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Abstract
Purpose of Review While the predominant cause for morbidity and mortality with SARS‐CoV‐2 infection is the lower res-
piratory tract manifestations of the disease, the effects of SARS-CoV-2 infection on the sinonasal tract have also come to the 
forefront especially with the increased recognition of olfactory symptom. This review presents a comprehensive summary 
of the mechanisms of action of the SARS-CoV-2 virus, sinonasal pathophysiology of COVID-19, and the correlation with 
the clinical and epidemiological impact on olfactory dysfunction.
Recent Findings ACE2 and TMPRSS2 receptors are key players in the mechanism of infection of SARS-CoV-2. They are 
present within both the nasal respiratory as well as olfactory epithelia. There are however differences in susceptibility between 
different groups of individuals, as well as between the different SARS-CoV-2 variants.
Summary The sinonasal cavity is an important route for SARS-CoV-2 infection. While the mechanism of infection of 
SARS-CoV-2 in nasal respiratory and olfactory epithelia is similar, there exist small but significant differences in the 
susceptibility of these epithelia and consequently clinical manifestations of the disease. Understanding the differences 
and nuances in sinonasal pathophysiology in COVID-19 would allow the clinician to predict and counsel patients suffer-
ing from COVID-19. Future research into molecular pathways and cytokine responses at different stages of infection and 
different variants of SARS-CoV-2 would evaluate the individual clinical phenotype, prognosis, and possibly response to 
vaccines and therapeutics.
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Introduction

In December 2019, a novel coronavirus SARS-CoV-2 was first 
identified in a cluster of pneumonia cases in Wuhan, Hubei 
Province of China [1]. Spreading rapidly, the WHO declared 
a global pandemic in March 2020. It has since unfolded to 
become one of the deadliest and most consequential pandemics 
in our history. As of August 2022, there have been over 500 
million confirmed cases and over 6 million deaths attributed to 
the virus [2]. Clinical manifestations range from asymptomatic 
to severe respiratory failure, multiorgan failure, and death [3].

A large proportion of the morbidity and mortality associ-
ated with SARS‐CoV‐2 infection is due to lower respiratory 
tract manifestations of the disease. However, the effects of 
SARS-CoV-2 infection on the sinonasal tract have also come 
to the forefront especially with the increased recognition of 
olfactory symptoms [4]. The objective of this review was to 
synthesize current evidence regarding sinonasal pathophysi-
ology of SARS-CoV-2 and its clinical and epidemiological 
impact on olfactory dysfunction (OD).
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Overview of SARS‑CoV‑2

Human coronavirus was first isolated in specimen viral cul-
tures from a young child’s nasal secretions in 1965 by Tyrell 
and Bynoe [5].They owe their name corona, which is the 
Latin word for crown, to their characteristic appearance of 
spike projection of glycoproteins under the electron micro-
scope. There are seven formally recognized coronaviruses 
that are known to infect humans [6]. The known circulating 
Alpha coronavirus (229E, OC43, NL63, and HKU1) were 
only known to causes mild diseases. It was only in the past 
few decades that the spill over from wildlife has led to the 
emergence of the three pathogenic beta coronavirus spe-
cies (SARS-CoV, MERS-CoV, and SARS-CoV-2) associ-
ated with higher case mortality [6]. SARS-CoV-2 genetic 
sequence is 80% similar to SARS-CoV-1 and 96.2% similar 
to bat coronavirus RaTG13 [7].

SARS‑CoV‑2 Structure

SARS-CoV-2 is an enveloped, positive-sense, single-
stranded RNA virus and has the largest genome of all 
RNA viruses ranging from 27 to 32 kb. It contains 4 struc-
tural proteins (N, M, S, E) and 16 non-structural proteins 
(nsp1–16) [8]. The genome is tightly packed inside a helical 
capsid formed by the nucleocapsid (N) protein that is in turn 
enclosed within a lipid bilayer envelope. This envelope is 
formed by the membrane (M), spike (S), and envelope (E) 
protein [9]. The S protein is of particular clinical interest as 
it is required for virus entry and also gives the microbiologi-
cal basis of viral tropism, making it a possible drug target for 
antivirals [9]. Synthesized as an inactive precursor, it under-
goes sequential proteolytic cleavage to generate 2 domains: 
S1 and S2. S1 contains the receptor binding domain (RBD) 
while S2 contains the membrane fusion domain.

SARS‑2‑CoV‑2 Replication Cycle

Entry into host cell marks the first step of viral infection. 
The S protein first undergoes proteolysis into S1 and S2 
[10]. This may be mediated either by host cell furin, by ser-
ine proteases such as the transmembrane protease, serine 2 
(TMPRSS2) [11], or by cathepsin proteases in the late endo-
some/endolysosome [12]. TMPRSS2 is a type II transmem-
brane serine protease that is widely expressed in epithelial 
cells of the respiratory, gastrointestinal, and urogenital tract 
[13]. Its expression level in the respiratory epithelium (RE) 
has been thought to be modulated by external factors such 
as air pollution or inflammatory airway conditions such as 
atopy or asthma [14].

Following S1/S2 site cleavage, the S1 protein binds to host 
ACE2 via the RDB to gain entry [15]. ACE2, a homologue 

of ACE, acts as a counter regulator in the Renin-Angiotensin 
(RAS) pathway by catalysing cleavage of Angiotensin II to 
Angiotensin I and Angiotensin I to Angiotensin [16]. ACE2 is 
expressed in type II alveolar cells and are found in numerous 
tissues including but not limited to lower respiratory tract, 
lungs, heart, gastrointestinal tract, blood vessels, and kidneys 
[17]. The S2 protein interacts with the membrane. It further 
undergoes structural conformational changes and exposes a 
second cleavage site S2’, whose proteolysis is thought to trig-
ger the membrane fusion [18, 19].

Following the entry and fusion at cellular or endosomal 
membrane, viral genome is released and uncoated into host 
cell cytoplasm. Viral genomic RNA is then translated into 
polyproteins which are further processed into individual 
non-structural proteins (NSPs). NSPs form the viral rep-
lication and transcription complex. Virus-induced double 
membrane vesicles are formed and viral genomic replica-
tion of full-length negative strand RNA and synthesis of 
subgenomic RNA occurs within the vesicles [20]. Tran-
scription and translation of these negative RNA template 
forms structural proteins—N, M, S, and E proteins—which 
are then inserted into endoplasmic reticulum membrane and 
transit from endoplasmic reticulum to Golgi intermediate 
compartment [20].

The N protein complexes with the newly formed virion 
genome, while proteins M, S, and E are incorporated into 
the viral envelope. The newly assembled viral particles then 
bud into lumen of secretory vesicular compartments and are 
released from host cell by exocytosis.

SARS‑CoV‑2 Transmission

Just like SARS-COV-1 and MERS-CoV, SARS-CoV-2 likely 
originated from bats [21]. Initial zoonotic transmission from 
bats to human may have been via a yet-to-be-determined 
intermediate animal host [22]. Intermediate animal host 
transmission was seen in SARS-CoV with civets as inter-
mediate host and camels for MERS-CoV [6].

The SARS-CoV-2 is a highly infectious virus that can 
survive in the air for 2 h. Incubation period of SARS-CoV-2 
varies with variants; however, mean incubation period is esti-
mated to be a week [23]. The primary mechanism of human 
transmission of SARS-CoV-2 is via close contact with infected 
respiratory droplets which are released via sneezing or cough-
ing [24]. Transmission can also occur via direct contact with 
infected individual’s oral, nasal, or conjunctiva mucosa, con-
tact with fomites, and faecal oral transmission [24].

The presence of elevated ACE2 expression in nasal epi-
thelial cells indicates that the nose and lung are the primary 
target organs of SARS‐CoV‐2 infection [25]. The virus then 
migrates from the nasal epithelium to the upper respiratory 
tract, and subsequently the lower respiratory tract, via the 
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conducting airways [26]. Sinonasal epithelium comprises 
olfactory (OE) and respiratory epithelium (RE). Within the 
nose, both OE and RE are major sites of viral infection and 
replication, mediated similarly by ACE2 and TMPRSS2 
expression [27••, 28]. Unlike SARS-CoV [29], however, 
SARS-CoV-2 produces significant olfactory impairment 
[4]. Evidently, although host cell surface entry receptors 
and cofactors determine infectivity, they do not determine 
susceptibility nor pathogenicity [30].

Sinonasal SARS‑CoV‑2 Infection

Olfactory Epithelial Infection

Anatomy and Histology

The OE is estimated to be 2.5  cm2 wide [31], and accounts 
for only 5% of the total luminal surface area of nasal epithe-
lium [32, 33]. It is estimated that 10% of nasal airflow [34] 
comes into contact with the OE. Histologically, the OE is a 
layer of pseudostratified columnar epithelium. Cytologically, 
it is made of ciliated olfactory receptor neurons (ORNs), 
sustentacular supporting cells, globose and horizontal basal 
cells, occasional microvillar cells, and ductal cells of Bow-
man’s glands, plus glandular cells of Bowman’s glands in 
the lamina propria of the olfactory mucosa [33, 35]. SARS-
CoV-2 infection results in focal atrophy, leukocyte infiltra-
tion of the olfactory mucosa, and ORN axonal damage [36, 
37]. ORN may be structurally or physiologically affected 
given that sustentacular cells are known to take on support-
ing (including metabolic, nutritional, and homeostatic) roles 
in the OE [27••]. There has yet to be convincing evidence of 
direct ORN infection with SARS-CoV-2 [27••, 38].

ACE2 and TMPRSS2 Expression and Viral Infection

Studies have identified the expression of ACE2 and 
TMPRSS2 in sustentacular cells [27••, 28, 39], Bowman’s 
glands [40], and duct cells [40]. In a comprehensive post-
mortem analysis of SARS-CoV-2-infected OE combining 
ultrasensitive in situ RNA hybridization with immunohisto-
chemistry, Khan et al. [27••] reported that the major target 
cell type in the OE is sustentacular cells, with vigorous rep-
lication within these cells. Molecular testing of OE has also 
shown subgenomic RNA transcripts, surrogate marker for 
active viral replication in a specific location [41]. Interest-
ingly, the presence of eosinophilic rhinosinusitis has been 
found to be associated with ACE2/TMPRSS2 downregula-
tion within the OE [42]. In contrast, ORNs appear to not be 
direct targets of SARS-CoV-2 infection, with no changes 
in ORN gene-expression levels seen in OE patches of high 
versus low viral load [27••].

Biopsies of SARS-CoV-2-infected OE have shown sig-
nificant increases in the pro-inflammatory tumour necrosis 
factor alpha [43], a molecule known to promote olfactory 
receptor cell death [43, 44]. Interleukin-6 has also been 
implicated amongst COVID-19 patients with olfactory disor-
der, inhibiting the smell through apoptotic pathways through 
TNF-α or neuropilin [45]. Interestingly, there was no sig-
nificant increase in interleukin-1-beta [43], a molecule often 
associated with lower respiratory tract pathology amongst 
COVID-19 patients.

Susceptibility

Despite the small surface area and relatively low nasal air-
flow of OE, OD in COVID-19 is especially prevalent. In a 
meta-analysis by Pang et al. [4], the frequency of OD via 
detection via validated smell testing was 0.76, and via sur-
vey/questionnaire reports was 0.53. Human autopsies have 
found SARS-CoV-2 spike protein in many OE sustentacular 
cells [46], with olfactory mucosa showing high viral loads 
[41]. Furthermore, it is reported that ACE2 expression in the 
olfactory epithelium is up to hundreds of times more than in 
the neighbouring respiratory epithelium [33, 39, 40].

Clearly, OE is highly susceptible to SARS-CoV-2 infec-
tion, with significant host response and clinical pathology. 
Both murine and human studies have shown that the ACE2 
expression is more abundant in OE, up to hundreds-fold as 
compared to RE [39, 40, 47]. This increases the suscepti-
bility of the sustentacular cells to SARS-CoV-2 infection. 
Liang et al. [33] further proposed that the coat of microvilli 
occupying the luminal OE surface may result in a multiplier 
effect for infectivity by vastly increasing the cellular surface 
area for binding or absorption [48].

While OD affects majority of patients, it is difficult to 
predict which patients will be affected. A recent multi ances-
try genome study of 69,841 individuals by Shelton et al. 
[49] identified genome wide significant locus in UGT2A1/
UGT2A2 in patients who reported anosmia and ageusia, 
highlighting a possible genetic predisposition. UGT2A1 
and UGT2A2 are part of a family of enzymes that partake 
in the elimination of odorant particles and may play a role in 
the physiology of infected cells. Risk factors for OD include 
current smoking [50], history of allergy [50], female sex 
[51–54], younger age group [54, 55], Caucasian [39, 54], 
and presence of chronic cardiovascular diseases such as 
hypertension and diabetes [55].

Females have been shown to have more superior sense of 
smell [56], and this has been thought to be due to sex-spe-
cific differences in cytokine production following activation 
of toll-like receptors [57], and increased number of neurons 
and glial cells than males [56]. Caucasians have also been 
shown to express ACE2 and TMPRSS2 more frequently in 
OE and sustentacular cells of OE, allowing greater viral host 
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cell entry and infection. Even amongst Asians, microvascu-
lar disease from hypertension and diabetes is likely to further 
contribute to increased OD [58]. The presence of normal 
age-related decline in olfactory function [59] including 
atrophy of nasal epithelium, olfactory bulb volume shrink-
age, and cortical degeneration is also theorized to result in 
decreased sensitivity to changes in olfactory ability in the 
older age group.

COVID‑19‑Induced Anosmia Versus Post‑viral Olfactory 
Dysfunction

Viral upper respiratory tract infection is one of the most 
common causes of OD [60]. Post-viral olfactory dysfunction 
(PVOD) is not unique to SARS-COV-2, ranging from 18 
to 42% following viral URTI [61]. Some of the more com-
mon viruses isolated are rhinoviruses, parainfluenza viruses, 
and coronavirus [62]. It is postulated that PVOD begins as 
nasal mucosa inflammation that causes conductive obstruc-
tion and decreased delivery of odorants to olfactory epi-
thelium and can persist when there is direct damage to OE 
and olfactory bulb [63]. However, the exact pathophysiol-
ogy of PVOD is poorly understood as patients often present 
late, difficulty in isolating causative viruses, and absence of 
standardized diagnostic tools [64]. In general, the clinical 
course of both SARS-COV-2 and other viral induced PVOD 
is similar. Both occur at the beginning of viral infection, 

with majority showing recovery 2–3 weeks of infection [65].  
Huart et al. observed that SARS-COV-2 patients had worse 
global, sweet, bitter, and smell discriminatory perfor-
mance [65]. The impairment of discrimination potentially 
points to greater involvement of central olfactory struc-
tures. This could be attributed to SARS-COV-2’s relative 
neurological tropism [66]. SARS-COV-2-related PVOD 
also appears more severe than other viral PVOD. Haeh-
ner et al. observed that majority of SARS-COV-2 patients 
reported complete anosmia compared to 9–16% in other  
viruses [67].

Difference Amongst Variants

Epidemiological studies have shown that the prevalence 
of OD was the lowest amongst Omicron variants, followed 
by Delta variant, and then Alpha variant [68–72] (Fig. 1). 
Menni et al. reported that loss of smell was less common in 
participants infected during the Omicron than during the 
Delta prevalence (16.7% vs 52.7%) [70]. Cardoso reported 
that individuals with mild COVID-19 infected during the 
Gamma and Omicron waves had lower odds of reporting 
OD than individuals infected during the period of the origi-
nal lineages (original lineages 52.6%, Gamma 27.5%, Delta 
41.2%, Omicron 5.8%) [69]. Similarly, Vihta et al. reported 
that the Omicron variant had a lesser impact on smell and 
taste compared with the Delta and Alpha variants [71].

Fig. 1  Prevalence of olfactory 
dysfunction (OD) amongst 
patients infected by SARS-
CoV-2 variants and recovery. 
*Data obtained from papers 
analysing OD recovery during 
period where the Alpha variant 
was predominant strain
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An animal model study further reported that Syrian 
hamsters inoculated with the Delta variant results in severe 
necrotizing pan-rhinitis, while the Omicron variant acutely 
causes rhinitis with epithelial injury but with, of interest, OE 
sparing [73]. Histological analysis of the olfactory epithe-
lium amongst Delta variant-infected hamsters showed global 
necrosis extending to the level of basal cells, with otherwise 
complete dissolution of the normal pseudostratified colum-
nar layering of olfactory neurons and sustentacular cells 
[73]. This was despite no statistically significant differences 
in the viral loads between the two Syrian hamster subgroups 
[73]. This was also in spite of the findings of Kumar et al. 
showing the Omicron variant had a higher affinity for ACE2 
than the Delta variant due to a larger number of mutations in 
the SARS-CoV-2 receptor-binding domain [74].

Alterations in Omicron spike protein have been found to 
result in reduced entry efficiency via TMPRSS2-dependent 
plasma membrane fusion [75, 76]. Butowt et al. [77] found 
that mutations made omicron more hydrophobic and alka-
line than previous variants, which may reduce solubility and 
penetration of the mucus layer [78].

The different prevalence of OD during the different vari-
ants is likely multifactorial—less virulent virus characteristics, 
interaction with host and acquired immunity. From the Alpha 
wave to Omicron wave, previously acquired immunity from 
either vaccinations or previous infectious may have led to less 
local and systemic inflammation and hence lower self-reported 
OD. Antonelli et al. [79] and Malhotra et al. [80] observed that 
vaccinated patients who had re-infection with SARS-COV-2 
had lower incidence of OD and shorter duration of symptoms.

It is interesting that the hospitalization [81–84], ICU 
admission [81], and mortality rates [85, 86] differ fairly 
significantly between the different SARS-CoV-2 variants 
(Table 1). These may once again reflect the differences in 
susceptibility to different mutations in the SARS-CoV-2 
receptor-binding domain, or simply acquired immunity for 
either infections or previous infections.

Recovery and Prognosis of OD

Fortunately, a majority of patients with OD demonstrate 
recovery. Reyna et al. [87] reported that clinical recovery 
of OD was correlated with repair of the OE in the Syrian 

hamster model. Catton et al. reported that within 14 days, 
64% of cases had resolved, and within 30 days, 87% had 
resolved, rising to 96% resolution within 90 days [88]. In a 
meta-analysis of time-to-event data by Tan et al. [89••], an 
estimated 74%, 86%, 90%, and 96% of patients self-reported 
smell recovery and 79%, 88%, 90%, and 98% self-reported 
taste recovery at 30, 60, 90, and 180 days, respectively. 
Recovery rates appeared to be highest amongst patients 
infected with the Omicron variant, followed by the Alpha 
variant, and then the Delta variant [90–93] (Fig. 1).

Persistent smell or taste dysfunction was reported in 
4.7–27.0% [92, 94–96] of patients, and estimated to develop 
in about 5% of patients [89••] using parametric cure mod-
elling. Female sex was associated with poorer recovery 
of both smell and taste, whereas greater initial severity 
of dysfunction and nasal congestion were associated with 
poorer smell recovery only. Zazhytska et al. [97] sought to 
explain the persistent OD that cannot be attributed to tran-
sient cell-autonomous effects of sustentacular cells. They 
observed downregulation of key transcription factors for 
olfactory sensory neurons and downregulation of olfactory 
receptor and olfactory receptor signalling genes in hamster 
cells infected by SARS-Cov-2. Similar changes were also 
observed in human OE autopsies obtained from infected 
patients. They postulated that the disruption in nuclear archi-
tecture in mature OSNs is irreversible; hence, olfaction may 
only recover after these mature OSNs are replaced, a process 
that will likely take weeks to months. Unfortunately, very 
limited evidence is available on the efficacy and harms of 
therapeutics for prevention and treatment of persistent OD 
[98, 99], and more work needs to be done in this area.

Olfactory Dysfunction and COVID‑19 Disease Course

The presence of OD has been purported to be a marker of 
good prognosis. Mendonça et al. reported a significantly 
higher prevalence of OD amongst patients with more severe 
COVID-19 disease. Li et al. [100] reported that only a small 
proportion of patients with OD developed severe and critical 
illness was relatively small. Yan et al. [101] also found that 
patients who required admission for COVID-19 were signifi-
cantly less likely to report OD. Patients who reported OD 
were 5‐fold more likely to be managed in the outpatient set-
ting. One proposed mechanism was that OD signified higher 
disease concentration in the sinonasal cavity rather than in 
the lower airway, indicating that a robust immune response 
has occurred in the nasal passages, with reduced spread to 
other parts of the body.

On the other hand, several other studies [102–105] found 
no association between the OD and disease severity. This 
may purely be due to recall bias, where patients with severe 
COVID-19 may be less cognizant of OD due to the presence 
of more bothersome symptoms such as dyspnoea [4].

Table 1  Morbidity and mortality of COVID-19 caused by different 
SARS‐CoV‐2 variants

Variants of SARS‐CoV‐2

Alpha Delta Omicron

Hospitalization (%) [81–84] 2.5–5.7 0.5–4.2 0.5–0.9
ICU admission (%) [81] 0.19–0.4 0.2–0.8 0.0–0.1
Mortality rates (%) [85, 86] 0.5–1.2 0.09–0.3 0.0–0.11
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Nasal Respiratory Epithelial Infection

Anatomy and Histology

In contrast to OE, nasal RE lines the majority of the inner 
surface of the nasal cavity[27••], occupying an area of 
approximately 120  cm2 [106]. It is a ciliated, pseudostrati-
fied columnar epithelium comprising mainly of ciliated 
columnar epithelial cells, secretory goblet cells and basal 
cells [27••], as well as brush cells, small granule cells, 
ductal cells of glands, and glandular cells in the lamina 
propria [33, 106].

Sinonasal mucosal epithelium cells are firmly adhered 
to each other via cell junctions and tight junctions, form-
ing a robust physical barrier [107]. Mucociliary clearance 
further traps microbes and particles in the mucus layer, and 
transports the debris to the oropharynx. Mucus also interact 
with components of innate immunity like IgA and defensins, 
generating proteins like lysozyme, lactoferrin, and defensins 
which assist in elimination of pathogens [108]. Within the 
nasal respiratory epithelium, there is also a network of innate 
and adaptive immunity made of macrophages, dendritic 
cells, IgA-committed B cells, and Th-1 and Th-2 cells.

ACE2 and TMPRSS2 Expression and Viral Infection

Ciliated columnar respiratory epithelial cells have been 
identified as the main target cell for SARS-CoV-2 infection, 
with high concentrations of ACE2 and TMPRSS2 expres-
sion [27••, 109–111]. Consistent with this, ciliated cells 
have been shown to harbour the bulk of the viral load in the 
RE [27••, 110]. In particular, ACE2 and TMPRSS2 were 
found to be localised to the plasma membrane including 
microvilli but excluded from cilia, with extracellular virions 
seen associated with microvilli and the apical plasma mem-
brane [110]. Interestingly, Wang et al. reported regional 
differences in ACE2 expression in the sinonasal mucosa of 
patients with chronic rhinosinusitis, with decreased ACE2 
mRNA and protein expression levels within the ethmoid 
mucosa and nasal polyps, as compared to the inferior tur-
binates [112].

The role of secretory goblet cells in viral infection, in con-
trast, is unclear. Evidence of ACE2 and TMPRSS2 expres-
sion within these cells is conflicting [40, 109, 113–115]. 
Pinto et al. found that evidence of intracellular virus repli-
cation could be clearly seen in ciliated cells but were rarely 
found in goblet cells [110]. Likewise, goblet cells were not 
identified as a target cell type by Khan et al. [27••]. How-
ever, some studies have documented SARS-CoV-2 infec-
tion of goblet cells [115, 116]. It is hence hypothesized that 
goblet cells lack adequate machinery for viral entry at the 
early stages of infection, but may gradually be vulnerable 
after longer periods of infection [110].

Susceptibility and Effect of Nasal RE Infection

Khan et al. identified ciliated cells as the major target cell 
type in RE [27••], concluding that the nasal RE is a major 
site of infection for SARS-CoV-2. Infected ciliated cells 
shed their ciliary axonemes [12, 18], which disables muco-
ciliary clearance and likely enables disease progression.

SARS-CoV-2 replicates within the epithelial target cells and 
is release apically, thereby infecting neighbouring cells [113]. 
Infected nasal epithelial cells shed their ciliary axonemes [117] 
which causes dysfunction of mucociliary clearance and loss of 
barrier function, hence propagating infection. Active replica-
tion and release of viruses causes pyroptosis of host cell. This 
is recognized by neighbouring cells, resulting in production of 
cytokines and chemokines such IL-6, macrophage inflamma-
tory protein 1 alpha which attracts monocytes, macrophages, 
and T cells [118]. Furthermore, pattern recognition receptors 
like toll-like receptors (TLR) and retinoic-acid-inducible gene 
1 (RIG-1) receptors [119] recognize the viral particles and lead 
to activation of latent transcription factors including interferon 
regulatory factors, which kick-starts proinflammatory antiviral 
mechanisms [120].

It has been reported that while a large number patients 
with COVID-19 experience OD, most have a paucity of other 
sinonasal symptomatology [14]. Nasal RE is thought to have 
a dampened immune response to SARS-CoV-2. Blanco-Melo 
et al. reported that SARS-CoV-2 is secreted at lower levels 
as compared to other respiratory viruses [121]. This is also 
supported by the identification of loss of function mutations 
at TLR3 and TLR7 in patients with severe infection [122]. 
Gamage et al. measured several cytokines after SARS-CoV-2 
infection of nasal epithelium, and, with the exception of CXCL, 
reported dampened cytokine secretion [123]. The reason for 
dampened innate response is unknown and investigations are 
underway. Some postulated explanations include ongoing expo-
sure of the nasal RE to widespread microbes and their associ-
ated pathogen-associated molecular patterns may dampen the 
innate immune response. The relatively cooler temperatures in 
the nasal passages may contribute to dampened immunity [26].

Current Limitations and Future Perspectives

Since the beginning of the pandemic, great strides have been 
made in the understanding of sinonasal pathology in SARS-
CoV-2 infection. However, the subjective nature of olfactory 
assessment and retrospective nature of the reviews [89••] may 
limit the accuracy of the estimate of the true impact on OD. 
Furthermore, hypotheses correlating the mechanism and patho-
physiology of OD to recovery rates have yet to be proven, and 
require further research. It also remains unclear if the extent 
and subsequent recovery loss of sense of smell can serve as a 
prognostic indicator of severity of COVID-19 infection [124•].
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The study of COVID-19 in the context of pre-existing 
sinonasal pathology such as chronic rhinosinusitis and its 
associated inflammatory environment has yielded interest-
ing findings [125], and may serve as a platform for further 
research. Delving into molecular pathways and cytokine 
responses at different stages of infection and different vari-
ants of SARS-CoV-2 would also help to improve our under-
standing of the true effects of the virus, and help to more 
accurately prognosticate upper respiratory tract symptoms. 
With the evolving understanding of role of genetic variabil-
ity in viral cell entry and immune response to virus infection, 
it will also be pertinent for future research to evaluate the 
genetic host background that impacts clinical phenotype and 
possibly response to vaccines and therapeutics.

Conclusion

The sinonasal cavity is an important route for SARS-CoV-2 
infection. While the mechanism of infection of SARS-CoV-2 
in nasal OE and RE are similar, there exist small but signifi-
cant differences in the susceptibility of these epithelia and 
consequently clinical manifestations of the disease. Under-
standing the differences and nuances in sinonasal pathophys-
iology in COVID-19 would allow the clinician to predict and 
counsel patients suffering from COVID-19.
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