant is difficult to 
predict; in fact, many of the LDLR variants classified as 
pathogenic by in silico predictions were later reclassified 
after cascade screening and co-segregation studies [44].

The American College of Medical Genetics and Genom-
ics (ACMG) proposed a specific nomenclature and criteria 
for the classification of pathogenic variants [45]. This clas-
sification recommends the use of five distinct subclasses: 
pathogenic, likely pathogenic, uncertain significance, likely 
benign, and benign, with an exceptional class for nonsense 
and frameshift variants, which are almost always patho-
genic [46]. Following the ACMG recommendations, 824 
out of 2104 LDLR, APOB, and PCSK9 variants found in 
FH patients (655, 77, and 92, respectively) need functional 
characterization once the nonsense, frameshift, and the 
characterized ones are discarded [43]. Still, about 40% of 
all variants need functional evidence to be classified as 
pathogenic.

Originally, in silico tools were designed to give priority to 
in vitro characterization of those variants with higher patho-
genic probabilities [47]. In recent years, prediction software 
has greatly improved in accuracy; however, conclusive diag-
nosis of a variant is still achieved by in vitro characterization 
or cascade screening. A predictive model considers different 
characteristics in order to assess the impact of a given variant 
on protein function, from the evolutionary conservation of an 
amino acid or nucleotide among homologous sequences to 
structure analysis [48]. Thus, several prediction software pro-
grams have been developed based on the analysis of each par-
ticular feature alone or by a combination of several of them.

Prediction software programs can be classified depending 
on the analyzed parameters (sequence conservation or struc-
tural and physicochemical parameters) or the technique used 
(machine learning and AI) [49]. The latest trend in the devel-
opment of predictive software involves combining existing 
models to create innovative frameworks with enhanced accu-
racy and scope. This approach is revolutionizing the way mod-
els are developed, resulting in more robust variant assessment.

Each software has its own weaknesses and strengths, 
depending on the analyzed criteria, the developed algo-
rithm, and the examined protein. In some cases, a model 
can be entirely focused on a specific protein, which usually 
improves the accuracy of the prediction. For these reasons, 
a prediction is more accurate as there is agreement/consen-
sus among different predictive tools. The ACMG guidelines 
recommend the use of multiple software packages at once 
for a more reliable interpretation [45].
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There is no guidance/recommendation on which software 
should be used or how many of them should agree for a 
prediction to be considered reliable [50•]. In this review, the 
most commonly used software for predicting the effect of a 
missense variant in LDLR, APOB, and PCSK9 are described, 
both general and specific ones, to facilitate the selection of 
the most appropriate for a given variant. Below, the spe-
cific features and characteristics of the most commonly used 
software for predicting LDLR, APOB, and PCSK9 missense 
variants are summarized.

General Predictive Software

Most predictive software has been trained with a wide 
variety of protein databases, so they are able to predict the 
pathogenicity of a broad number of proteins. However, they 
may fail to diagnose proteins with unique characteristics, or 
their accuracy may be lower.

Early Generation Predictive Software

Several models, including SIFT (Sorting Intolerant From 
Tolerant), Polyphen-2, and MutationTaster, have paved the 
way for the advancement of modern predictive tools. These 
models leverage a variety of features, such as sequence 
conservation, physicochemical properties of amino acids, 
and protein structural information, to assess the potential 
pathogenicity of genetic variants. These software tools were 
pioneers in the field of pathogenicity prediction and laid the 
foundation for subsequent developments. Despite their older 
age, they remain valuable and have been widely used in the 
scientific community.

SIFT SIFT (https:// sift. bii.a- star. edu. sg/) is based on protein 
sequence homology and conservation to predict the patho-
genicity of SNPs (single nucleotide polymorphisms) using 
Bayes [47]. SIFT classifies the queries as tolerated when 
the change is predicted to not compromise the protein’s 
function, or not tolerated, when an alteration is predicted. 
This software presumes that well conserved amino acids are 
important, so its prediction relies solely on amino acidic 
sequence. Therefore, SIFT can evaluate missense variants 
only when homologous sequences are available, and it is 
especially suited for sequences with well-aligned ortholo-
gous sequences [51].

PolyPhen‑2 Polymorphism Phenotyping v2 (PolyPhen-2) 
(http:// genet ics. bwh. harva rd. edu/ pph2/), one of the most 
widely used pathogenicity predicting software, uses both 
protein sequence- and structure-based features to evaluate 
variants, and the effect is predicted by a Naïve Bayesian 

classifier [52]. The sequence-based features include posi-
tion-specific independent counts (PSIC) [53] scores and 
multiple sequence alignment (MSA) [54] properties, and 
the position of variants in relation to domain limits. The 
structure-derived features are solvent accessibility, changes 
in solvent accessibility for buried residues, and crystallo-
graphic B-factor [48].

MutationTaster MutationTaster (https:// www. mutat ionta 
ster. org/) is a software that integrates information from 
different biomedical databases and analyses evolutionary 
conservation, splice-site changes, loss of protein features, 
and changes that might affect the amount of mRNA by a 
Naïve Bayesian classifier [55]. MutationTaster contains 
data of SNPs and deletions from 1000 Genomes Project 
[56] and pathogenic variants found in ClinVar and Human 
Gene Mutation Database (HGMD) [57]. Common variants 
in the 1000 Genomes Project are automatically classified 
as benign, while variants annotated as pathogenic in Clin-
Var are automatically categorized as pathogenic. Although 
developed in 2014, a new version of MutationTaster imple-
menting random forest was released in 2021.

Recent Generation Predictive Software

Recognizing the necessity for enhanced accuracy and 
broader coverage, more recent pathogenicity prediction 
models have emerged, further building upon the predictions 
of their predecessors. The latest trend in AI is ensemble 
models. Ensemble models, an innovative approach in pre-
dictive analytics, combine the outputs of multiple individual 
models to bolster accuracy and robustness in predictions. 
This technique’s advantage lies in minimizing individual 
model limitations while capitalizing on their strengths, 
yielding more reliable outcomes. The guiding principle 
in designing ensemble methods has been “many heads 
are better than one” [58]. There are many ways of com-
bining and weighting the “base” models, such as bagging 
(different data samples per model), boosting (sequential 
training), or stacking (same data samples for each model 
followed by a meta-model). Several models have been cre-
ated with this approach in recent years, such as MetaLR 
and MetaSVM [59], Eigen [60], DANN [61], Condel [62], 
etc. In this review, we will focus on CADD (Combined 
Annotation-Dependent Depletion), REVEL (Rare Exome 
Variant Ensemble Learner), and Varity, some of the most 
accurate models.

The development and training of these models is much 
more complex, as they incorporate a larger number of fea-
tures, and their training is more complex, often involving AI 
and larger datasets. However, the larger the amount of data 
available, the more accurate the model will be. The sum of 
these three factors (larger databases, models to rely on, and 

https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
https://www.mutationtaster.org/
https://www.mutationtaster.org/
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the power of AI) has led to the development of predictive 
models with an accuracy never seen before.

REVEL REVEL (https:// sites. google. com/ site/ revel genom ics/) 
is an ensemble method for predicting the pathogenicity of 
missense variants on the basis of combining many individual 
tools focused on rare variants [63]. REVEL uses bagging 
random forest technique to incorporate 18 pathogenicity 
scores from 13 prediction tools (MutPred, FATHMM v2.3, 
VEST 3.0, PolyPhen-2, SIFT, PROVEAN, MutationAssessor, 
MutationTaster, LRT, GERP +  + , SiPhy, phyloP, and 
phastCons). The score depends on the preference of the user 
since the threshold can be modified to improve the sensitivity 
or the specificity. REVEL was suggested as the optimal in 
silico predictor by ClinGen [64] FH variant curation expert 
panel in the guidelines for LDLR variant classification [65].

The REVEL method has strengths in several dimensions. 
It was trained and evaluated on recently discovered disease-
causing and neutral variants, similar to possible future variants 
found in NGS studies. REVEL’s integration of a diverse set of 
predictors enriches its predictive power. In addition, REVEL’s 
careful exclusion of training variants from its predictor 
components reduces overfitting problems. Demonstrating very 
high overall performance in independent evaluations, REVEL 
particularly excels in discerning disease-causing from rare 
neutral variants. Its value lies in prioritizing relevant variants 
amid the wealth of rare findings in sequencing analyses, 
facilitated by pre-calculated scores available for access. The 
use of the method extends to case–control studies at the genetic 
level, as evidenced by its adoption in the International Prostate 
Cancer Genetics Consortium or ClinGen. Its applicability to 
genes could be studied in the future to interpret variants of 
unknown significance in various clinical conditions.

CADD CADD (https:// cadd. gs. washi ngton. edu/) gives 
pathogenicity scores based on diverse genomic features 
derived from surrounding sequence context, gene 
model annotations, evolutionary constraint, epigenetic 
measurements, and functional predictions [66]. CADD 
considers the pathogenicity scores of SIFT or PolyPhen-2 
but also takes into account models such as mirSVR [67] 
(ranks microRNA target sites) or Genomic Evolutionary Rate 
Profiling (GERP) [68] (evolutionary constraints). The model 
uses logistic regression to fit the data. A differential feature 
of this software is that CADD is not trained on characterized 
genomic variants; it uses less biased, much larger training sets. 
Another unique aspect of CADD is that it does not specify a 
cut-off value for pathogenicity scores above which a variant 
is declared pathogenic or benign.

Varity Varity (http:// varity. varia nteff ect. org/) is a model opti-
mized to detect rare variants [69]. It is based on four feature types: 

conservation, physicochemical properties, protein–protein inter-
action, and structure-related properties. It considers more than 
30 parameters, scores from pathogenicity predictive tools such 
as SIFT, PROVEAN [70] or Evm [71] among others, and uses 
random forest and logistic regressions to optimize the output. The 
model was specifically trained with rare (minor allele frequency 
[MAF] between 0.5 and  10–6) and extremely rare (MAF <  10–6) 
missense variants from ClinVar, although it is still very accurate 
with common variants. Being the most recent one, it was tested 
against CADD and REVEL, outperforming them.

The information provided above is illustrated in Fig. 3.

Predictive Models for LDLR Genetic Variants

In recent years, there has been a rapid development of predictive 
software for specific proteins, which has provided very special-
ized models capable of considering specific nuances of each 
protein. The development of a model of this type requires the 
existence of extensive databases containing many variants of 
the protein to be studied. In this way, and by applying machine 
learning models, the software can be primed with enough infor-
mation so that it can provide accurate results. Due to the rela-
tively high frequency of nonsense variants of LDLR, it has been 
possible to generate extensive databases (ClinVar, LOVD) that 
allow the development of highly accurate predictive models.

SFIP‑MutID

Structure-based Functional Impact Prediction for Mutation Iden-
tification (SFIP-MutID) was developed using structural mod-
els of LDLR at both neutral and acidic pH [72]. The structures 
of LDLR were obtained from the protein data bank (PDB ID, 
1F5Y, 1N7D), and to visualize the effect of each variant, homol-
ogy modeling in Discovery Studio [73] was used. SFIP-MutID 
considers three aspects of the protein: the affected domain (vari-
ants in some domains are more likely to be pathogenic), the 
structure of the affected area, and, an energy-based score that 
classifies variants as destabilizing or not. However, this model 
does not cover certain regions of the LDLR because the struc-
ture of the protein is not completely resolved [72].

MLb‑LDLr

The most recent LDLR-specific predictive software is 
Machine Learning-based LDLr (MLb-LDLr) [74]. This 
model is trained on the ClinVar database, where more than 
1300 LDLR missense characterized variants are annotated 
(last update: November 2022). It considers seven features 
of the altered amino acid to give a prediction: conservation 
of the substituted residue, original and substituting amino 

https://sites.google.com/site/revelgenomics/
https://cadd.gs.washington.edu/
http://varity.varianteffect.org/
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acids, charge, hydrophobicity, size change, and affected 
domain. Mlb-LDLr is an open-access predictive software 
provided to the scientific community (https:// www. ehu. eus/ 
en/ web/ hyper chole stero lemia- mecha nisms/ mlb- ldlr1). The 

introduction of a machine learning algorithm provides a 
predictive model with a specificity of 92.5% and a sensitiv-
ity of 91.6%, which shows high accuracy in predicting both 
pathogenic and benign variants.

SIFT
Sorting Intolerant From Tolerant

PolyPhen-2
Polymorphism Phenotyping v2 

CADD
Combined annotation-Dependent Depletion

Mutationtaster

--  Based mostly on aminoacid conservation

-- Accurate when well-aligned orthologous available

-- Not useful if no homologous sequence available

-- Bayes

-- Sequence-based features: aminoacid properties (polarity, charge…), 
    conservation and functional domains

-- Structure-based features: Tertiary structures, stability, binding 
    interfaces

-- The prediction score ranges from benign to possibly damaging or 
    probably damaging, with higher scores suggesting a higher impact

-- Naive Bayes 

-- Based on conservation analysis, splice site analysis 
    and protein features such as secondary structure, 
    transmembrane domain, post-translational 

-- If present, gives clinical information about the mutation 

-- Predicts intronic, single aminoacid and complex alterations 

--  Naive Bayes (2014), Random forest (2021)

-- Based on evolutionary conservation: if a variant is 
    well preserved, it is probably neutral or benign, meanwhile a de novo 
    mutation could be damaging

-- Trained on less biased, much larger datasets instead of well 
    characterized variants

-- Two outputs: raw scores (relative values, more accurate, not comparable
    across models) and scaled scores (normalized values, less resolution)

-- Logistic regression

Varity

-- 4 features: Conservation, physicochemical properties, 
    protein-protein interaction and structure-realted properties

-- More than 30 parameters

-- Trained with rare pathogenic variants

-- Random forest and logistic regression

REVEL 
Rare Exome Variant Ensemble Learner

-- Ensemble method combinig 13 individual tools and 18 pathogenicity 
    scores

-- Trained with rare pathogenic variants

-- Random forest

Early generation predictive software Recent generation predictive software

Fig. 3  Pathogenicity Prediction Software. Early generation: Based 
mostly on conservation, physicochemical properties, and structure. 
SIFT predicts pathogenicity of SNPs based on protein sequence 
homology based on the Bayes approach. It focuses on well-conserved 
amino acids and requires homologous sequences for accurate evalua-
tion of missense variants. PolyPhen-2 utilizes both protein sequence- 
and structure-based features to evaluate variants using Naïve Bayes. 
It incorporates position-specific independent counts (PSIC) scores, 
multiple sequence alignment (MSA) properties, and structural char-
acteristics to predict the effect of variants. MutationTaster integrates 
information from biomedical databases to analyze evolutionary con-
servation, splice-site changes, loss of protein features, and mRNA-
related changes for predicting pathogenicity. It uses a Naïve Bayesian 
classifier. Recent generation: These modern models use ensemble 

techniques that combine the output of multiple individual models 
to get a more precise result. REVEL uses random forest to integrate 
13 prediction tools, focused on rare missense variants. It was trained 
with recently discovered variants to mimic possible variants found 
in the future. CADD provides pathogenicity scores based on diverse 
genomic features and considers pathogenicity scores of SIFT and 
Polyphen-2 among others. It employs large training sets and logistic 
regression to fit the data. CADD does not rely on a specific cut-off 
value for pathogenicity determination. Varity is based on 4 feature 
types: conservation, physicochemical properties, protein–protein 
interactions, and structure-related properties. It considers more than 
30 parameters and uses random forest and logistic curve to optimize 
the output. Varity also focuses on rare missense variants

https://www.ehu.eus/en/web/hypercholesterolemia-mechanisms/mlb-ldlr1
https://www.ehu.eus/en/web/hypercholesterolemia-mechanisms/mlb-ldlr1


848 Current Atherosclerosis Reports (2023) 25:839–859

1 3

Predictive Models for APOB Genetic Variants

Compared to the large study carried out in LDLR, APOB 
genetic variants are not as well characterized, and pathogenicity 
predictions for this protein are much less reliable. While most 
proteins pathogenic variants tend to occur in highly conserved 
regions, APOB variants are distributed all over the protein [75]. 
In fact, the most used in silico tools have failed to correctly pre-
dict some of the most common APOB variants [76], except for 
genetic variants with a major involvement in receptor binding 
[20–22]. These results indicate that computer-based predictions 
of functional effects cannot yet reliably predict the effect of 
APOB SNVs. Several factors underlie the inaccuracy in the 
prediction of the effects of a missense apoB-100 variant, among 
them: the huge size of the protein, the lack of a crystallographic 
structure of the native protein, and the nature of protein folding 
within a lipid moiety, which cannot be addressed by in silico 
tools to study the protein–lipid interactions.

In addition to the pathogenic receptor binding variants of 
apoB-100, there exist other pathogenic variants that exert 
an impact on the structural integrity of the apoB molecule, 
leading to the impairment of very low-density lipoprotein 
(VLDL) and low-density lipoprotein (LDL) assembly pro-
cesses. These genetic variants underlie the etiology of heredi-
tary familial hypobetalipoproteinemia (FHBL), a clinical 
condition distinguished by compromised hepatic lipid secre-
tion and limited transport to peripheral tissues. The spectrum 
of APOB pathogenic variants contributing to both biallelic 
APOB-FHBL and heterozygous APOB-FHBL is largely rep-
resented by frameshift, nonsense, and splice variants. These 
variants result in the production of a truncated apoB protein, 
characterized by an incomplete sequence, thereby perturb-
ing its functional properties. Consequently, this perturbation 
results in marked reduction in levels of total cholesterol, 
LDL,VLDL, and serum triglycerides [77].

In this context, precise discrimination between variants that 
elevate and those that lower LDL cholesterol levels is crucial for 
clinical accuracy. Prediction software must effectively distin-
guish such pathogenic variants, holding paramount significance 
in guiding appropriate treatment strategies and understanding 
patient well-being implications. Given the multifaceted role of 
apoB-100, these considerations are pivotal for ensuring clinical 
management and genetic interpretation precision.

Predictive models for PCSK9 genetic variants

Predicting the functional consequences of missense vari-
ants in PCSK9 is a challenging task due to the varied out-
comes they can produce. While some variants result in 
reduced PCSK9 function and are deemed benign, others 
lead to increased activity, thereby causing autosomal domi-
nant hypercholesterolemia. Consequently, the prediction of 

PCSK9 pathogenicity introduces additional complexity as 
software tools must not only anticipate deleterious effects 
on protein structure or conformation but also determine the 
variant’s pathogenic, atheroprotective, or neutral nature.

Assessment of the performance of software tools such as 
SIFT and PolyPhen-2 in analyzing GOF and LOF variants 
in multiple genes has been conducted. The findings indi-
cate that both software tools exhibit heightened sensitivity 
and specificity for LOF variants compared to GOF vari-
ants [78]. This behavior can be attributed to the fact that 
LOF variants often involve substantial amino acid substi-
tutions with significant physicochemical changes, thereby 
instilling greater confidence in the predictions. Moreover, 
GOF variants are less prevalent, resulting in less extensive 
algorithm training. When applying this understanding to 
PCSK9, one can anticipate higher accuracy in predicting 
LOF variants, despite the existence of a greater number 
of reported PCSK9 GOF variants. Nonetheless, certain 
regions of the PCSK9 protein, such as the LDLR binding 
site and furin cleavage site [28], are well characterized, 
allowing for more accurate in silico predictions for variants 
occurring in these areas.

This highlights the intricate nature of prediction within 
the complex landscape of PCSK9’s functionality. Conse-
quently, critical importance lies in the capacity of predic-
tion software to accurately distinguish between GOF patho-
genic variants and LOF cardioprotective variants. It becomes 
increasingly evident that the mere labeling of a PCSK9 
variant as “pathogenic” by software does not guarantee its 
attribution as a cause of FH. This is particularly relevant as 
software might interpret a LOF variant as pathogenic due to 
its failure to meet the criteria for benign classification, even 
though it may possess beneficial physiological outcomes.

Despite the complexities involved, the performance of 
commonly used pathogenicity predictive software for LDLR, 
APOB, and PCSK9 can be assessed empirically. Table 1 
summarizes the expected performance of these software 
tools based on the available data.

Structure‑Modeling Software

Since the structure of a protein determines its function, 
protein structure prediction (PSP) is a major challenge in 
biochemistry. A protein’s ability to fold into different con-
formations is essential for the viability of many biological 
processes. Therefore, knowing the 3D conformation of a 
protein is decisive for being able to predict the effect of a 
variant on its biological function [80, 81••].

The determination of a protein’s structure has tradition-
ally relied on high-resolution experimental techniques such 
as X-ray crystallography [63], NMR spectroscopy [64], and 
cryo-electron microscopy [65]. While these methods yield 
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the most precise protein structures, the process of crystal-
lization poses a significant bottleneck, particularly given the 
vast number of protein sequences to be solved [66]. This sit-
uation highlights the necessity of generating in silico models 
to provide accurate structure predictions. In this sense, two 
main PSP approaches have been used over the years: tem-
plate-based modeling (TBM) and template-free modeling 
(FM) methods. TBM methods use the structural framework 
of existing proteins obtained from the PDB, while FM meth-
ods predict the structure without any template. The accuracy 
of TBM relies on the existence of evolutionary similar pro-
teins, obtaining very precise predictions for proteins with 
high sequence identity (SI) templates. However, when SI 
drops below 30%, the accuracy of the model decreases [82]. 
In those cases, FM methods are more useful because they are 
based on physics- and knowledge-based energy functions. 
As they construct protein structures from scratch, they are 
often referred to as ab initio or de novo modeling approaches 
[79, 83]. In general, FM does not achieve the same accuracy 
as TBM, but the gap between both methods is narrowing 
thanks to the use of deep learning approaches [84, 85].

PSP is generally composed of four main components: the 
input, a trunk, an output, and a refinement module [86]. The 
primary input is typically the protein’s primary sequence, 

although modern models have incorporated additional infor-
mation such as homologous multiple sequence alignment 
(MSA). The trunk component analyzes the input data and 
utilizes folding engines, empirical knowledge of sequence-
structure properties [87, 88], or more recently, contact maps 
(binary matrices encoding residues likely to be in contact) 
[89, 90] to predict the protein’s structure. The structures gen-
erated by the trunk component are subsequently transformed 
into 3D structures by the output module, which determines 
the atomic coordinates of the protein. Finally, the resulting 
3D structure undergoes refinement, which includes the addi-
tion of side-chain atoms and optimization of the overall con-
formation. Unlike prediction software, the purpose of these 
models is to forecast the effect on the structure of the protein 
and not the pathogenicity of a variant. With that informa-
tion, the effect of the variant can be inferred, either at the 
structural level or at the intermolecular level, if it affects the 
binding site with another molecule [91] (Fig. 4).

Although PSP algorithms have been used for a long 
time, very recently, a breakthrough has occurred with 
the development of AlphaFold, a new software that pre-
dicts the protein structure of an amino acid sequence, and 
allows visualizing and analyzing the results. AlphaFold is 
a structure prediction software developed by DeepMind 

Table 1  Pathogenicity 
predictive software expected 
performance on LDLR, APOB, 
and PCSK9 

Sn Sensitivity, Sp Specificity.
* Unpublished data currently under review in another study by Larrea-Sebal.

Pathogenic-
ity predictive 
models

LDLR74 APOB PCSK9

SIFT High accuracy
-Sn: 86%
-Sp: 88%

Low accuracy
-Lack of structure
-Low conservation

Regular
-Unknown mechanism
-LOF > GOF79

PolyPhen-2 High accuracy
-Sn: 93%
-Sp: 88%

Low accuracy
-Lack of structure

Regular
-Unknown mechanism
-LOF > GOF79

MutationTaster High accuracy
-Sn: 95%
-Sp: 78%

Low accuracy
-Low conservation

Regular
-Unknown mechanism

REVEL High accuracy*
-Sn: 95%
-Sp: 90%

Low accuracy
-Low conservation
-Low performance base models

Regular
-Unknown mechanism
-Low performance base models

CADD High accuracy
-Sn: 89%
-Sp: 94%

Low accuracy
-Low conservation

Regular
-Unknown mechanism

Varity High accuracy*
-Sn: 94%
-Sp: 91%

Low accuracy
  -Low conservation

Regular
-Unknown mechanism
-Low performance base models

SFIP-MutID Regular
-Sn: 90%
-Sp: 22%

- -

MLb-LDLr High accuracy
-Sn: 91%
-Sp: 91%

- -

Overall analysis Reliable predictions Unreliable predictions Moderate predictions
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[85] that first appeared in the 13th edition of Critical 
Assessment of Structure Prediction (CASP) [92]. CASP 
is a community-wide assessment that tests the ability of 
various software to model protein structure from amino 
acid sequence [93]. In CASP13, AlphaFold received 
exceptional ratings, outperforming all other models by a 
wide margin. Because of this, AlphaFold was considered 
an anomalous leap in the field of protein structure predic-
tion [94]. AlphaFold is based on co-evolution-dependent 
methods. These models work by detecting residues that 
co-evolved, i.e., that have mutated together over time, 
suggesting that both residues interact and are close to 
each other in 3D space [95]. Using this approach, it can 
be inferred whether two residues are in contact or not 
(binary contact matrices), which allows the acquisition 
of 3D coordinates. However, AlphaFold uses a more 
sophisticated co-evolution-dependent method based on 
RaptorX [96]. Instead of predicting binary contact, Rap-
tor X predicts the distance between residues using discre-
tized spatial ranges and calculates the mean and variance 
of the predicted distribution to localize each atom. Fur-
thermore, AlphaFold uses a hundred-layer deep learning 
neural network to solve the structure, a technique never 
before applied to PSP [97]. All in all, AlphaFold, and its 
newer version AlphaFold 2 released for CASP14 (2020), 
are the most accurate PSP models available [98].

In addition to structure prediction, recent PSP algo-
rithms also include the ability to predict the effect of mis-
sense variants using structure analysis [91, 99–109]. These 
algorithms predict 3D protein structure from amino acid 
sequences by searching for the most stable 3D state under 
native conditions. If a pathogenic variant destabilizes 
the molecule, then it can be expected that the algorithm 
will predict a more unfolded state [110]. However, these 
models are still in their very early stages of development 
and are not very accurate. For example, the predictive 
capability of AlphaFold-2 was tested on 2648 single-
point missense variants over 121 proteins, with accurate 
results when compared to experimentally obtained struc-
tures [91]. Nevertheless, other studies reported that while 
AlphaFold is currently unable to predict structural effects 
of missense variants, it is conceivable that incorporation 
of experimental data and a database for storing structure-
disrupting pathogenic variants will enable this feature in 
future versions of protein structure prediction programs 
[110, 111].

PSP software can be especially useful to study the effect 
of a missense variant on FH-related gene variants since 
many of the pathogenic variants occur at intermolecular 
interaction sites. ApoB-100 interacts with LDLR to be 
internalized, and the interaction of PCSK9 with LDLR 
regulates receptor expression. The residues involved in 

Protein Structure Prediction (PSP) 

Input Trunk  Output Refinement

Protein sequence

MSA

Structure prediction
 Folding engines
 Empirical knowledge
 Contact maps

Convertion into 
3D structures

Side chain atoms

Structure Optimization 

Template Base Modelling (TBM)

PDB structures as template

If templates high accuracy method

High homology protein structure needed

SI under 30%  highly decreses accuracy

Template Free Modelling (FM)

No template needed

Physics and knowledge bases predcition

Increasing accuracy due to deep learning

Fig. 4  Protein Structure Prediction Workflow. PSP models, com-
prising input, trunk, output, and refinement modules, enable pro-
tein structure prediction. The input, usually the protein’s primary 
sequence, is analyzed by the trunk component using folding engines, 
sequence-structure knowledge, or contact maps to predict the struc-
ture. The output module converts the trunk-generated structures 

into 3D structures by determining atomic coordinates. Refinement 
involves optimizing the conformation and adding side-chain atoms. 
PSP models focus on predicting structural effects rather than vari-
ant pathogenicity. Nevertheless, they provide valuable insights into 
the impact of variants on protein structure, including intermolecular 
interactions at binding sites
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both processes are well characterized, and due to the lack 
of the complete structure of LDLR and apoB-100, PSP 
software can be decisive.

Structure‑Modeling of LDLR

LDLR is a well characterized protein, with tens of X-ray 
crystallographic and NMR solved structure-files available 
on Uniprot. However, none of them covers the entire protein, 
with most of them covering a few hundred residues with 
X-ray resolution ranging from 1.2 to 7 Å. The most com-
plete solved structure covers the ecto-domain, amino acids 
22–720 [112] (PDB ID 1N7D). There are crystals of both 
LDLR alone and LDLR with stabilizers such as PCSK9. The 
prediction made by AlphaFold is also available, but there 
are some discrepancies between the AlphaFold predicted 
structure and the crystal structure. LDLR requires calcium 
ions to enable correct folding of the protein’s ligand binding 
domain and ligand binding [113]. Without calcium, LDLR 
is not functional, so crystallographic experiments have been 
carried out in the presence of calcium. However, AlphaFold 
does not consider this parameter, so the obtained predic-
tion is not accurate. Despite this, AlphaFold can be used for 
the structural prediction of other domains not affected by 
calcium ions, such as the β-propeller or the EGF domains; 
however, most of the structures obtained from X-ray crys-
tallography do not cover the LDLR C-terminal sequence 
(400–860 residues).

Structure‑Modeling of apoB‑100

Being part of a lipoprotein, apoB-100 interacts closely 
with lipids and remains with the lipoprotein throughout its 
metabolism [114]. ApoB-100 is highly insoluble in aque-
ous solution, and due to its nature, it has not been possible 
to obtain its structure by crystallography [115] or electron 
cryo-microscopy [116]. Solving the apoB-100 structure 
using PSP has not been successful either, and nowadays, 
the only predicted structure available on Uniprot (P04114) 
was obtained by SWISS-MODEL[117]. However, this PSP 
is not accurate, and does not resemble the belt-like structure 
that surrounds LDL particles.

Structure‑Modeling of PCSK9

The structure of PCSK9 is well known, with plenty of 
PCSK9 structures solved by X-ray crystallography on Uni-
prot [118–120]. Most of the structures are accurate, covering 
the entire protein with a resolution of 2 to 3 Å. PCSK9 crys-
tals have been obtained with and without adjuvants, some-
times even in complex with LDLR, which helps understand-
ing how PCSK9 interacts with the receptor [121]. Structure 
prediction made by AlphaFold (PDB ID AF-Q8NBP7-F1) 

is very accurate, resembling other PCSK9 crystallographic 
structures (PDB ID 6U3X, 6U2P). Accordingly, this makes 
it possible to use AlphaFold for predicting the structure of 
PCSK9 variants, allowing a more in-depth analysis of the 
variant’s effect. In addition, by combining the extensive 
knowledge of the binding sites of LDLR and PCSK9, the 
crystallographic data allows obtaining accurate models to 
study the effect of a missense variant on the LDLR-PCSK9 
complex formation.

Docking

Protein docking is the process of calculating the 3D structure 
of a protein complex starting from the individual structures 
of each protein [122]. It can be considered a further step in 
obtaining the structure of a protein complex since it also 
predicts how proteins interact. Molecular docking is a highly 
used technique in drug design, where it helps predict how 
ligands may bind to target proteins in 3D. However, pro-
tein–protein docking is not widely used [123] and is very 
helpful to delineate the interaction characteristics, the effect 
of a variant in the interaction, or affinity predictions [124••]. 
Intermolecular interactions are pivotal for many biological 
processes. These interactions are very specific, and any 
variant affecting the interaction interfaces is more harmful 
than others [125]. As it happens with the structure of a pro-
tein, early docking analysis relies on X-ray crystallography, 
NMR, and cryo-EM to study the interactions.

Since docking is based on structure, similarly to PSP 
models, the same two approaches can be taken to obtain the 
structures: “free” docking and template-based docking [126]. 
Template-based methods usually yield more accurate predic-
tions when good templates are available, while “free” docking 
is advised when no template is available. However, docking 
techniques are also classified depending on the flexibility of 
the interacting proteins. Rigid-body techniques assume that 
proteins maintain their structure when interacting with other 
molecules, while flexible docking considers atoms’ vibration, 
giving generally more accurate results [127].

The protein–protein docking process consists of two 
major steps: pose generation and scoring. Pose generation 
constitutes the first phase and serves to discard near-native 
structures, which is crucial for an accurate prediction. The 
native stage of both proteins is obtained by translating and 
rotating them until a few fitting poses are obtained. The 
scoring phase involves assigning scores to each possible 
conformation based on up to five characteristics, depend-
ing on the model. Force-field based scores consider non-
bonded terms (van der Waals potential) and bonded terms 
(bond angle) [128, 129]. Empirical scores utilize intermo-
lecular interactions and changes in accessible surface area 
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[130]. The knowledge-based score takes into account exist-
ing knowledge on protein interaction [131]. The last two 
scores are consensus-based [132] and machine learning-
based [133].

The performance of docking methods is tested in the 
blind prediction challenge known as the Critical Assess-
ment of Prediction of Interactions (CAPRI) [134], and it 
was designed on the model of CASP [135]. Both are com-
munity-wide experiments where different predictive models 
are tested, but whereas in CASP, protein folding is predicted 
from amino acid sequences, in CAPRI, protein assemblies 
are modeled by docking component structure [123]. Regard-
ing CAPRI, both free and template-based docking models 
are tested, and the best scoring models are considered the 
most accurate ones. In one of the latest calls (2016) [136], 
the best models were SwarmDock [137], followed by 
ZDOCK [138], pyDock [139], HADDOCK [140], and Clus-
pro [141]. These models cover most docking methods; there-
fore, they are suitable for various types of docking problems.

Docking Software

ZDOCK

ZDOCK is a template-free rigid-body protein–protein 
docking program that uses a Fast Fourier Transform (FFT) 
algorithm that considers shape complementarity, electrostat-
ics, and statistical potential for scoring. ZDOCK has been 
improved by adding the rescoring scheme called IRaPPa 
(Integrative Ranking of Protein–Protein Assemblies) that, 
briefly, uses physicochemical descriptors and combines a 
large selection of metrics to improve the selection of near-
native solutions [133, 142]. The portal for running the pro-
gram M-ZDOCK is available (https:// zlab. umass med. edu/m- 
zdock/) [143].

pyDOCK

Similarly to ZDOCK, pyDOCK is a template-free rigid-body 
docking program that uses FFT, but its main scoring func-
tions are desolvation and electrostatics. PyDOCK has also 
been improved by IRaPPa, and it uses ZDOCK for the pose 
generation, meaning that both software results are similar. 
The web server for pyDOCKWEB is also freely available 
(https:// life. bsc. es/ pid/ pydoc kweb) [144].

SwarmDock

SwarmDock, unlike ZDOCK and pyDOCK, is a flexible 
docking method that utilizes a particle swarm optimization 

of 350 parameters to optimize the posing [145]. SwarmDock 
considers 17 structural parameters to optimize the conforma-
tion and relative position of each particle. IRaPPa has also 
been applied to this method.

HADDOCK

HADDOCK (High Ambiguity Driven DOCKing) is a semi-
flexible docking protocol that uses empirical and bioinfor-
matic scores to drive docking, especially van der Waals and 
Coulomb electrostatic energies. HADDOCK 2.4 is the soft-
ware developed with this model, and it is among the most 
used ones [146].

Cluspro

Cluspro is a rigid-body docking method that relies on PIPER 
for pose generation, a docking program based on FFT 
[147]. Cluspro differs from other rigid body-based methods 
because, instead of using the lowest energy structure, it ana-
lyzes a cluster of the 1000 lowest ones, assuming that the 
real docked conformation is not necessarily the one with the 
lowest energy, but it will probably be in that cluster. Cluspro 
Web is also widely used software (https:// clusp ro. bu. edu/ 
login. php) [141].

Use of Docking to Study LDLR‑apoB‑100 
and LDLR‑PCSK9 Interactions

Docking studies can be very helpful when predicting the 
effect of FH-related variants due to the receptor–ligand 
nature of LDLR with apoB-100 and PCSK9. A large number 
of these variants occur on the binding sites of these proteins, 
which could affect the affinity of the binding and cause FH. 
Regarding the most appropriate docking software to be used 
in each case, for LDLR-apoB-100 interaction, as no reli-
able apoB-100 structure is available, free docking software 
is advised. On the other hand, for assessing LDLR-PCSK9 
interaction, as both PCSK9 and LDLR have well-character-
ized crystals, template-based software can be used.

LDLR‑apoB‑100 Interaction

The most LDLR affected domains by missense variants are 
the LBD and EGF-like domains, both key players in bind-
ing to apoB-100. Although these regions are highly con-
served, not all the pathogenic variants located within these 
domains are correctly classified by predictive software. Sub-
tle changes in the structure of the protein may lead to a failed 
prediction by the PSP software. In these cases, docking stud-
ies give an in-depth analysis of the effect of the variant on 
the binding of LDLR and apoB-100, considering not only 
the LDLR structure but also the interaction with apoB-100.

https://zlab.umassmed.edu/m-zdock/
https://zlab.umassmed.edu/m-zdock/
https://life.bsc.es/pid/pydockweb
https://cluspro.bu.edu/login.php
https://cluspro.bu.edu/login.php
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Docking software has previously been used as an 
approach to predict the effect of missense variants on the 
efficiency of binding to apoB-100 and describe the mecha-
nism by which these LDLR variants cause FH [148]. Bar-
bosa et al. characterized six LDLR variants using, among 
other techniques, docking models to assess the effect of the 
variant on the binding of LDLR to apoB-100 [149]. LDLR 
and apoB-100 sequences were obtained from Uniprot, the 
structure was generated by AlphaFold2, and the protein–pro-
tein docking was analyzed following a previously described 
protocol [148]. Briefly, a cluster of Cluspro, FireDock [150], 
Haddock, and Patchdock [151] software was used, and the 
results were ranked according to FFT score values. Overall, 
docking and molecular interactions analyses showed that 
p.(Cys184Tyr) and p.(Gly373Asp) LDLR variants alter the 
interaction of the receptor with apoB-100 [149].

Docking assays could also be performed the other way 
around, by analyzing the effect of apoB-100 variants on its 
binding to LDLR.

LDLR‑PCSK9 Interaction

In the past few years, reliability of PCSK9-LDLR docking-
based predictions has largely improved due to the increased 
number of described GOF- and LOF-PCSK9 variants 
[152–160] and the availability of several high-resolution 
crystallographically resolved PCSK9 structures. The struc-
ture of the PCSK9-LDLR complex has also been resolved, 
thus making the use of docking highly recommended to 
study the nature of their interaction. As shown in recent stud-
ies, docking can help to understand the mechanisms leading 
to pathological or beneficial effects. For example, docking 
has given new insights regarding the mechanisms of action 
of Ser127Arg [161] and Asp374Tyr [162] GOF PCSK9 vari-
ants [163]. These docking studies have indicated that the 
two pathogenic variants confer significantly higher binding 
affinity for LDLR as well as different binding modes, which 
impair LDLR from adapting its closed conformation.

AI‑Driven Enhancement of Predictive Models 
in Bioinformatics

The integration of AI in bioinformatics has emerged as 
a pivotal solution to address the challenges posed by the 
overwhelming amount of biological data. AI techniques, 
such as machine learning and deep learning, have shown 
significant potential for handling and analyzing vast data-
sets, thereby enhancing the accuracy of predictive models. 
These AI-driven approaches enable researchers to extract 
meaningful patterns and relationships from diverse biologi-
cal data sources, including genomics, proteomics, and tran-
scriptomics. By leveraging AI algorithms, bioinformatics 

researchers are able to develop more sophisticated prediction 
models that account for intricate interactions within biologi-
cal systems.

The use of AI has drastically increased in clinical genom-
ics. It has been applied in a wide range of conditions and 
approaches, such as patient photography analysis (facial 
analysis for disease identification, radiologic studies, 
microscopy data) [164], cardiology predictions (hyperten-
sion incident, atrial fibrillation, aortic stenosis) [165] blood 
biomarkers (mantle cell lymphoma [166], anemia [167]), 
interpretation of copy number variants [168], or classi-
fication of non-coding variants [169]. Regarding variant 
pathogenicity predictions, AI has revolutionized the field, 
providing advanced tools for accurate assessment. Starting 
from linear regressions to present-day deep learning models, 
the performance of these tools has increased exponentially. 
NGS technologies, platforms such as ClinVar, and advanced 
high-resolution crystallography techniques have led to the 
creation of extensive databases, enabling the development of 
highly precise predictive models. Models often have access 
to the position where the genetic variant occurs, evolutionary 
conservation of the position, prevalence of the variant in the 
population, probable effect of the variant on the mRNA or 
protein, affected domains, clinical phenotypes of the indi-
viduals, previously seen effects in other patients, family his-
tory, etc. AI can process and combine all this information, 
and the interpretation and weighing of each variable is the 
key to success.

Future Perspectives and Conclusions

The rapid development of bioinformatics tools has dramati-
cally increased the accuracy of prediction software, both in 
assigning pathogenicity values to variants and in predicting 
their effect on the structure of the protein. Even so, there is 
still room for improvement, especially in obtaining protein 
structures and predicting protein–protein interactions. Most 
prediction algorithms are trained on empirical results, such 
as structures obtained by X-ray crystallography or func-
tional in vitro characterization of variants, so the sensitivity 
and accuracy of in silico predictive tools are limited by the 
amount of available experimental data.

Algorithms can also be improved from within by apply-
ing deep learning techniques [170]. Deep learning has 
already been implemented in some PSP processes such 
as MSA, contact map prediction, or convolutional neu-
ral networks, and AlphaFold and RaptorX are based on 
these advanced machine learning tools. Regarding patho-
genicity prediction models, the combination of ensem-
ble techniques and deep learning has emerged in recent 
years. Until recently, ensemble and deep learning models 
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were regarded as separate methods in bioinformatics. 
Nowadays, the blending of these two popular techniques 
is causing a new wave of progress and the use of next-
gen machine learning methods, known as ensemble deep 
learning [171, 172]. The next big breakthrough in the pre-
dictive software field will arise from ensemble deep learn-
ing implementation in every aspect of the algorithms.

Considering the bioinformatic tools mentioned in 
this review and their performance on the three most 
frequently FH-involved genes, different approaches 
should be taken to predict the pathogenicity of a vari-
ant. Pathogenicity prediction software is very accurate 
for LDLR variants, showing a very high hit rate when 
analyzing variants submitted in ClinVar, so this software 
should be the first approach to inferring the effect of an 

LDLR variant. Then, depending on the location of the 
genetic variant, PSP and docking software can be used 
to analyze the possible effect on the biological function 
of the receptor. The 3D structure of the ectodomain is 
well characterized, but there is only one submission of 
the intracellular domain (778–860 residues) in Uniprot, 
and it does not cover the entire region. Finally, dock-
ing software should be considered for genetic variants 
occurring in the ectodomain, especially those affecting 
LBD or EGF-like domains, which interact with ligands, 
apoB-100 and PCSK9.

As for APOB, bioinformatic predictions seem to not 
be very accurate yet. It is discussed that this may be due 
to its interaction with lipids and its polymorphism, which 
affect both the conservation of residues and the quaternary 

Is the mutation in the 
binding region?

Is the mutation
Pathogenic?

Probably benign 
or LOF

GOF or false
 LOF

Is the mutation located
in the ectodomain?

Yes No

Yes NoYes

LBD/EGF

No

YesNo

Predictive software

LDLr
ApoB

PCSK9

PSP software PSP software

Docking software

Fig. 5  Workflow illustrating the selection of bioinformatics tools 
based on the mutated gene and affected domain for accurate patho-
genicity prediction. Predictive software demonstrates high reliabil-
ity in assessing genetic variants within the LDLR gene. Specifically, 
when the variant occurs in the ectodomain, it is recommended to 
utilize PSP software. Conversely, if the variant affects the ligand-
binding domain (LBD) or epidermal growth factor (EGF) domains, 
the analysis should be complemented with docking software for com-
prehensive evaluation. In the case of APOB variants, pathogenicity 
predictions can be considered reliable solely when the variants impact 

the binding domain. In such instances, the integration of docking 
software can further enhance the analysis. However, it is important to 
note that pathogenicity predictions for APOB may be limited in other 
regions, requiring additional approaches for accurate assessment. 
Regarding PCSK9 pathogenicity predictions, they provide valuable 
insights but may not offer a comprehensive diagnostic assessment of 
the variant. To obtain a more in-depth analysis, the combined utili-
zation of predictive software and docking software is recommended. 
This integrated approach allows for a thorough investigation of 
PCSK9 variants and their potential implications
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structure of the protein. These two parameters, conserva-
tion and structure, are key factors for both pathogenicity 
prediction and PSP software, which hampers the usefulness 
of predictive software. Even with these drawbacks, bioinfor-
matic tools have been used for APOB variant pathogenicity 
prediction and protein–protein docking assays with LDLR 
[149]; therefore, they should not be dismissed. Accurate dis-
crimination between LDL cholesterol-raising and lowering 
variants is essential for future clinical precision. Effective 
differentiation in prediction software is crucial for guiding 
treatments and understanding patient health implications, 
especially given the complex role of apoB-100.

Regarding PCSK9, the structure of the protein is well 
described, and crystals covering the entire protein are avail-
able in Uniprot. However, due to the GOF or LOF variants, 
software prediction is not accurate. PSP software can accu-
rately predict the effect of a variant on the 3D structure, 
but the interpretation of the results remains in the hands of 
the researcher. In any case, the use of this software reveals 
whether the variant affects the protein structure in any 
way, and if it does, this variant should be a candidate for 
in vitro characterization. The importance of future direc-
tions becomes evident in the vital task of software accurately 
distinguishing between GOF pathogenic variants and LOF 
variants. On the other hand, docking studies are more reli-
able, especially if the variant occurs in a binding region, 
since the direct interaction is analyzed. A full workflow of 
the software that should be used for each gene variant is 
shown in Fig. 5.

In conclusion, the integration of bioinformatics tools, pro-
tein structure modeling, and docking methodologies offers 
great promise for advancing our understanding of FH. These 
approaches provide valuable insights into the pathogenicity 
of genetic variants, protein structure–function relationships, 
and intermolecular interactions. Future advancements in AI 
and these methodologies hold the potential to enhance FH 
diagnosis, risk assessment, and the development of personal-
ized treatment strategies for affected individuals.
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