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Abstract
Purpose of Review The goal of this review is to highlight work identifying mechanisms driving hypercholesterolemia-
mediated endothelial dysfunction. We specifically focus on cholesterol-protein interactions and address specific questions 
related to the impact of hypercholesterolemia on cellular cholesterol and vascular endothelial function. We describe key 
approaches used to determine the effects of cholesterol-protein interactions in mediating endothelial dysfunction under 
dyslipidemic conditions.
Recent Findings The benefits of removing the cholesterol surplus on endothelial function in models of hypercholesterolemia 
is clear. However, specific mechanisms driving cholesterol-induced endothelial dysfunction need to be determined. In this 
review, we detail the latest findings describing cholesterol-mediated endothelial dysfunction, highlighting our studies indi-
cating that cholesterol suppresses endothelial Kir2.1 channels as a major underlying mechanism.
Summary The findings detailed in this review support the targeting of cholesterol-induced suppression of proteins in restor-
ing endothelial function in dyslipidemic conditions. The identification of similar mechanisms regarding other cholesterol-
endothelial protein interactions is warranted.
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Introduction

Plasma hypercholesterolemia, elevated levels of low-density 
lipoproteins (LDL), is one of the major predictors and risk 
factors for the development of atherosclerosis. The mecha-
nisms responsible for the atherogenic effects of LDL are 
primarily attributed to the penetration and retention of LDL 
particles in the extracellular sub-endothelium space, where 
they undergo pro-inflammatory modifications by aggrega-
tion and oxidation and induce recruitment of monocytes that 
differentiate into macrophages to become cholesterol-laden 

foam cells [1, 2]. Accumulation of cholesterol can be in the 
form of cholesterol esters that can be stored intracellularly 
or non-esterified (free) cholesterol, an essential and major 
lipid component of the plasma membrane in all mammalian 
cells, where it exerts numerous effects on the function of 
membrane proteins both directly and indirectly [3–5]. Earlier 
studies found a strong correlation between free cholesterol 
content of the lesions and lesion necrosis due to cholesterol 
toxicity leading to macrophage death [6, 7]. The toxicity 
of cholesterol was attributed to a change in the biophysical 
properties of the ER membranes and ER stress [8] and cho-
lesterol-induced interaction with membrane receptors [9]. 
A key early stage of atherosclerosis development, however, 
is impairment of the endothelium, the inner lining of the 
blood vessels. In this review, we focus on the accumulating 
evidence that hypercholesterolemia-induced increase in the 
membrane cholesterol content of endothelial cells plays a 
major role in endothelial dysfunction via direct cholesterol-
protein interactions.
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Impact of Plasma Hypercholesterolemia 
on Endothelial Free Cholesterol

The first key question is what is the impact of plasma 
hypercholesterolemia on cellular and membrane choles-
terol content of endothelial cells? In general, membrane 
cholesterol of mammalian cells is maintained within a 
relatively narrow range of a physiological set point reg-
ulated by sterol sensing feedback mechanisms [10–12]. 
Numerous studies also showed, however, that cholesterol 
content of cellular membranes in cultured cells, including 
endothelial cells, can be increased ~ twofold by the expo-
sure to a cyclic oligosaccharide methyl-β-cyclodextrin 
(MβCD) saturated with free cholesterol [13]. Surprisingly, 
while endothelial dysfunction is well recognized to be a 
key early step in hypercholesterolemia-induced vascular 
dysfunction and initiation of atherosclerosis, only few 
studies assessed the level of free cholesterol in endothe-
lial cells under hypercholesterolemic conditions. First, our 
studies showed that plasma hypercholesterolemia in vivo 
[14] and exposure to high levels of LDL in vitro [15, 16••] 
both result in significant elevation of free cholesterol in 
endothelial cells. Specifically, using a porcine model of 
diet-induced hypercholesterolemia, we showed that aor-
tic endothelial cells freshly isolated from hypercholester-
olemic pigs contained a twofold higher free cholesterol 
level, as compared to cells isolated from aortas of pigs that 
were maintained on regular low-cholesterol diet (~ 20 μg 
cholesterol/mg protein vs. ~ 40 μg cholesterol/mg protein) 
[14]. A similar elevation of free cholesterol was observed 
when human aortic endothelial cells were exposed to 
VLDL or to acLDL but not to oxLDL, the latter having no 
effect on endothelial cellular cholesterol [14]. In this early 
study, we focused on the modified forms of LDL rather 
than on LDL itself because of the previous extensive lit-
erature showing that exposure to LDL does not result in 
significant cholesterol loading of macrophages, whereas 
acLDL does giving rise to the hypothesis that the major 
source of cholesterol loading in vivo is oxLDL [17, 18]. 
The rationale to infer observations obtained using acLDL 
to oxidative modifications of LDL that occur in vivo was 
that both forms of the modified LDL are recognized and 
internalized by the same scavenger receptors [17]. How-
ever, a more detailed comparison of the actual impacts of 
acLDL and oxLDL on cellular cholesterol revealed that, 
at least in the endothelial cells, it is completely differ-
ent: while exposure to the acLDL indeed loads endothe-
lial cells with cholesterol, exposure to oxLDL does not 
but instead loads the cells with oxidized lipids, primarily 
oxysterols [19, 20]. Oxysterols also incorporate into the 
plasma membrane but their effect on membrane struc-
ture is the opposite of that of cholesterol: while choles-
terol increases lipid order of the membrane, oxysterols  

disrupt lipid order [21, 22]. Recently, we showed that this 
is also true in macrophages, exposure of bone marrow-
derived macrophages to oxLDL resulted in loading the 
cells with 7ketocholesterol but not cholesterol [23]. Thus, 
we next determined if exposure to physiological levels of 
LDL may result in cholesterol loading of endothelial cells 
and found that this is indeed the case. Using mass spec-
trometry, we found that exposing human aortic endothelial 
cells to the LDL level observed in hypercholesterolemic 
patients (250 mg/dl) resulted in a significant increase in 
cholesterol/phospholipid ratio in the membrane, as com-
pared to cells exposed to 50 mg/dl LDL, a level found in 
healthy individuals (~ 600 to ~ 750 pmol cholesterol/nmol 
phospholipid, respectively) [15]. This elevation of choles-
terol was sufficient to result in a significant ordering of the 
membrane, as assessed by a Laurdan dye [15], sensitive to 
the water dipoles in the membrane [24, 25]. Most recently, 
we found that exposure to increasing levels of LDL results 
in a gradual increase in endothelial free cholesterol with 
a slight but statistically significant increase in response to 
150 mg/dl LDL and a relatively large twofold increase/
per mg protein, in response to 250 mg/dl LDL [16••]. It 
is noteworthy that exposing endothelial cells to MβCD-
cholesterol, high levels of LDL and to diet-induced hyper-
cholesterolemia in vivo, all resulted in ~ twofold increase 
in cellular free cholesterol when normalized to protein, 
suggesting that this is the amount that cellular membranes 
can accommodate when exposed to hypercholesterolemic 
conditions.

Impact of Cholesterol Loading 
on Endothelial Function In Vitro

The next logical question is what is the impact of 
cholesterol loading on endothelial function? This 
question can be addressed in vitro by modulating cellular 
cholesterol level pharmacologically, particularly using 
MβCD, which provides a highly reproducible method to 
both deplete and enrich cells with cholesterol. However, 
depletion of cellular cholesterol, while definitely 
uncovering fundamental roles of cholesterol in cellular 
function, does not necessarily provide significant insights 
to the physiologically relevant conditions of cholesterol 
loading. Indeed, several examples were reported when 
cholesterol depletion had an effect on specific features/
functions, whereas cholesterol enrichment had no 
effect [26]. We focus here, therefore, on discussing 
endothelial dysfunction induced specifically by cholesterol 
enrichment.

An early work by Feron et al. [27] showed that expos-
ing endothelial cells to serum obtained from hypercho-
lesterolemic patients resulted in an increase in cellular 
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abundance of a cholesterol binding protein, caveolin-1, 
a structural scaffolding protein of membrane invagina-
tions called caveolae, known to be signaling hubs [28]. 
Caveolin-1 is also known to directly interact and regulate 
the function of multiple proteins, including negative regu-
lation of endothelial nitric synthase, eNOS, an enzyme 
that produces NO [28]. Feron et al. also showed that an 
increase in caveolin-1 led to stabilization of caveolin-
1-eNOS interaction and a decrease in eNOS function. 
However, even though caveolae constitute a membrane 
domain strongly enriched in cholesterol, it is not entirely 
clear whether an increase in the abundance of caveolin-1 
was a result of an increase in membrane cholesterol. Our 
studies demonstrated a direct inhibitory effect of free 
cholesterol loading on endothelial inwardly rectifying 
K + channels (Kir2.1) [14, 29], a flow-sensitive channel 
that has been proposed to be one of the putative endothe-
lial flow sensors [30]. Furthermore, our extensive com-
putational and structure–function studies revealed that 
cholesterol suppresses Kir channels via specific choles-
terol-protein interactions [31, 32] with the cholesterol 
molecules binding to multiple hydrophobic pockets of the 
channel transmembrane domains constituting non-annular 
cholesterol binding sites [33, 34]. Notably cholesterol-
induced suppression of Kir channels was shown to be 
independent of caveolin [35]. We further discovered that 
the mechanism by which cholesterol binding suppresses 
the activity of Kir2 channels is disrupting specific intra-
molecule residue-residue interaction that leads to the 
uncoupling of the channel subunits [36•], which inter-
feres with the channel gating [37, 38]. In terms of the 
functional consequences of cholesterol-induced suppres-
sion of endothelial Kir channels, since functional expres-
sion of these channels is essential for the activation of 
a major flow-induced phosphorylation cascade of Akt1/
eNOS [39], their cholesterol suppression is expected to 
impair flow-induced production of NO. Additionally, 
Andrews et al. showed that cholesterol loading suppresses 
ATP-induced-induced capacitative  Ca2+ entry, indicating 
a decreased function of the STIM/ORAI complex that 
constitutes the capacitative  Ca2+ entry mechanism [40], 
which was accompanied with an inhibition of eNOS phos-
phorylation. Since capacitative  Ca2+ entry was shown 
earlier to contribute to agonist- and shear-stress activa-
tion of eNOS [41], the authors suggested that cholesterol-
induced impairment of  Ca2+ entry might be responsible 
for the inhibition of eNOS. All these studies, however, 
focus on acute effects of free cholesterol loading on dif-
ferent endothelial proteins, and clearly complementary 
in vivo studies are needed to establish which of these 
mechanisms contribute to hypercholesterolemia-induced 
endothelial dysfunction.

Impact on Endothelial Function Following 
the Removal of Cholesterol Surplus 
from Hypercholesterolemic Animals

The beneficial effects of increased HDL and cholesterol-
lowering therapies (e.g., statins) on endothelial function 
indicates that the removal of excess free cholesterol from 
endothelial membranes improves endothelial function in 
individuals with hypercholesterolemia [42, 43]. Therefore, 
another approach to determine the role of excess cellular 
cholesterol on endothelial function is by experimentally 
removing the surplus of cholesterol from hypercholester-
olemic animals in vivo and from tissue ex vivo. In this 
approach, the removal of excess cholesterol is predicted to 
restore the proper endothelial functions. For instance, Kaul 
et al. showed that in vivo infusions of a naturally occurring 
and antiatherosclerotic apolipoprotein variant established 
to have increased cholesterol efflux capacity reversed 
endothelial dysfunction in aortas of dyslipidemic apoli-
poprotein E deficient (Apoe−/−) mice [44]. Apoe−/− mice 
receiving the apolipoprotein variant had significantly less 
aortic tissue cholesterol compared to control mice which 
corresponded to improved endothelial function. Impor-
tantly, these effects were independent of serum choles-
terol which remained elevated in Apoe−/− mice receiving 
the apolipoprotein variant suggesting that the removal of 
tissue cholesterol specifically restores endothelial func-
tion [44]. However, these earlier studies did not mecha-
nistically address how the removal of the cholesterol sur-
plus from vascular tissue improved endothelial function 
nor was it determined if indirect systemic effects of the 
apolipoprotein afforded benefits to endothelial function 
in vivo. Therefore, we aimed to determine if the beneficial 
effect of the removal of a cholesterol surplus ex vivo in 
arteries from Apoe−/− mice was mediated by restoration 
of inwardly rectifying  K+ (Kir) channels. To achieve this 
goal, we exposed isolated mesenteric arteries to MβCD 
and performed pressure myography to assess endothelial 
function. As expected, arteries from Apoe−/− mice had 
blunted dilations to flow, a potent stimulus that induces 
NO via endothelial Kir channel activation [39, 45•]. In 
contrast, arteries from Apoe−/− mice exposed to MβCD 
prior to testing endothelial function exhibited compara-
ble dilations to flow as that of arteries from WT mice. 
Indeed, Kir channel function was restored in this condition 
as  Ba2+, an inhibitor of Kir channels, blunted the dila-
tory response to flow indicating that the removal of excess 
cholesterol from arteries of dyslipidemic mice restored 
endothelial function via recovery of Kir channel function. 
Furthermore, MβCD-induced recovery of the flow-induced 
dilation was abrogated in arteries of Apoe−/− mice crossed 
with Kir2.1-deficient mice, indicating that the recovery of 
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the dilations is Kir2.1 dependent. This finding was further 
supported by patch clamp electrophysiology experiments 
in freshly isolated endothelial cells from Apoe−/− mice 
where MβCD treatment resulted in a significant increase 
in Kir channel current [45•]. Taken together, these obser-
vations indicate that the removal of the cholesterol surplus 
in vivo or ex vivo has beneficial effects on endothelial 
function, likely through the restoration of Kir channel 
function upstream of NO production. However, the pan 
removal of excess cholesterol by promoting cholesterol 
eff lux undoubtedly has multiple possible effects on 
endothelial function. To best address a specific contribu-
tion of Kir to cholesterol-induced endothelial dysfunction, 
we must specifically disrupt the ability of cholesterol to 
suppress Kir channels without reducing free cholesterol 
in the membrane.

Benefits to Endothelial Function 
by Rendering Proteins Insensitive 
to Cholesterol

The most direct approach in determining if cholesterol 
mediates endothelial dysfunction via direct effects on 
the function of a specific protein is to generate functional 
mutants that are insensitive to cholesterol-mediated sup-
pression. In this approach, the cholesterol surplus accom-
panying dyslipidemia is maintained and only the role 
of the cholesterol-mediated suppression of the protein 
in inducing endothelial dysfunction is addressed. With 

regard to our findings detailing cholesterol-mediated 
suppression of endothelial Kir2.1 channels, our struc-
ture–function studies described above led to the identi-
fication of an array of mutations that (i) did not affect 
Kir channel function and (ii) rendered Kir channels 
insensitive to cholesterol-mediated suppression of chan-
nel function. We previously identified that the Kir2.1-
L222I mutation matched these criteria [46]. Our next 
major goal was to determine if this cholesterol insensi-
tive Kir2.1 mutant could restore endothelial function in 
a model of hypercholesterolemia. We generated Kir2.1-
L222I transgenic mice using CRSPR-Cas9 gene editing 
and crossed them with Apoe−/− mice. We first tested Kir 
channel currents in freshly isolated endothelial cells to 
confirm that the Kir2.1-L222I channels had (i) larger cur-
rents than Apoe−/− controls containing WT Kir2.1 and (ii) 
restored flow-sensitivity. Indeed, endothelial cells from 
the Kir2.1-L222I Apoe−/− transgenic mice had larger Kir 
currents than the WT Kir2.1 Apoe−/− controls. Further-
more, in contrast to WT Kir2.1 channels in cells from 
Apoe−/− mice, the Kir2.1-L222I channels exhibited flow-
sensitivity indicating a complete restoration of function in 
the cholesterol-insensitive mutant channels [16••]. Most 
importantly, we next aimed to determine if rendering Kir 
channels insensitive to cholesterol prevented the dyslipi-
demia-induced endothelial dysfunction observed in WT 
Kir2.1 Apoe−/− controls. Arteries from the mice contain-
ing the Kir2.1-L222I mutation exhibited dilations to flow 
comparable to non-dyslipidemic, WT mice independent 
of the presence of dyslipidemia indicating that rendering 

Fig. 1  Schematic detailing 
restoration of endothelial 
function via reversing/pre-
venting cholesterol-mediated 
suppression of Kir channels. 
By removing the surplus of 
cholesterol using methyl-
β-cyclodextrin (MβCD) or 
preventing cholesterol-mediated 
suppression of endothelial Kir 
channels (L222I mutation), we 
were able to restore endothelial 
function in a model of hyper-
cholesterolemia. It is important 
to note that the L222I mutation 
does not disrupt the interaction 
between cholesterol and Kir2.1 
but renders the channel insensi-
tive to cholesterol-mediated 
suppression [46]. Figure created 
with BioRender.com
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Kir2.1 insensitive to cholesterol-mediated suppression was 
sufficient to restore endothelial function without removing 
the cholesterol surplus [16••]. Our findings, summarized 
in Fig. 1, support the targeting of cholesterol-induced sup-
pression of proteins in restoring endothelial function in 
dyslipidemic conditions and promote the identification of 
similar mechanisms in distinct endothelial proteins.

Conclusion

The beneficial effects on endothelial function following 
the removal of the cholesterol surplus under hypercho-
lesterolemic conditions are clear. However, we are just 
beginning to unveil the mechanisms related to specific 
cholesterol-protein interactions in mediating endothelial 
dysfunction. Our recent studies have detailed that the 
cholesterol-mediated suppression of Kir2.1 is a major and 
specific mechanism underlying hypercholesterolemia-
induced endothelial dysfunction. Importantly, rendering 
this channel insensitive to cholesterol-mediated suppres-
sion of channel function restores endothelial function in 
the presence of elevated membrane cholesterol, thereby 
highlighting the potential benefits of targeting the effects 
of cholesterol on specific proteins. These findings may 
lead to an additional avenue in restoring endothelial 
function in dyslipidemic populations, perhaps in combi-
nation with lipid lowering therapies [47].
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