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Abstract
Purpose of Review The goal of this article is to characterize the endothelium’s role in the development of hypertension and 
dyslipidemia and to point out promising therapeutic directions.
Recent Findings Dyslipidemia may facilitate the development of hypertension, whereas the collaboration of these two silent 
killers potentiates the risk of atherosclerosis. The common pathophysiological denominator for hypertension and dyslipidemia 
is endothelial cell dysfunction, which manifests as dysregulation of homeostasis, redox balance, vascular tone, inflammation, 
and thrombosis. Treatment focused on mediators acting in these processes might be groundbreaking. Metabolomic research 
on hypertension and dyslipidemia has revealed new therapeutic targets. State-of-the-art solutions integrating interview, 
clinical examination, innovative imaging, and omics profiles along with artificial intelligence have been already shown to 
improve patients’ risk stratification and treatment.
Summary Pathomechanisms underlying hypertension and dyslipidemia take place in the endothelium. Novel approaches 
involving endothelial biomarkers and bioinformatics advances could open new perspectives in patient management.
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Introduction

Hypertension and dyslipidemia constitute the major risk fac-
tors for cardiovascular (CV) diseases [1]. Despite extensive 
research efforts, the availability of diagnostic tools, and effec-
tive treatment, they remain the leading causes of CV mortal-
ity and disability-adjusted life years worldwide [2•, 3, ]. The 
coexistence of hypertension and dyslipidemia potentiates their 
deleterious impact on the CV system compared to the sum of 
their individual effects [1, 4–6]. Indeed, the INTERHEART 
study revealed that a single risk factor multiplies the total 
risk from twofold to threefold, whereas the coincidence of 
hypertension, dyslipidemia, diabetes mellitus, and smoking 
leads to a more than 20-fold increase in the total risk [6]. 

Interestingly, it has been shown that therapeutic approaches 
focused on both hypertension and dyslipidemia may result in 
significantly greater CV risk reduction [5, 7, 8]. This bilat-
eral synergistic effect indicates common pathomechanisms 
underlying both hypertension and dyslipidemia and reveals a 
significant role for endothelial dysfunction. In hypertension, 
endothelial cell dysfunction accelerates the development of 
the deleterious consequences of dyslipidemia [9], and con-
versely, the remodeling of the vascular wall present in dyslipi-
demia complicates the course of hypertension. Therefore, in 
this review article, we trace recent discoveries in endothelial 
alterations participating in dyslipidemia and hypertension and 
highlight their role in initiating atherosclerotic disease. Fur-
thermore, we point out new directions for patient management 
involving the use of artificial intelligence to integrate clinical 
data with the latest omics results [10•] to identify high-risk 
patients and personalize treatment plan.

Hypertension and Endothelial Dysfunction

A proper understanding of hypertension requires address-
ing the endothelium’s pivotal role in blood flow regulation. 
Endothelial cells produce many vasoactive substances, among 
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which nitric oxide (NO) has the greatest vasodilating poten-
tial [11–13], leading to vascular smooth muscle relaxation 
via activation of guanylate cyclase and generation of intra-
cellular cyclic guanosine monophosphate [11, 14]. Endothe-
lial NO synthase (eNOS) produces NO from L-arginine and 
is stimulated by (1) receptor-dependent agonists, such as 
acetylcholine and bradykinin, (2) non-receptor-dependent 
agonists, such as calcium ionophores, and (3) blood flow 
[15–17]. Vasodilating agents (i.e., prostacyclin, calcitonin 
gene-related peptide, adrenomedullin, and substance P) pro-
duced by a variety of cell types also lead to NO secretion in 
endothelial cells [11, 18, 19]. In contrast, the endothelium is 
also responsible for the release of vasoconstrictors, such as 
endothelin 1, locally generated angiotensin II, thromboxane 
A2, and prostaglandin A2 [11, 20]. Endothelin 1 links to the 
ET-A receptor and, apart from smooth muscle constriction, 
promotes the activity of other vasoconstrictors. Growth fac-
tors linked to vasoconstrictive substances stimulate matrix 
modification in the vascular wall and its remodeling [11].

The role of oxidative stress in endothelial dysfunction 
is crucial. Angiotensin II, a key component of this process, 
stimulates NADPH/NADH oxidase in the endothelium, 
smooth muscle cells, and adventitia to produce reactive oxy-
gen species (ROS) [21–23]. NADPH/NADH oxidase can 
additionally enhance the production of superoxide  (O2

−) 
from mitochondria and xanthine oxidase, which reacts 
with NO, resulting in peroxynitrite. eNOS uncoupling 
occurs through the following mechanisms: (1) deficiency 
of the cofactor tetrahydrobiopterin through its oxidation by 
peroxynitrite or (2) deficiency of the substrate L-arginine 
attributed to increased arginase expression observed in 
hypertension [24–27], and (3) S-glutathionylation observed 
in angiotensin II-induced hypertension [28]. Importantly, 
uncoupled eNOS produces superoxide  (O2

−), driving the 
vicious circle of oxidative stress. Finally, eNOS uncoupling 
decreases NO production and promotes vascular inflamma-
tion and remodeling [24]. Surprisingly, eNOS overexpres-
sion leads to its uncoupling due to a relative deficiency of 
the cofactor tetrahydrobiopterin [24, 29, 30].

Endothelial NO production is heavily dependent on 
hemodynamics. Laminar blood flow activates eNOS, while 
disturbed flow or oscillatory shear stress decreases eNOS 
expression, contributing NADPH/NADH oxidase and xan-
thine oxidase to superoxide production [24, 31, 32] and 
exposing vessel walls to oxidative stress. It is noteworthy 
that the pattern of hemodynamic stimulation (undisturbed 
vs. disturbed flow) is associated with the activation of tran-
scriptional factors participating in the expression of genes 
responsible for the functional endothelial phenotype [15]. 
Laminar flow leads to upregulation of transcription factors 
such as Kruppel-like factor (KLF)-2, KLF-4, and nuclear fac-
tor erythroid 2-related factor 2 (Nrf-2), resulting in an athero-
protective phenotype [15, 33]. On the contrary, oscillatory 

flow leads to upregulation of the pleiotropic transcription fac-
tor NF-κB, which orchestrates an atheroprone phenotype [15, 
33]. Interestingly, KLF-2 and Nrf-2 are responsible for 70% 
of the atheroprotective endothelial transcriptome, pointing 
to a new area for targeted therapeutic approaches [15, 34].

Dyslipidemia and Endothelial Dysfunction

The link between dyslipidemia and endothelial dysfunc-
tion has been shown in many studies [35–37]. Low-density 
lipoprotein (LDL) is responsible for endothelial ROS pro-
duction. Lipid peroxidation occurs through nonenzymatic 
processes (by ROS derived from NADPH/NADH oxidase 
or uncoupled eNOS) or enzymatic processes (performed 
by lipoxygenases, myeloperoxidase, and cyclooxygenases). 
Lipid peroxidation products generate oxidation-specific 
epitopes (OSEs) on the surface of oxidized LDL (oxLDL) 
molecules [24, 38, 39]. An OSE is recognized by recep-
tors (i.e., scavenger receptors, toll-like receptors, mediators 
of the complement system, or IgM antibodies). Genetic 
research has shown that deletion of lipoxygenases decreases 
LDL oxidation and the process of atherosclerosis in mice 
[24, 40], and OSE-specific natural IgM antibodies inhibit 
the uptake of LDL by macrophages and prevent foam cell 
formation in mice [24, 41, 42]. Endothelial cells and mac-
rophages—as major sensors of OSE—uptake oxLDL, which 
has a wide array of proatherogenic properties. Addition-
ally, scavenger receptors are not downregulated by an LDL 
increase; therefore, LDL can easily accumulate and gener-
ate foam cells—the first step of atherosclerosis. Virchow, 
based on autopsy studies, emphasized that lipid accumula-
tion occurs at the sites of early endothelial lesion forma-
tion [15, 43]. Moreover, several studies have shown that 
disturbed patterns of flow observed in arterial curvatures, 
bifurcations, and side branches favor the development of 
atherosclerosis. In such regions, endothelial cells display 
cuboidal morphology, higher cell turnover, and an impaired 
endothelial barrier function, leading to migration of LDL 
and inflammatory mediators. In contrast, regions exposed 
to laminar flow exhibit ellipsoidal cell morphology, coaxial 
alignment, and glycocalyx, providing protection from lipo-
protein extravasation [44–47].

Interplay Between Hypertension 
and Dyslipidemia Accelerates 
Atherosclerosis Development

The common vascular result of hypertension and dyslipi-
demia is endothelial dysfunction that may lead to ather-
osclerosis. These two risk factors, through overlapping 
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pathomechanisms occurring at the level of the endothe-
lium, lead to striking atherosclerosis progression. Previ-
ous studies have reported results supporting the interplay 
between hypertension and dyslipidemia in CV disease 
aggravation [4, 48–51]. In Watanabe heritable hyperlipi-
demic rabbits, induced hypertension significantly acceler-
ated the development of atherosclerosis and plaque desta-
bilization, leading to cardiac death [9]. In the Multiple 
Risk Factors Interventional Trial, it was demonstrated 
that even mild to moderate levels of both hypertension 
and dyslipidemia had a multiplicative adverse impact on 
the risk of coronary heart disease [4, 7, 49]. A study of 
young patients with a family history of hypertension and 
borderline blood pressure values [4, 52] showed a sig-
nificant increase in the 10-year relative risk of develop-
ing hypertension in the patients with baseline cholesterol 
levels above the cut-off value of 200 mg/dl. Moreover, 
strong evidence of the interplay between dyslipidemia and 
hypertension comes from studies demonstrating that the 
use of statins in hypertensive patients can favorably affect 
individual risk profiles by interacting with blood pressure 
control [4, 53, 54]. Interestingly, it has been shown that 
therapeutic approaches focused on both hypertension and 
dyslipidemia may result in significantly greater CV risk 
reduction [5, 7, 8].

In hypertension, dyslipidemia may aggravate the develop-
ment of atherosclerosis through the following mechanisms. 
First, chronic oscillatory shear stress—driving oxidative 
stress, redox imbalance, and upregulation of lipid oxidation 
enzymes—leads to LDL oxidation and internalization [55, 
56]. Second, elevated blood pressure enhances angiotensin 
II binding to the angiotensin type 1 (AT1) receptor, which 
results in augmented lipid uptake in the vessel wall [55, 57].

In dyslipidemia, through stimulation of LDL to ROS pro-
duction and through eNOS uncoupling, NO bioavailability 
is diminished, which contributes to vasoconstriction. Sec-
ond, hypercholesterolemia enhances arginase activity—an 
enzyme competing with eNOS for L-arginine, which results 
in eNOS uncoupling with its further consequences. Third, 
dyslipidemia leads to upregulation of the AT1 receptor, 
enhancing the vasoconstrictive effect of angiotensin II [24, 
58]. Fourth, it has been proven that dyslipidemia increases 
arterial stiffness, predisposing to the development of hyper-
tension [59, 60]. Finally, dyslipidemia by reducing barore-
flex sensitivity impairs the negative feedback loop and dys-
regulates blood pressure control [61, 62].

The magnitude of the reactions taking place at the 
endothelium level directs our considerations toward micro-
circulation—the part of a vascular tree having an area advan-
tage over other parts. Microvessels constitute approximately 
99% of all vessels in the human body, and their total surface 
area is estimated at 500 to 700  m2 [63]. Therefore, assess-
ment of the endothelium in the microcirculation area-such a 

hemodynamically significant modulator with an impressive 
surface —may provide insights into CV status.

A decline in endothelial-vasodilating properties and 
inflammation process generating a neointima in response to 
the deleterious effect of hypertension and dyslipidemia lead 
to vascular remodeling. Although both diseases are indi-
rectly associated with arterial occlusion, the distribution 
pattern of these diseases in the arterial tree is different [64]. 
In hypertension, the lumen narrowing process is observed in 
small vessels and microvascular bed, while in large vessels, 
intima media thickening and vessel enlargement occur. In 
atherosclerosis, obstructive lesions are localized in medium 
and large vessels. Cross talk between micro- and macrocir-
culation aggravates and accelerates these unfavorable altera-
tions in the CV system. Small arteries are the major determi-
nant of total peripheral resistance. Microvessel remodeling, 
manifested as a reduced lumen diameter and an increased 
wall-to-lumen ratio, leads to an increase in total peripheral 
resistance and blood pressure values [65–68]. Addition-
ally, stiff components are loaded in the arterial wall, sub-
sequently enhancing large artery stiffness, which is related 
to a decreased ability to accommodate the volume of blood 
ejected from the left ventricle [67–69]. Arterial stiffness 
leads to an increase in systolic and pulse pressures and a 
shift of reflection sides toward microvessels. Then, pressure 
pulsatility penetrates the microcirculation, resulting in fur-
ther vessel remodeling and organ damage [70]. This vicious 
circle of successive hypertension processes might be dizzy-
ingly accelerated by accompanying diseases such as dyslipi-
demia due to the common pathophysiological background 
taking place in endothelial dysfunction.

Metabolomic Profiles of Patients 
with Hypertension and Dyslipidemia

Metabolomic studies hold promise for providing insights 
into current knowledge on the pathophysiology, progression, 
and prognosis of hypertension or dyslipidemia. Furthermore, 
metabolomic analyses will open up new perspectives for 
personalized treatment. However, investigations focused on 
developing and validating metabolomic models in hyperten-
sion or dyslipidemia are still very scarce.

A few studies have addressed the plasma metabolomic 
profile of hypertension in relation to lipids. The prospec-
tive investigation by Lin et al., including 504 men and 
women with a follow-up period of over 5 years aimed to 
identify associations between circulating metabolites and 
longitudinal blood pressure progression [71, 72]. Metabo-
lomic pathways, including glycerolipids, ceramide, tria-
cylglycerol, oleic acid, and cholesteryl ester, were associ-
ated with longitudinal changes in diastolic blood pressure 
[72]. In Kulkarni et al.’s longitudinal study, the association 
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between the plasma lipidomic profile and hypertension was 
evaluated [73]. The results demonstrated that diacylglyc-
erols were significantly associated with systolic, diastolic, 
and mean blood pressure, as well as the risk of incident 
hypertension during 7140.17 person-years of follow-up 
[73]. Furthermore, Dietrich’s study of serum metabolites 
revealed that phosphatidylcholines had predictive value 
for hypertension development during the 10-year follow-
up period [74]. In the research of Chaofu Ke, the com-
mon metabolic pattern of upregulated diglycerides and 
lysophosphatidylcholine for both hypertension and dys-
lipidemia was found [1].

Interestingly, all the above investigations highlighted the 
significant role of lipid metabolites in hypertension devel-
opment. Lipids are divided into the following eight catego-
ries: sphingolipids (i.e., ceramide), glycerolipids (triacylg-
lycerol), fatty acyls (i.e., oleic acid and cholesteryl ester), 

phospholipids, sterol lipids, prenol lipids, saccharolipids, 
and polyketides [72, 75, 76]. Some were revealed in the 
aforementioned studies to be significant in hypertension 
development, contributing to endothelial dysfunction by 
inhibiting endothelium-derived vasodilating mediators or 
stimulating endothelium-dependent vasoconstrictors [72]. 
For instance, ceramides, by inhibiting the eNOS-serine/
threonine protein kinases-heat shock protein 90 signaling 
complex and enhancing thromboxane A2, lead to endothelial 
disability and vasoconstriction [77, 78]. These data elucidate 
the role of lipidomic pathways in blood pressure regulation 
and the etiopathogenesis of hypertension. Since the meta-
bolic pathways of hypertension and dyslipidemia partially 
overlap, the frequent coincidence of these two diseases 
seems obvious. Therefore, therapy focused on both hyper-
tension and dyslipidemia may multiply its beneficial effects 
and result in greater CV disease risk reduction.

Fig. 1  Data integration by novel bioinformatics tools
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Therapeutic Approaches and the Potential 
of Artificial Intelligence

A combination of genetic predisposition, the metabolomic 
profile signature, and early phenotypic features, including 
endothelial dysfunction hallmarks, may lay the foundation for 
early identification of presymptomatic patients and initiation 
of treatment management plans. Due to the growing global 
prevalence of hypertension and dyslipidemia [71, 79, 80], new 
risk stratification scores for patients’ personalized treatment 
strategy are needed. However, in the face of an abundance 
of data obtained in omics research, traditional regression 
analyses start to be insufficient, mainly because the predic-
tor’s number importantly exceeds the patient’s number [81, 
82]. For these purposes, novel, more sophisticated approaches 
might be applied [81]. Artificial intelligence has opened a 
new chapter in biostatistics [81]. Machine learning—a rapidly 
improving branch of artificial intelligence—allows the inte-
gration of clinical data and the genetic background with recent 
metabolomics results (Fig. 1), which might be translated into 
screening, diagnostic, and treatment plans [2•]. It opens up a 
promising perspective for improving current risk stratification 
and implementing multidimensional personalized medicine.

Conclusions

The growing prevalence of hypertension and dyslipidemia 
calls for novel solutions. Assessment of endothelial bio-
markers is of great importance, and it constitutes a high-
potential tool in the future diagnosis of CV diseases. The 
metabolomic signature brings new insights into early 
alterations preceding the development of hypertension 
[74] and dyslipidemia, directing toward new therapeutic 
approaches. However, the scarce number of prospective 
studies indicates the need for further research. Due to 
innovative bioinformatics tools, a huge amount of data 
obtained from different diagnostic resources might be ana-
lyzed for more sensitive identification of high-risk patients 
[2•, 81]. Personalized medicine opens prospects for reduc-
ing the global burden of hypertension and dyslipidemia.
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