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Abstract

Purpose of Review To review the recent literature on the effects of wildfire smoke (WFS) exposure on asthma and allergic
disease, and on potential mechanisms of disease.

Recent Findings Spatiotemporal modeling and increased ground-level monitoring data are allowing a more detailed picture
of the health effects of WFS exposure to emerge, especially with regard to asthma. There is also epidemiologic and some
experimental evidence to suggest that WES exposure increases allergic predisposition and upper airway or sinonasal disease,
though much of the literature in this area is focused more generally on PM, 5 and is not specific for WFS. Experimental
evidence for mechanisms includes disruption of epithelial integrity with downstream effects on inflammatory or immune
pathways, but experimental models to date have not consistently reflected human disease in this area.

Summary Exposure to WES has an acute detrimental effect on asthma. Potential mechanisms are suggested by in vitro and
animal studies.

Keywords Wildfire smoke - Wood smoke - Asthma - Allergy

Introduction

Abundant epidemiologic evidence now strongly links expo-
sure to particulate air pollution with human respiratory dis-
eases and mortality, and experimental evidence suggests
this is linked to oxidative effects on cellular function and
inflammation [reviewed in 1]. Although some studies link
air pollution with risk for non-respiratory conditions such
as cancer and diabetes, the most consistent and concern-
ing findings are for increased risk of cardiopulmonary dis-
ease and mortality with exposure to fine particulate matter
(PM, 5). Studies have applied increasingly sophisticated and
detailed exposure assessment methods to gain knowledge
of risk factors, dose—response, and clues as to mechanisms
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of disease. Recent examples include the use of zip code-
level air pollution assessments in New York City to estimate
reductions in mortality and asthma morbidity resulting from
specific air quality improvements [2], and the use of land-
use regression models for air pollutant exposure in a large
prospective longitudinal cohort in the United Kingdom, to
estimate risk of developing chronic lung disease in a healthy
adult population [3].

PM, 5 is chemically heterogeneous depending on its
sources, which include traffic, industry, and biomass burn-
ing; health effects thus vary by source. While PM, 5 levels
have decreased overall in the USA in the decades following
the Clean Air Act, exposure from biomass fuel burning and
wildfires is a major global problem and is also increasing
regionally in the USA in association with climate change
[4-6]. As a result, wildfire smoke (WFS) is a specific sub-
type of PM, 5 that has received more attention in recent years
in terms of health effects, especially in relation to respiratory
illness [7-9]. WFS is composed of a complex mixture of
particulate matter, carbon oxides, nitrogen oxides, hazardous
air pollutants, water vapor, and trace levels of thousands of
other compounds [8]. A 2019 workshop convened by the
American Thoracic Society concluded that WFS causes
acute respiratory effects, particularly for those with underly-
ing chronic respiratory disorders, and that research is needed
regarding longer-term effects of exposures, especially in
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susceptible subgroups like children, asthmatics, or occu-
pationally exposed groups [10e]. A systematic review pub-
lished in 2021 found that for 5 pre-post and 11 cross-sectional
studies of sites from the USA and several other countries,
there was a significant increase in emergency department
(ED) visits and hospitalizations for respiratory illnesses
after WFS exposure, particularly in children <5 years old
[11]. Techniques have advanced to estimate the PM, 5 health
effects specific for WES in large populations, using combina-
tions of ground-level monitoring and satellite imaging with
chemical analysis of aerosols; in California, such studies have
demonstrated exposure dose-related increases in respiratory
hospitalizations in the presence of WES [12] and health dis-
parities in PM, 5 exposures [13].

Wildfires are increasing in both prevalence and intensity
worldwide as a result of global climate change [14-16].
Wildfires impact the lives of hundreds of thousands of indi-
viduals in the USA alone. According to the National Intera-
gency Fire Center, as of October 3, 2022, in the USA, there
had been 54,184 fires, covering almost 7 million acres, thus
far during that year [17]. Of particular concern, there has
been rapid growth in the prevalence of homes located within
the wildland-urban interface (WUI), representing homes that
reside within 0.5 miles of wildlands [18e, 19]. Fires at this
interface are likely to produce smoke that differs chemically
from WFS in wilderness areas, with complex mixtures of
combustion emissions from both biogenic and anthropogenic
sources, including plastics, metals, insulation material, and
other sources with known toxic combustion products.

For the above reasons, it is critical that we better under-
stand WFS exposures, their complexity, and their resulting
impacts on public health. In the current review, we sum-
marize recent epidemiologic literature relevant to effects of
WES exposure on asthma and on allergic or sinonasal dis-
ease, as well as emerging mechanistic concepts.

Wildfire Smoke and Asthma

As pointed out in a 2019 review by Reid and Maestas [20],
the evidence for an association between WFS and respira-
tory diseases is clearest for acute effects on asthma, com-
pared to the evidence for long-term effects or for acute
respiratory conditions other than asthma, as illustrated
by several population-based studies of hospital admission
rates [21, 22]. We focused the current review on original
research studies referenced in PubMed, for the past 5 years,
using search terms “wildfire smoke AND asthma.” Studies
that did not attempt to estimate WFS-specific exposure (as
opposed to particulate matter in general) were not reviewed.
Highlights of these studies are shown in Table 1 [refer-
ences 23ee_ 24-38 39e]. A variety of specific methods were
used to estimate exposure, but most involved combining
data from ground-level, fixed monitoring sites for PM,
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with meteorological data and satellite-based imaging or
physicochemical data to model the portion of exposure
specific to WFS. Nearly all studies showed a statistically
significant, exposure dose-related increase in risk for diag-
nosis or exacerbation of asthma after exposure to WES.
Many of these studies were conducted in western North
America, where seasonal wildfires are common, but it has
been pointed out by O’Dell and colleagues [40] that actual
asthma morbidity from WFS in the USA may be greater in
the east, due to much greater population density.

The information summarized in Table 1 shows that most
studies sought to link WES exposure estimates with health
markers for asthma from de-identified population health
databases, using billing codes and discrete, easily quanti-
fied events such as ED visits or hospital admissions. Peri-
ods of active WFS exposure were typically compared with
non-exposure periods for the same population; some studies
employed a time-stratified case-crossover analysis, which can
compare exposure days vs. adjacent non-exposure days at the
individual level. Some reports also estimated specific lag
times for WFS effects. Reported relative risk or odds ratios for
increased short-term WFS effects on asthma were remarkably
consistent, most commonly around 1.10 (range 1.07-1.68)
per 10 pg/m? increase in WES PM, 5 (range 1-23 pg/m).
Increased risk of new onset asthma, as measured by increases
in asthma consultation post-fire, was also found in firefighters
exposed to the Fort McMurray fire in Alberta, Canada [39e].
Notably, the reported odds ratio was higher in this frequently
exposed occupational group than most of the other studies in
Table 1 (OR 2.56). Only one of the studies reviewed did not
find a significant risk from WFS; uniquely among this series
of papers, this study looked at lung function and symptom
scores in a relatively small group of asthmatics [27]. Many
of the reviewed studies also assessed risk for non-asthma res-
piratory conditions such as pneumonia or COPD, and non-
respiratory conditions such as cardiovascular disease. In gen-
eral, the evidence for WFS exposure effects was less consist-
ent for these conditions, than for asthma.

Young asthmatic children may be at special risk for WES-
induced exacerbation of symptoms [11, 23ee]. Childhood
risk was highlighted in a recent review [41], along with the
possibility that longer-term effects on lung function could
occur, as has been noted in a study of infant rhesus monkeys
exposed to ambient WFS [42ee]. However, other studies did
not find a difference between children and adults in terms of
risk for asthma exacerbation from WFS exposure. Increased
risk for those with low socioeconomic status was highlighted
by Reid et al. [21], and several studies highlighted increased
risk for indigenous groups [33-35]. The two studies that spe-
cifically commented on sex-specific effects reported stronger
WES effects in women than in men [21, 34].

As noted above, evidence from animal studies suggests
there may be long-term impacts of WFS exposure on lung
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function or disease [42ee]. However, there are few published
data as to longer-term effects of WES exposures on humans
with or without asthma. An observational cohort study in 842
patients at an allergy clinic assessed peak flow rates 1 year
after the 2008 and 2011 Dismal Swamp peat bog fires in
northeastern North Carolina and estimated a decrease in peak
flow rates related to past smoke exposure, based on records
of winds blowing in the direction of the community from the
fires [38]. In a report currently under review for publication
[43], our group conducted a retrospective study assessing the
link between developmental exposure to wildfire smoke and
evidence for childhood upper and lower respiratory diseases;
this study demonstrated that wildfire smoke exposure dur-
ing the first 6 months of life was associated with increased
use of medications for respiratory symptoms. In the study
of Alberta firefighters, clinical assessments up to 46 months
post-fire were completed. When analyzing those who com-
plained of pulmonary symptoms related to the fire, there was
increased incidence of positive methacholine challenge test
(28.6% in those with ongoing symptoms and 8.9 without) as
well as combined positive MCT and bronchiole wall thick-
ening, both of which were also associated with higher esti-
mated exposure during the fire (10.4 + 1.4 logPM, 5 pg/m>*h)
[39e]. These studies together suggest potential for long-term
impacts of WFS exposure, which should be studied further.

Wildfire Smoke and Upper Respiratory lliness,
Allergy, or Rhinitis

Older epidemiologic studies have associated an increase in the
incidence of sinonasal symptoms with wildfire or wood smoke
exposure, especially among children and first responders [44,
45]. These include a study from the Southern California wild-
fires of October 2003, during which a 1.98 OR was reported
for sneezing or runny nose [46]. More recently, a 3.11 OR
(1.62, 5.97) for itchy/watery eyes was reported among chil-
dren exposed to a large wildfire in Spain, especially among
asthmatics [47]. Several studies have been published recently
assessing a specific link between WFS and rhinitis or allergy
symptoms, but with mixed results. Among the previously dis-
cussed asthma epidemiological studies, several included an
assessment of the association between WFS and acute upper
respiratory illnesses (URI), with some showing no signifi-
cant WFS effect [25, 31], one showing a positive association
with RR 1.77 [23ee], and one showing less impact of WFS
compared to non-wildfire PM, 5 on URI risk [32]. Fadadu
et al. [48] found a RR of 1.49 (1.07, 2.07) for children and
1.15 (1.02, 1.31) for adults for clinic visits for atopic der-
matitis symptoms, during exposure to WES from the 2018
Camp Fire in the San Francisco area. While not specific for
WES exposure, several reports are of interest for suggesting
that PM, 5 exposure can serve as a risk factor for worsening

chronic rhinosinusitis (CRS) disease severity, with histologi-
cal evidence of type 2 eosinophilic inflammation [49-52].

Mechanistic and Experimental Studies

The mechanisms of WFS effects on the lower airways and
lungs, under asthmatic or healthy conditions, are likely com-
plex and are an area of active investigation. As reviewed by
Tuazon et al. [53], potential mechanisms for which there is
supporting evidence include alteration of Th1/Th2 immune
balance, epigenetic modifications, oxidative stress, altera-
tions in responses to infectious agents, disrupted epithe-
lial barrier function in the respiratory tract, and coincident
increases in wildfires and allergen exposure due to global
warming. Additional recent literature in these areas is sum-
marized below and in Table 2 [references [54-75]. While
WES-specific data are only starting to emerge, some recent
experimental data from PM, 5 exposure are also relevant to
mechanistic hypotheses.

Altered Immune or Inflammatory Responses

Studies using lung cell lines or cultured primary cells have
allowed exploration of cellular mechanisms for the gener-
ally pro-inflammatory effects of direct wood smoke expo-
sure (a commonly used model of wildfire or biomass smoke)
in vitro, including activation of NFkB and caspase-1 signal-
ing pathways [54-58]. Exactly how these pathways impact
manifestations of asthma and allergy is not yet clear. In
terms of acute inflammatory responses to WFS or to wood
smoke, interesting data are emerging from experimental
studies in animal models. Some recent reports indicate that
wood smoke induces a pro-inflammatory response in the res-
piratory tract in rodents, as evidenced by increased cytokines
or inflammatory cells in lavage fluid [58, 61]. A study in
a guinea pig model found increased BALF cytokines after
smoke exposure, but an actual decrease in neutrophils [60].
Sun and colleagues showed that treatment with ursolic acid,
an antioxidant, following PM, 5 exposure helped to alleviate
symptoms of sneezes and nasal rubs in rats, and reduced
serum IL-4, IL-5, IL-13, and eotaxin-1 while reducing nasal
mucosal eosinophilia [61]. In contrast, exposure of HDM-
allergic mice to smoldering eucalyptus or oak led to reduced
minute volume and peak inspiratory flow rates, but actually
suppressed markers of inflammation (IL-4, IL-5, in BALF;
mixed inflammatory cells in lung) [59]. Thus, the lung wood
smoke response in experimental animal models appears to
be variable and model dependent.

Limited data are available from controlled exposures
of human volunteers to wood smoke and those studies
since 2020 have been reviewed in Schwartz et al. [76]. In
one study of healthy adult subjects, increasing levels of
IL-8, IL-1p, and 8-epi-PGF2a in nasal lavage fluid was

@ Springer
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correlated to rising levels of ambient exposure to PM,
[77]. Our group has recently reported that a history of
underlying mild asthma was associated with increased risk
for sputum inflammation (neutrophils, IL-8), 24 h after
exposure of healthy young adult volunteers to moderate
concentrations of wood smoke (smoldering oak) for 2 h
[62]. These studies thus suggest that altered inflammation
or immunity might be associated with increased risk for
WEFES-induced asthma effects, but the mechanisms are not
yet clear.

Altered Response to Infectious Agents

Another potential pathway for WFS to affect asthma symp-
toms is by increasing risk of respiratory infection [78]. WES
exposure was linked to an increased risk of SARS-CoV2
infection during the COVID-19 pandemic [79, 80]. An exper-
imental study suggested that exposure to wood smoke might
increase risk for mycobacterial infection, by inhibiting mac-
rophage mitochondrial function [63]. In another study, human
nasal epithelial cells (hNECs) cultured at air-liquid interface
(ALI) exposure to condensates from biomass smoke emis-
sions prior to infection with SARS-CoV-2 reduced expres-
sion of antiviral mediators, interferon, and chemokines; cells
from female donors displayed a greater downregulation of
gene expression following SARS-CoV-2 infection than male
cells [64]. In C57BL/6 mice, however, wood smoke particle
exposure appeared to be protective against subsequent influ-
enza infection [65]. In our recent controlled wood smoke
exposure study, healthy young adults that were exposed to
2 h of either filtered air or wood smoke particles, then nasally
inoculated with live-attenuated influenza virus vaccine, dis-
played a sex-based difference in inflammatory gene expres-
sion patterns in the nasal mucosa [66]. Thus, the role of WFS
exposures in altering susceptibility or responses to respira-
tory infection, and its effect on asthma and allergy, appears to
be complex and not consistently mimicked by experimental
models to date.

Oxidative Stress

Many forms of particulate matter contain redox active
chemical components and thus have the ability to gener-
ate reactive oxidative species leading to inflammation [81].
In in vitro studies of primary human nasal epithelial cells
(hNEC) in culture, PM, 5 exposure has been shown to induce
endogenous oxidative stress and increase the release of
inflammatory cytokine mediators such as IL-6, IL-8, IL-13,
TNF-a, and eotaxin [82, 83]. Oxidative stress was recently
reported for human lung cells lines exposed in vitro to prod-
ucts of wood burning [67].

@ Springer

Respiratory Epithelial Integrity

In the respiratory tract, adjacent epithelial cells are bound
together on the apical mucosal surface primarily via tight
junction complexes that serve to limit paracellular flux and
help to establish distinct apical and basolateral membrane
domains [84]. Disruption of this epithelial barrier can per-
mit penetration of pathogens, allergens, and other toxins
into the underlying submucosal tissues leading to inflam-
mation and disease. Multiple experimental studies have
shown that long-term particulate matter exposure can lead
to downregulation of the nuclear erythroid 2—related fac-
tor 2 (Nrf2) pathway which can negatively affect epithelial
barrier permeability and can predispose to chronic rhinosi-
nusitis and type 2 inflammation [85—-88]. Zeglinski et al.
[71] assessed the effects of a wood smoke-infused solu-
tion on alveolar epithelial barrier function, cell migration,
and survival, and found reduction in barrier function. They
also noted that wood smoke exposure activated the p44/42,
MAPK signaling pathway, and inhibition of p44/42 phos-
phorylation prevented loss of barrier. Other recent reports
confirm specific effects of wood smoke particles on epithe-
lial barrier factors in vitro [68—70]. Thus, it is possible that
WES has its initial impact on the airways via direct impact
on epithelial integrity.

Allergen Exposure

It has been speculated that increased allergen exposure asso-
ciated with global warming and climate change is driving
increased WFS-linked asthma or allergy effects; similar
interactions between allergens and air pollutants have been
recently demonstrated [89, 90]. However, two recent stud-
ies do not appear to support this concept. Bagheri et al. [91]
found that pollen counts and PM, s were each associated
with increased respiratory hospital admissions, but pollen
was not an independently significant risk factor in multivari-
ate analysis. Paudel et al. [92], using time-series regression
models for the period 2002-2019, also did not find signifi-
cant association between pollen concentrations and wildfire
smoke exposure.

Other Mechanistic Studies

Experimental studies have been published recently using
animal or cell culture models. Koval and colleagues [75]
assessed lung transcriptomic signatures in female mice
exposed to biomass smoke condensates produced from a
variety of biogenic sources relevant to wildfires. While
exposure to emission condensates from smoldering red
oak and smoldering peat caused moderate transcriptomic
changes, exposures from flaming peat, flaming eucalyptus,
and smoldering eucalyptus induced the greatest
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Fig. 1 Potential mechanisms for
WES effects, such as disrup-
tion of epithelial integrity with
downstream effects on type

2 inflammatory or immune
pathways, are emerging from

in vitro and animal studies

Lower Respiratory
Tract:

{ Lung Function
T Oxidative Stress
T Sputum Neutrophils

{ Barrier Function
1
T Asthma Symptoms,
Hospital Admissions,
ED Visits

transcriptomic responses, with similarity to the pro-
inflammatory agent lipopolysaccharide. These data suggest
that smoke resulting from combustion of these biomass
sources induces responses similar to those caused by inhaling
endotoxin and that combustion source and temperature
affect respiratory outcomes. Carberry et al. [93] found that
post-exposure, lung (and heart) extracellular vesicle (EV)
microRNA showed differential expression profiles enriched
for hypoxia and cell stress-related pathways, and postulated
that wildfire exposures induce cardiopulmonary responses
mediated by circulating plasma EVs. Interestingly, Xu et al.
[94] studied female Australian twin pairs and found that
long-term exposure to wildfire-related PM2.5 was associated
with distinct blood DNA methylation signatures compared
to non-wildfire PM2.5 exposures, supporting the concept of
epigenetic effects of WFS.

Conclusions and Areas of Further Research

In summary, there is abundant and fairly consistent epide-
miologic evidence suggesting that exposure to WFES has
an acute detrimental effect on asthma and that WES may
be more problematic in this regard than other forms of
PM, 5. Research in this area has been limited historically
by the inability to accurately assess exposure at either the
population or individual level, but recent advances in spa-
tiotemporal modeling, increased availability of ground-
level monitoring data, in combination with access to large
health effects databases, are allowing a more detailed
picture of the health effects of WFS exposure to emerge,

T Sinonasal Symptoms

Alnflammation/Immune Markers

Upper Respiratory Tract: _BDiltf,f:,:T
T Inflammation Complex Sources

{ Antiviral Defense — Mixtures

1|3 of PM and

=
11 e

L Wildland Urban
Interface (WUI)

a Chronic Lung
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especially with regard to asthma. There is also epidemio-
logic and some experimental evidence to suggest that WFS
exposure increases allergic predisposition and upper air-
way or sinonasal disease, though much of the literature
in this area is focused more generally on PM, 5 and is not
specific for WFS. Potential mechanisms for these effects,
such as disruption of epithelial integrity with downstream
effects on type 2 inflammatory or immune pathways, are
emerging from in vitro and animal studies (Fig. 1), but
experimental models to date have not consistently reflected
human disease in this area.

Since WFS exposures are expected to increase in the
coming decades, this is a major public health and equity
concern, but major gaps remain in our understanding of
these complex interactions, and therefore in our ability
to formulate effective preventive strategies. For example,
there are currently very few data directly addressing the
longer-term effects of repeated or chronic WES exposures
on established asthma and/or allergic disease, the specific
WES chemical toxicities of greatest impact on human
health, strategies to protect high-risk and vulnerable pop-
ulations, or the feasibility of large-scale application of
monitoring technologies to guide individual actions. The
complexity inherent in WFS exposures and how they relate
to biological systems will ultimately require the application
of new data analysis approaches such as the one described
recently by Kim et al. [95]. These approaches may be able
to uncover hazardous chemical components/groups within
complex WFS mixtures driving respiratory toxicity and its
manifestations in asthma and allergic disease.
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