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Abstract
Purpose of Review To review the recent literature on the effects of wildfire smoke (WFS) exposure on asthma and allergic 
disease, and on potential mechanisms of disease.
Recent Findings Spatiotemporal modeling and increased ground-level monitoring data are allowing a more detailed picture 
of the health effects of WFS exposure to emerge, especially with regard to asthma. There is also epidemiologic and some 
experimental evidence to suggest that WFS exposure increases allergic predisposition and upper airway or sinonasal disease, 
though much of the literature in this area is focused more generally on  PM2.5 and is not specific for WFS. Experimental 
evidence for mechanisms includes disruption of epithelial integrity with downstream effects on inflammatory or immune 
pathways, but experimental models to date have not consistently reflected human disease in this area.
Summary Exposure to WFS has an acute detrimental effect on asthma. Potential mechanisms are suggested by in vitro and 
animal studies.

Keywords Wildfire smoke · Wood smoke · Asthma · Allergy

Introduction

Abundant epidemiologic evidence now strongly links expo-
sure to particulate air pollution with human respiratory dis-
eases and mortality, and experimental evidence suggests 
this is linked to oxidative effects on cellular function and 
inflammation [reviewed in 1]. Although some studies link 
air pollution with risk for non-respiratory conditions such 
as cancer and diabetes, the most consistent and concern-
ing findings are for increased risk of cardiopulmonary dis-
ease and mortality with exposure to fine particulate matter 
 (PM2.5). Studies have applied increasingly sophisticated and 
detailed exposure assessment methods to gain knowledge 
of risk factors, dose–response, and clues as to mechanisms 

of disease. Recent examples include the use of zip code-
level air pollution assessments in New York City to estimate 
reductions in mortality and asthma morbidity resulting from 
specific air quality improvements [2], and the use of land-
use regression models for air pollutant exposure in a large 
prospective longitudinal cohort in the United Kingdom, to 
estimate risk of developing chronic lung disease in a healthy 
adult population [3].

PM2.5 is chemically heterogeneous depending on its 
sources, which include traffic, industry, and biomass burn-
ing; health effects thus vary by source. While  PM2.5 levels 
have decreased overall in the USA in the decades following 
the Clean Air Act, exposure from biomass fuel burning and 
wildfires is a major global problem and is also increasing 
regionally in the USA in association with climate change 
[4–6]. As a result, wildfire smoke (WFS) is a specific sub-
type of  PM2.5 that has received more attention in recent years 
in terms of health effects, especially in relation to respiratory 
illness [7–9]. WFS is composed of a complex mixture of 
particulate matter, carbon oxides, nitrogen oxides, hazardous 
air pollutants, water vapor, and trace levels of thousands of 
other compounds [8]. A 2019 workshop convened by the 
American Thoracic Society concluded that WFS causes 
acute respiratory effects, particularly for those with underly-
ing chronic respiratory disorders, and that research is needed 
regarding longer-term effects of exposures, especially in 
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susceptible subgroups like children, asthmatics, or occu-
pationally exposed groups [10•]. A systematic review pub-
lished in 2021 found that for 5 pre-post and 11 cross-sectional 
studies of sites from the USA and several other countries, 
there was a significant increase in emergency department 
(ED) visits and hospitalizations for respiratory illnesses 
after WFS exposure, particularly in children < 5 years old 
[11]. Techniques have advanced to estimate the  PM2.5 health 
effects specific for WFS in large populations, using combina-
tions of ground-level monitoring and satellite imaging with 
chemical analysis of aerosols; in California, such studies have 
demonstrated exposure dose-related increases in respiratory 
hospitalizations in the presence of WFS [12] and health dis-
parities in  PM2.5 exposures [13].

Wildfires are increasing in both prevalence and intensity 
worldwide as a result of global climate change [14–16]. 
Wildfires impact the lives of hundreds of thousands of indi-
viduals in the USA alone. According to the National Intera-
gency Fire Center, as of October 3, 2022, in the USA, there 
had been 54,184 fires, covering almost 7 million acres, thus 
far during that year [17]. Of particular concern, there has 
been rapid growth in the prevalence of homes located within 
the wildland-urban interface (WUI), representing homes that 
reside within 0.5 miles of wildlands [18•, 19]. Fires at this 
interface are likely to produce smoke that differs chemically 
from WFS in wilderness areas, with complex mixtures of 
combustion emissions from both biogenic and anthropogenic 
sources, including plastics, metals, insulation material, and 
other sources with known toxic combustion products.

For the above reasons, it is critical that we better under-
stand WFS exposures, their complexity, and their resulting 
impacts on public health. In the current review, we sum-
marize recent epidemiologic literature relevant to effects of 
WFS exposure on asthma and on allergic or sinonasal dis-
ease, as well as emerging mechanistic concepts.

Wildfire Smoke and Asthma

As pointed out in a 2019 review by Reid and Maestas [20], 
the evidence for an association between WFS and respira-
tory diseases is clearest for acute effects on asthma, com-
pared to the evidence for long-term effects or for acute 
respiratory conditions other than asthma, as illustrated 
by several population-based studies of hospital admission 
rates [21, 22]. We focused the current review on original 
research studies referenced in PubMed, for the past 5 years, 
using search terms “wildfire smoke AND asthma.” Studies 
that did not attempt to estimate WFS-specific exposure (as 
opposed to particulate matter in general) were not reviewed. 
Highlights of these studies are shown in Table 1 [refer-
ences 23••, 24-38, 39•]. A variety of specific methods were 
used to estimate exposure, but most involved combining 
data from ground-level, fixed monitoring sites for  PM2.5 

with meteorological data and satellite-based imaging or 
physicochemical data to model the portion of exposure 
specific to WFS. Nearly all studies showed a statistically 
significant, exposure dose-related increase in risk for diag-
nosis or exacerbation of asthma after exposure to WFS. 
Many of these studies were conducted in western North 
America, where seasonal wildfires are common, but it has 
been pointed out by O’Dell and colleagues [40] that actual 
asthma morbidity from WFS in the USA may be greater in 
the east, due to much greater population density.

The information summarized in Table 1 shows that most 
studies sought to link WFS exposure estimates with health 
markers for asthma from de-identified population health 
databases, using billing codes and discrete, easily quanti-
fied events such as ED visits or hospital admissions. Peri-
ods of active WFS exposure were typically compared with 
non-exposure periods for the same population; some studies 
employed a time-stratified case-crossover analysis, which can 
compare exposure days vs. adjacent non-exposure days at the 
individual level. Some reports also estimated specific lag 
times for WFS effects. Reported relative risk or odds ratios for 
increased short-term WFS effects on asthma were remarkably 
consistent, most commonly around 1.10 (range 1.07–1.68) 
per 10 μg/m3 increase in WFS  PM2.5 (range 1–23 μg/m3). 
Increased risk of new onset asthma, as measured by increases 
in asthma consultation post-fire, was also found in firefighters 
exposed to the Fort McMurray fire in Alberta, Canada [39•]. 
Notably, the reported odds ratio was higher in this frequently 
exposed occupational group than most of the other studies in 
Table 1 (OR 2.56). Only one of the studies reviewed did not 
find a significant risk from WFS; uniquely among this series 
of papers, this study looked at lung function and symptom 
scores in a relatively small group of asthmatics [27]. Many 
of the reviewed studies also assessed risk for non-asthma res-
piratory conditions such as pneumonia or COPD, and non- 
respiratory conditions such as cardiovascular disease. In gen-
eral, the evidence for WFS exposure effects was less consist-
ent for these conditions, than for asthma.

Young asthmatic children may be at special risk for WFS-
induced exacerbation of symptoms [11, 23••]. Childhood 
risk was highlighted in a recent review [41], along with the 
possibility that longer-term effects on lung function could 
occur, as has been noted in a study of infant rhesus monkeys 
exposed to ambient WFS [42••]. However, other studies did 
not find a difference between children and adults in terms of 
risk for asthma exacerbation from WFS exposure. Increased 
risk for those with low socioeconomic status was highlighted 
by Reid et al. [21], and several studies highlighted increased 
risk for indigenous groups [33–35]. The two studies that spe-
cifically commented on sex-specific effects reported stronger 
WFS effects in women than in men [21, 34].

As noted above, evidence from animal studies suggests 
there may be long-term impacts of WFS exposure on lung 
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function or disease [42••]. However, there are few published 
data as to longer-term effects of WFS exposures on humans 
with or without asthma. An observational cohort study in 842 
patients at an allergy clinic assessed peak flow rates 1 year 
after the 2008 and 2011 Dismal Swamp peat bog fires in 
northeastern North Carolina and estimated a decrease in peak 
flow rates related to past smoke exposure, based on records 
of winds blowing in the direction of the community from the 
fires [38]. In a report currently under review for publication 
[43], our group conducted a retrospective study assessing the 
link between developmental exposure to wildfire smoke and 
evidence for childhood upper and lower respiratory diseases; 
this study demonstrated that wildfire smoke exposure dur-
ing the first 6 months of life was associated with increased 
use of medications for respiratory symptoms. In the study 
of Alberta firefighters, clinical assessments up to 46 months 
post-fire were completed. When analyzing those who com-
plained of pulmonary symptoms related to the fire, there was 
increased incidence of positive methacholine challenge test 
(28.6% in those with ongoing symptoms and 8.9 without) as 
well as combined positive MCT and bronchiole wall thick-
ening, both of which were also associated with higher esti-
mated exposure during the fire (10.4 ± 1.4  logPM2.5 μg/m3*h) 
[39•]. These studies together suggest potential for long-term 
impacts of WFS exposure, which should be studied further.

Wildfire Smoke and Upper Respiratory Illness, 
Allergy, or Rhinitis

Older epidemiologic studies have associated an increase in the 
incidence of sinonasal symptoms with wildfire or wood smoke 
exposure, especially among children and first responders [44, 
45]. These include a study from the Southern California wild-
fires of October 2003, during which a 1.98 OR was reported 
for sneezing or runny nose [46]. More recently, a 3.11 OR 
(1.62, 5.97) for itchy/watery eyes was reported among chil-
dren exposed to a large wildfire in Spain, especially among 
asthmatics [47]. Several studies have been published recently 
assessing a specific link between WFS and rhinitis or allergy 
symptoms, but with mixed results. Among the previously dis-
cussed asthma epidemiological studies, several included an 
assessment of the association between WFS and acute upper 
respiratory illnesses (URI), with some showing no signifi-
cant WFS effect [25, 31], one showing a positive association 
with RR 1.77 [23••], and one showing less impact of WFS 
compared to non-wildfire  PM2.5 on URI risk [32]. Fadadu 
et al. [48] found a RR of 1.49 (1.07, 2.07) for children and 
1.15 (1.02, 1.31) for adults for clinic visits for atopic der-
matitis symptoms, during exposure to WFS from the 2018 
Camp Fire in the San Francisco area. While not specific for 
WFS exposure, several reports are of interest for suggesting 
that  PM2.5 exposure can serve as a risk factor for worsening 

chronic rhinosinusitis (CRS) disease severity, with histologi-
cal evidence of type 2 eosinophilic inflammation [49–52].

Mechanistic and Experimental Studies

The mechanisms of WFS effects on the lower airways and 
lungs, under asthmatic or healthy conditions, are likely com-
plex and are an area of active investigation. As reviewed by 
Tuazon et al. [53], potential mechanisms for which there is 
supporting evidence include alteration of Th1/Th2 immune 
balance, epigenetic modifications, oxidative stress, altera-
tions in responses to infectious agents, disrupted epithe-
lial barrier function in the respiratory tract, and coincident 
increases in wildfires and allergen exposure due to global 
warming. Additional recent literature in these areas is sum-
marized below and in Table 2 [references [54-75]. While 
WFS-specific data are only starting to emerge, some recent 
experimental data from  PM2.5 exposure are also relevant to 
mechanistic hypotheses.

Altered Immune or Inflammatory Responses

Studies using lung cell lines or cultured primary cells have 
allowed exploration of cellular mechanisms for the gener-
ally pro-inflammatory effects of direct wood smoke expo-
sure (a commonly used model of wildfire or biomass smoke) 
in vitro, including activation of NFkB and caspase-1 signal-
ing pathways [54–58]. Exactly how these pathways impact 
manifestations of asthma and allergy is not yet clear. In 
terms of acute inflammatory responses to WFS or to wood 
smoke, interesting data are emerging from experimental 
studies in animal models. Some recent reports indicate that 
wood smoke induces a pro-inflammatory response in the res-
piratory tract in rodents, as evidenced by increased cytokines 
or inflammatory cells in lavage fluid [58, 61]. A study in 
a guinea pig model found increased BALF cytokines after 
smoke exposure, but an actual decrease in neutrophils [60]. 
Sun and colleagues showed that treatment with ursolic acid, 
an antioxidant, following  PM2.5 exposure helped to alleviate 
symptoms of sneezes and nasal rubs in rats, and reduced 
serum IL-4, IL-5, IL-13, and eotaxin-1 while reducing nasal 
mucosal eosinophilia [61]. In contrast, exposure of HDM-
allergic mice to smoldering eucalyptus or oak led to reduced 
minute volume and peak inspiratory flow rates, but actually 
suppressed markers of inflammation (IL-4, IL-5, in BALF; 
mixed inflammatory cells in lung) [59]. Thus, the lung wood 
smoke response in experimental animal models appears to 
be variable and model dependent.

Limited data are available from controlled exposures 
of human volunteers to wood smoke and those studies 
since 2020 have been reviewed in Schwartz et al. [76]. In 
one study of healthy adult subjects, increasing levels of 
IL-8, IL-1β, and 8-epi-PGF2⍺ in nasal lavage fluid was 
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correlated to rising levels of ambient exposure to  PM2.5 
[77]. Our group has recently reported that a history of 
underlying mild asthma was associated with increased risk 
for sputum inflammation (neutrophils, IL-8), 24 h after 
exposure of healthy young adult volunteers to moderate 
concentrations of wood smoke (smoldering oak) for 2 h 
[62]. These studies thus suggest that altered inflammation 
or immunity might be associated with increased risk for 
WFS-induced asthma effects, but the mechanisms are not 
yet clear.

Altered Response to Infectious Agents

Another potential pathway for WFS to affect asthma symp-
toms is by increasing risk of respiratory infection [78]. WFS 
exposure was linked to an increased risk of SARS-CoV2 
infection during the COVID-19 pandemic [79, 80]. An exper-
imental study suggested that exposure to wood smoke might 
increase risk for mycobacterial infection, by inhibiting mac-
rophage mitochondrial function [63]. In another study, human 
nasal epithelial cells (hNECs) cultured at air–liquid interface 
(ALI) exposure to condensates from biomass smoke emis-
sions prior to infection with SARS-CoV-2 reduced expres-
sion of antiviral mediators, interferon, and chemokines; cells 
from female donors displayed a greater downregulation of 
gene expression following SARS-CoV-2 infection than male 
cells [64]. In C57BL/6 mice, however, wood smoke particle 
exposure appeared to be protective against subsequent influ-
enza infection [65]. In our recent controlled wood smoke 
exposure study, healthy young adults that were exposed to 
2 h of either filtered air or wood smoke particles, then nasally 
inoculated with live-attenuated influenza virus vaccine, dis-
played a sex-based difference in inflammatory gene expres-
sion patterns in the nasal mucosa [66]. Thus, the role of WFS 
exposures in altering susceptibility or responses to respira-
tory infection, and its effect on asthma and allergy, appears to 
be complex and not consistently mimicked by experimental 
models to date.

Oxidative Stress

Many forms of particulate matter contain redox active 
chemical components and thus have the ability to gener-
ate reactive oxidative species leading to inflammation [81]. 
In in vitro studies of primary human nasal epithelial cells 
(hNEC) in culture,  PM2.5 exposure has been shown to induce 
endogenous oxidative stress and increase the release of 
inflammatory cytokine mediators such as IL-6, IL-8, IL-13, 
TNF-α, and eotaxin [82, 83]. Oxidative stress was recently 
reported for human lung cells lines exposed in vitro to prod-
ucts of wood burning [67].

Respiratory Epithelial Integrity

In the respiratory tract, adjacent epithelial cells are bound 
together on the apical mucosal surface primarily via tight 
junction complexes that serve to limit paracellular flux and 
help to establish distinct apical and basolateral membrane 
domains [84]. Disruption of this epithelial barrier can per-
mit penetration of pathogens, allergens, and other toxins 
into the underlying submucosal tissues leading to inflam-
mation and disease. Multiple experimental studies have 
shown that long-term particulate matter exposure can lead 
to downregulation of the nuclear erythroid 2–related fac-
tor 2 (Nrf2) pathway which can negatively affect epithelial 
barrier permeability and can predispose to chronic rhinosi-
nusitis and type 2 inflammation [85–88]. Zeglinski et al. 
[71] assessed the effects of a wood smoke-infused solu-
tion on alveolar epithelial barrier function, cell migration, 
and survival, and found reduction in barrier function. They 
also noted that wood smoke exposure activated the p44/42, 
MAPK signaling pathway, and inhibition of p44/42 phos-
phorylation prevented loss of barrier. Other recent reports 
confirm specific effects of wood smoke particles on epithe-
lial barrier factors in vitro [68–70]. Thus, it is possible that 
WFS has its initial impact on the airways via direct impact 
on epithelial integrity.

Allergen Exposure

It has been speculated that increased allergen exposure asso-
ciated with global warming and climate change is driving 
increased WFS-linked asthma or allergy effects; similar 
interactions between allergens and air pollutants have been 
recently demonstrated [89, 90]. However, two recent stud-
ies do not appear to support this concept. Bagheri et al. [91] 
found that pollen counts and  PM2.5 were each associated 
with increased respiratory hospital admissions, but pollen 
was not an independently significant risk factor in multivari-
ate analysis. Paudel et al. [92], using time-series regression 
models for the period 2002–2019, also did not find signifi-
cant association between pollen concentrations and wildfire 
smoke exposure.

Other Mechanistic Studies

Experimental studies have been published recently using 
animal or cell culture models. Koval and colleagues [75] 
assessed lung transcriptomic signatures in female mice 
exposed to biomass smoke condensates produced from a 
variety of biogenic sources relevant to wildfires. While  
exposure to emission condensates from smoldering red 
oak and smoldering peat caused moderate transcriptomic 
changes, exposures from flaming peat, flaming eucalyptus,  
and smoldering eucalyptus induced the greatest  
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transcriptomic responses, with similarity to the pro- 
inflammatory agent lipopolysaccharide. These data suggest 
that smoke resulting from combustion of these biomass 
sources induces responses similar to those caused by inhaling  
endotoxin and that combustion source and temperature 
affect respiratory outcomes. Carberry et al. [93] found that 
post-exposure, lung (and heart) extracellular vesicle (EV) 
microRNA showed differential expression profiles enriched 
for hypoxia and cell stress-related pathways, and postulated 
that wildfire exposures induce cardiopulmonary responses 
mediated by circulating plasma EVs. Interestingly, Xu et al. 
[94] studied female Australian twin pairs and found that 
long-term exposure to wildfire-related PM2.5 was associated 
with distinct blood DNA methylation signatures compared 
to non-wildfire PM2.5 exposures, supporting the concept of 
epigenetic effects of WFS.

Conclusions and Areas of Further Research

In summary, there is abundant and fairly consistent epide-
miologic evidence suggesting that exposure to WFS has 
an acute detrimental effect on asthma and that WFS may 
be more problematic in this regard than other forms of 
 PM2.5. Research in this area has been limited historically 
by the inability to accurately assess exposure at either the 
population or individual level, but recent advances in spa-
tiotemporal modeling, increased availability of ground-
level monitoring data, in combination with access to large 
health effects databases, are allowing a more detailed 
picture of the health effects of WFS exposure to emerge, 

especially with regard to asthma. There is also epidemio-
logic and some experimental evidence to suggest that WFS 
exposure increases allergic predisposition and upper air-
way or sinonasal disease, though much of the literature 
in this area is focused more generally on  PM2.5 and is not 
specific for WFS. Potential mechanisms for these effects, 
such as disruption of epithelial integrity with downstream 
effects on type 2 inflammatory or immune pathways, are 
emerging from in vitro and animal studies (Fig. 1), but 
experimental models to date have not consistently reflected 
human disease in this area.

Since WFS exposures are expected to increase in the 
coming decades, this is a major public health and equity 
concern, but major gaps remain in our understanding of 
these complex interactions, and therefore in our ability 
to formulate effective preventive strategies. For example, 
there are currently very few data directly addressing the 
longer-term effects of repeated or chronic WFS exposures 
on established asthma and/or allergic disease, the specific 
WFS chemical toxicities of greatest impact on human 
health, strategies to protect high-risk and vulnerable pop-
ulations, or the feasibility of large-scale application of 
monitoring technologies to guide individual actions. The 
complexity inherent in WFS exposures and how they relate 
to biological systems will ultimately require the application 
of new data analysis approaches such as the one described 
recently by Kim et al. [95]. These approaches may be able 
to uncover hazardous chemical components/groups within 
complex WFS mixtures driving respiratory toxicity and its 
manifestations in asthma and allergic disease.

Fig. 1  Potential mechanisms for 
WFS effects, such as disrup-
tion of epithelial integrity with 
downstream effects on type 
2 inflammatory or immune 
pathways, are emerging from 
in vitro and animal studies
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