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Abstract

Purpose of Review The incidence of allergies is increasing and has been associated with several environmental factors
including westernized diets. Changes in environment and nutrition can result in dysbiosis of the skin, gut, and lung micro-
biota altering the production of microbial metabolites, which may in turn generate epigenetic modifications. The present
review addresses studies on pectin-mediated effects on allergies, including the immune modulating mechanisms by bacterial
metabolites.

Recent Findings Recently, microbiota have gained attention as target for allergy intervention, especially with prebiotics,
that are able to stimulate the growth and activity of certain microorganisms. Dietary fibers, which cannot be digested in the
gastrointestinal tract, can alter the gut microbiota and lead to increased local and systemic concentrations of gut microbiota-
derived short chain fatty acids (SCFAs). These can promote the generation of peripheral regulatory T cells (T,,) by epigenetic
modulation and suppress the inflammatory function of dendritic cells (DCs) by transcriptional modulation.
The dietary fiber pectin (a plant-derived polysaccharide commonly used as gelling agent and dietary supplement) can alter
the ratio of Firmicutes to Bacteroidetes in gut and lung microbiota, increasing the concentrations of SCFAs in feces and
sera, and reducing the development of airway inflammation by suppressing DC function.

Summary Pectin has shown immunomodulatory effects on allergies, although the underlying mechanisms still need to be
elucidated. It has been suggested that the different types of pectin may exert direct and/or indirect immunomodulatory effects
through different mechanisms. However, little is known about the relation of certain pectin structures to allergies.
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Introduction

The manifestation of allergies frequently is associated with
a dysbiosis of the gut microbiome, which can be affected by
environmental factors, cesarean section, antiseptic agents,
lack of breastfeeding, certain drugs, and a low-fiber/high-
fat diet [1, 2]. In contrast, homeostasis of gut microbiota
can be achieved by the intake of prebiotics [3, 4]. The
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International Scientific Association for Probiotics and
Prebiotics (ISAPP) defined prebiotics as “a substrate that is
selectively fermented by a host microorganism that allows
specific changes, both in the composition and/or activity in
the gastrointestinal microflora that confers benefits upon host
well-being and health” [5-7]. To be classified as prebiotics,
the compounds must meet the following criteria: (I) non-
digestible and resistant to breakdown by stomach acid and
enzymes in the human gastrointestinal tract, (II) selectively
fermented by intestinal microorganisms of the host, and (IIT)
selectively targeting and stimulating the growth and activity
of beneficial bacteria in the gut [8, 9].

Prebiotics beneficially influence the health of the host
by either (I) indirectly increasing the secretion of bacteria-
derived metabolites into the intestinal tract, in turn influ-
encing many molecular and cellular processes, or by (II)
directly affecting the immune response of certain cells, e.g.,
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epithelial and immune cells [10]. Therefore, prebiotics are
considered as an immune active agent conferring a health
benefit [11, 12].

Dietary fibers are polymers with three or more mono-
meric units (MU) which are mainly derived from edible
parts of plants, certain types of animals (e.g., crustacean),
or analogous carbohydrates that are neither digested nor
absorbed in the human intestine [13]. Therefore, they pass
through the upper part of the gastrointestinal tract into the
large intestine where they are fermented by advantageous
bacteria stimulating their growth and activity, which con-
fer them prebiotic activity [12, 14, 15]. Dietary fibers con-
sist of carbohydrates as non-digestible oligosaccharides
(e.g., short-chain and long-chain fructooligosaccharides
(sc/lc FOS) and galactooligosaccharides (GOS), inulin)
[16]; non-starch polysaccharides such as pectin, chitins,
beta-glucan; and other plant components such as cellu-
lose [17-19], resistant starch [20], or resistant dextrin [21].
They also consist of non-carbohydrates, like lignin, that
can also act as a dietary fiber (Fig. 1).

Dietary fibers confer health benefits comprising
decreased risks of coronary heart disease, colon cancer,
and type 2 diabetes. Clinically, fiber deficiency increases
the risk of colon, liver, and breast cancer, and increases
mortality and death from both cancerous and non-cancerous
diseases [22].

Supplementation of prebiotics as food ingredients has
been proposed to prevent several inflammatory diseases
[23-27] as well as allergies [10, 28, 29, 30, 31, 32]. Cohort
studies have indicated that one of the factors preceding
the development of food allergies is gut dysbiosis [2, 33,
34]. Therefore, gut microbiota have gained attention as
a target of intervention against allergies, especially with
prebiotics.

So far, most studies exploring the effect of dietary fiber on
the allergic immune response used non-digestible oligosac-
charides [10, 35, 36]. Human milk—derived non-digestible

oligosaccharides comprise short-chain galacto- (scGOS),
long-chain fructo- (IsFOS), and acidic pectin—derived oli-
gosaccharides (pAOS), which are together referred to as
galacto-, fructo-, and acidic oligosaccharides (GFAs). Die-
tary fibers undergo microbial fermentation by commensal
gut bacteria producing short-chain fatty acids (SCFA) with
immune modulating properties [37, 38]. Long-term defi-
ciency of dietary fiber intake increases the susceptibility to
airway allergic disease (AAD), whereas proper fiber supple-
mentation effectively promotes balanced Th1/Th2 immunity,
significantly attenuates allergic inflammatory responses, and
optimizes the structure of intestinal microbiota, which sug-
gests its potential for novel preventive and therapeutic inter-
vention strategies [39]. Taking this into consideration, this
review gives an in-depth overview of the reported effects of
dietary fiber pectin on the immunomodulation of allergic
diseases.

Pectin: Characteristics and Immune
Modulating Effects

Pectin Structure

Pectin is a dietary fiber accumulating in the primary cell
walls and intercellular tissues of terrestrial plants, where it
plays an important role as hydrating agent and cementing
material [40, 41]. Pectin is a heterogeneous and complex
acidic hetero-polysaccharide with a molecular mass of
typically 50,000-150,000 g/mol, depending on extraction
method and source material [42]. It contains a linear back-
bone of at least 65% galacturonic acid (GalA), which can
either be free or methyl-esterified at the carboxyl groups
present at C-6 (Fig. 2) [43, 44]. The pectin macromol-
ecule contains fragments of linear and branched regions
of polysaccharides such as homogalacturonan, rhamnoga-
lacturonan, xylogalacturonan, and apiogalacturonan [45,
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46]. In native, non-processed pectin, approximately 80% of
carboxyl groups of GalA are esterified with methanol and
present as methyl esters. Thus, the ratio of esterified GalA
groups to total GalA groups is termed the degree of esteri-
fication (DE). Pectins are classified as high methoxy pectin
(HMP) with DE > 50% or low methoxy pectin (LMP) with
DE <50% (Fig. 2) [44]. The majority of natural pectins is
HMP (~80% DE), whereas LMP is more common in pro-
cessed foods [47, 48]. The degree of esterification deter-
mines the properties of pectin in food technology as HMP
can form a gel under acidic conditions (pH ~ 3) in the pres-
ence of high sugar concentrations, while LMP form gels
by interaction with divalent cations, particularly Ca** [47,
48]. Both HMP and LMP appear to possess immunomodu-
latory effects in mice. LMP likely is more efficiently fer-
mented by the microbiota in the ileum, whereas HMP is
mainly fermented in the proximal colon [49]. Moreover,
it is suggested that structural features determine the effect
of pectin on the immune system. Evidence has been pro-
vided that the backbones of pectin macromolecules have
immunosuppressive activity [50].

Depolymerization of purified pectin or the raw materi-
als by partial enzymatic hydrolysis leads to production of
Pectin-derived oligosaccharides (POS) which were indicated
as new prebiotic candidates [51]. The main suggested prop-
erties of POS stimulation are (I) growth of beneficial bac-
teria in the colon, (II) apoptosis of colon cancer cells, and
(III) protection again various pathogens [51]. The different
POS can include galacturonic acid (GalA), rhamnose (Rha),
arabinose (Ara), and galactose (Gal) [52]. GFAs, consist-
ing of pAOS, have shown to lower immune responses in
cow-milk-allergic (CMA) mice, to enhance regulatory T cell
(Tyee) frequencies, and to induce mucosal IL-10 and TGF-p
transcription while suppressing the allergic effector response
[53]. Both animal studies and human clinical trials showed
that dietary intervention with these dietary oligosaccharides
early in life could lead to the prevention of atopic dermatitis,

Fig.2 Pectin structure and
health benefits. Pectin consists

food allergy, and allergic asthma [10, 37, 54, 55]. In line
with this, supplementation with two mixtures of scGOS/
IcFOS or scGOS/IcFOS/pAOS decreased the OVA-induced
airway inflammation and hyperresponsiveness in mice [56].
Moreover, OVA-specific IgE titers were decreased by more
than 25%, although this effect was not significant [56]. The
effects of the oligosaccharide mixture containing pAOS
appeared to be more pronounced than the effects of the
scGOS/IcFOS mixture without pAOS [56].

Pectin-Mediated Health-Promoting Effects

Pectin and dietary fibers in general are considered to provide
diverse health benefits including slow gastric emptying [57],
improvement of physical bowel function [58], reduced glu-
cose and cholesterol absorption [59], and increase of fecal
mass [60, 61]. Pectin is recognized as a prebiotic that is
not degraded by either human saliva or gastric acid and is
resistant to pepsin, trypsin, and rennet [62, 63]. Several stud-
ies demonstrated that pectins from different sources such
as apple [64] or citrus [65] can serve as valuable carbon
sources for gut bacteria [66¢]. The ability to degrade pectins
seems to be a common trait among Gram-negative Bacte-
roides species in the human colon [67], whereas only few
Gram-positive bacterial species like Firmicutes seem to fer-
ment either pectin or its breakdown products [68]. Pectin
is fermented by beneficial microbiota mainly in the large
intestine (colon), generating the SCFAs acetate, propionate,
and butyrate, all of which have beneficial health effects [69,
70]. Evidence suggests that SCFAs can affect the epigenome
through metabolic regulatory receptors, potentially reduc-
ing obesity, diabetes, atherosclerosis, mucosal inflammation,
carcinogenesis, and allergy [22, 71, 72, 73, 74].

The average daily intake of pectin from fruit and vegetables
has been estimated to be around 5 g, considering a fruit and
vegetable consumption of 500 g per day [75]. Several stud-
ies reported that high-fiber diets improve diabetic control via
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decrease of both glucose and cholesterol absorption as well
as lowered serum triglyceride levels [76, 77]. It was found
that several dietary fibers lead to delayed absorption of glu-
cose and fatty acids from the upper small intestine, decreasing
available substrates for triglyceride synthesis [78]. In humans,
pectin consumption (15 g/day over a period of 4 weeks) has
been shown to slightly reduce blood LDL cholesterol levels
by 3-7% [79, 80]. This effect likely depends on the source of
pectin, since apple and citrus pectin were found to be more
effective than orange pulp fiber pectin [79]. However, the
mechanism appears to be related to an increase of viscos-
ity in the intestinal tract, leading to a reduced absorption of
cholesterol from either bile or food [75, 81]. Studies propose
that the SCFA propionate leads to activation of the adenosine
monophosphate-activated protein kinase (AMPK), which
is one of the regulators for glucose metabolism in the liver
[65, 82-84]. Activated AMPK inhibits acetyl-CoA carboxy-
lase (ACC) leading to a decrease of lipogenesis [65]. Other
studies in Apo E—deficient mice comparing high-cholesterol
diet (HCD) with or without pectin supplementation showed
improved lipid profiles and reduced atherosclerotic plaques
in the HCD/pectin group [81]. The study suggested that
microbiota-dependent butyrate production inhibits intestinal
cholesterol absorption, leading to decreased levels of athero-
sclerosis [85].

Furthermore, pectin has favorable effects on maintaining
the intestinal barrier, which consists of a thick mucus layer
protecting the intestinal epithelial tissue. Recent studies
found that intervention with pectin in mice led to increased
amount of colonic gel-forming mucin 2 (MUC?2), the expres-
sion of which is related to both the thickness of mucus layer
and gut health [86].

Supplementation with LMP reduced type 1 diabetes (T1D)
incidence in non-obese diabetic (NOD) mice by positively
impacting cecal microbiota, enhancing the production of
immune modulating bacterial SCFAs, as well as improving
intestinal integrity in the cecum [87]. The maintenance of gut
homeostasis by LMP further results in modulated gut-pancreatic
autoimmune responses and in protection against T1D develop-
ment [87]. Other studies revealed that pectin supplementation
improved insulin and glucose profiles and reverse calorie restric-
tion (CR)-induced insulin resistance in the rat CR model [88].
By suppressing pro-inflammatory cytokine production, LMP
was shown to have anti-inflammatory effects [89]. A fiber-rich
diet was also shown to improve glycemic control in patients with
type 2 diabetes mellitus [90].

It is suggested that pectin binds metals in the digestive
tract, preventing their absorption [91]. Consequently, orally
administered pectin is known to (I) remove heavy metals,
(IT) decrease lead absorption, and (III) reduce strontium
bone and blood levels [92, 93].

Furthermore, pectin shows beneficial anti-cancer effects.
Studies revealed that pH-modified citrus pectins (MCP), rich
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in galactoside residues, significantly diminish the number
of lung metastases in C57BL/6 mice [94, 95]. This suggests
that the galactoside residues impair cell—cell interactions
by competing with the endogenous ligands of galactoside-
binding proteins such as galectin-3 [94, 95]. Further studies
found that modified apple pectin induces apoptosis in colo-
rectal cancer cells by a dose-dependent increase of caspase
3, -8, and -9 expression [96].

A further health claim associated with pectin affects Alz-
heimer’s disease. A recent study suggests an impact of pectin
polysaccharide on Af,,, an important molecule for pathology
of Alzheimer’s disease, by inhibition of its aggregation [97].

Moreover, it has been suggested that pectin has benefi-
cial effects on the manifestations of IgE-mediated food and
respiratory allergy [98ee].

Effect of Pectin on the Inmune Response
and Allergic Sensitization

Pectin displays diverse immunomodulatory properties,
comprising both direct effects on immune cells and indirect
effects mediated by bacterial metabolites upon fermentation
of pectin in the gut (Fig. 3) [99, 100e].

Dietary fibers can directly interact with intestinal cells
and mucosal immune cells [101], affecting immune cell
responses by interaction with pattern recognition receptors
(PRRs). Thereby distinct binding capacities of different pec-
tins may cause the reported differences in immunomodu-
latory efficiency [102, 103]. The best characterized PRRs
in the intestine are Toll-like receptors (TLRs), which were
shown to also recognize dietary fibers [104, 105]. It was
elucidated in human DCs and the mouse macrophage cell
line RAW264.7 in vitro that pectin binds the ectodomain
of Toll-like receptor 2 (TLR2) by electrostatic interactions
and specifically inhibits the pro-inflammatory TLR2-TLR1
pathway while the tolerogenic TLR2-TLR6 pathway remains
unaffected (Fig. 3) [105]. This effect was predominantly
achieved with pectin having a low DE [105].

The immunomodulatory effects of pectin mainly depend
on the content of galacturonic acid residues and the DE. Pec-
tin with DE up to 80-90% inhibited iNOS and COX2 expres-
sion in murine peritoneal macrophages and inhibited MAPK
phosphorylation, IKK kinase activity, and NF-xB activation
more efficiently than pectin with lower DE (Fig. 3) [106]. In
this context, highly esterified pectin was able to bind LPS,
modifying its binding to TLR4 [50, 106]. Additionally, MCP
with a decreased molecular weight and DE was shown to
activate cytotoxic T cells, B cells, as well as NK cells in
a dose-dependent manner [107]. Comparing the immu-
nomodulatory effects of native and modified pectin on the
example of citrus pectin showed, both types of pectin led to
upregulated levels of IFN-y in the spleen [108]. MCP, but
also native citrus pectin, led to increased levels of TNF-a-,
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Fig.3 Immune modulation by pectin. Immune modulation by die-
tary fibers can either be indirectly mediated by their fermentation
into short chain fatty acids (SCFAs) or directly caused by the pectin,
e.g., via the blockage of the pro-inflammatory TLR2/1 pathway. Sev-

IFN-vy-, and IL-17 secretion, likely regulated by IL-4 [108].
Unbranched galacturonan regions were shown to increase
the anti-inflammatory properties of pectin [109].

The role of pectin in the manifestation of type 1 allergies
is controversially discussed. Different pectins are described
to either promote or prevent allergies [98ee, 110-114].
The matrix effect of pectin-rich fruits has been suggested
to reduce the digestibility of food allergens and thereby to
facilitate the process of allergic sensitization in atopic indi-
viduals [115]. In line with this, the addition of apple pectin
to purified kiwi allergen was able to protect the allergen
from pepsin digestion in vitro [115]. An independent study
showed that pectin reduces the accessibility of cleavage
sites and/or epitope sequences of f-lactoglobulin through a
non-specific interaction [116]. Other studies also reported
anaphylaxis induced by pectin (Table 1) [110, 111, 113].
Pectin-mediated allergy was reported after drinking a pec-
tin-containing smoothie [110]. In line with this, a positive
skin prick test to both pectin and cashew was reported, and
cross-reactivity between pectin and cashew was considered
[110, 114]. Reports from the 1990s found that continued
airborne exposure to pectin in the workplace was associated
with the development of occupational asthma [117-119].
Jaakkola et al. reported 3 patients that developed occupa-
tional asthma after frequent inhalation of pectin [119]. Two
patients showed immediate reduction in lung functions after
an inhalation challenge with pectin and positive SPT, while
the third showed a late response (10 h after the challenge)
and dermographism after the SPT. Of the 3 patients only one
had a positive RAST to pectin [119].

eral positive health effects are associated with consumption of pectin
such as maintaining the intestinal barrier, immune modulation like
the activation of immune cells (T, B, NK cells), and the inhibition of
inflammatory responses

In vivo, oral administration of citrus pectin prevented the
induction of immune tolerance induced by feeding of a high
dose of OVA [120]. Citrus pectin feeding inhibited the devel-
opment of the oral tolerance in the OVA-treated mice. Mice fed
with pectin showed similar titers of antigen-specific serum IgG
and similar levels of delayed-type hypersensitivity responses
as those animals not tolerant. Here, citrus pectin increased the
levels of serum OVA-specific IgG1 and IgE [120].

In contrast, other studies reported a beneficial effect of
pectin on allergic sensitization by alteration of the intesti-
nal microbiota [39]. Increased numbers of beneficial bacte-
ria like Bifidobacterium and the higher production rate of
bacteria-derived SCFAs were suggested to lower the risk
of food allergies [121]. Pectin containing more than 80%
galacturonic acid residues was found both to decrease mac-
rophage activity and inhibit delayed-type hypersensitivity
reactions [50]. Moreover, alkali-soluble pectin suppressed
IgE production in a human myeloma cell line in vitro [112].
Other results also indicate that administration of Asian pear
pectin-sol (a pH and enzymatically modified pectin in col-
loidal dispersion) in sensitized mice suppressed allergic
asthmatic reactions [122]. However, little is known whether
pectin from different plant sources and different degrees of
esterification exert distinct immune modulating properties.

Modulation of Gastrointestinal Microbiota by Pectin
Pectin and POS are fermented in the colon by different bac-

terial genera such as Bifidobacteria, Lactobacilli, Entero-
coccus, Eubacterium rectale, Faecalibacterium prausnitzii,
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Clostridium, Anaerostipes, and Roseburia spp. in order to
promote their growth [68, 69, 123, 124]. The degradation of
pectin is facilitated by different bacteria-derived enzymes
such as pectinases, methylesterases, acetylsterases, and
lyases [125-127], generating different POS that will vary
depending on microbiota composition and pectin structure
[69, 100e, 128-132].

As mentioned before, the biological properties of both
pectin and POS depend on different features such as molec-
ular weight (MW) and type and structure of constituents
(e.g., galacturonic acid or rhamnose) and DE [51, 128]. It is
reported that pectin from orange, lemon, and sugar beet with
high degree of methylation increase the colonization by Bifi-
dobacterium, Bacteroides, and Eubacterium species, while
the POS derived from the same sources promoted the pres-
ence of Bifidobacterium species, Bacteroides, and Lactoba-
cillus when compared to the primary pectin [133ee]. Pectins
with high DE are degraded slower than the ones with lower
DE and are reported to remain in the intestine for up to 24 h
[134-136], while pectins with lower DE were easily metabo-
lized [135-138]. In vitro fermentation studies of pectin and
POS using human fecal samples have shown an increase in
the number of Bifidobacteria, Eubacterium rectale, Clostrid-
ium coccoides, and Bacteroides prevotella, with an elevated
production of acetate, propionate and butyrate (summarized
in Table 2) [40, 129]. The shift observed in the microbiota
correlates with clinical effects of POS: POS-supplemented
infant formulae was shown to both increase the number of
Bifidobacteria and Lactobacilli and minimize the alteration
of fecal microbiota after cessation of breast-feeding [139].

It is well accepted that an increase in bacteria-derived
SCFAs promotes a protective effect in the intestine [74,
140-142]. In line with this, the composition of the gut
microbiota can influence the development of the immune
system and homeostatic processes at which the dysbiosis
of microbial composition can increase the susceptibility for
immune-mediated diseases, like asthma or allergy (reviewed
in [143e]).

Compared to LMP, the fermentation of HMP increased
the abundance of Prevotella and Ruminococcus species and
was paralleled by higher levels of the SCFA propionate
[100e, 144]. Particularly, levels of Ruminococcus-derived
propionate are enhanced when stimulated with rhamnose
and fucose, both of which are structural subunits of pectin.
This indicates that a higher production of propionate could
relate with a high pectin content of rhamnose and fucose,
as well as its slower fermentation process [145-147]. The
SCFA acetate is reported to be produced by many differ-
ent genera, but mainly by Bifidobacteria and Lactobacilli
(Table 2) [148, 149]. Propionate is mainly produced by Bac-
teroidetes and Firmicutes (via the succinate pathway) [146,
150], while butyrate is produced by Eubacterium rectale,
Roseburia intestinalis, Faecalibacterium prausnitzii, and

[111]

Ref

cashew, hazelnut, pecan, pistachio, and

walnut
Possible cross-reactivity to cashew and

activity in human PBMCs and U266

(human myeloma) cells

strawberry-flavored yogurt
Pectin considered most likely trigger of

pistachio suggested

allergic reaction
Positive SPT to pectin and almond,
Alkali soluble pectin showed IgE-suppressive [112]

Anaphylaxis 30 min after ingestion of

Effects

SCFAs

Microbiota

Anaphylaxis after strawberry-flavored
yogurt

Human PBMCs and U266 cell line

Case report

Model
In vitro

AP apple pectin, CP citrus pectin, HDM house dust mite, MCP modified citrus pectin, SCFA short-chain fatty acids, OVA ovalbumin

Table 1 (continued)

Type of pectin
Strawberry
Strawberry
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some Clostridia species (both from pyruvate via butyryl
CoA:acetate CoA transferase and directly from acetate
(Fig. 4) [151, 152].

Ref
[69]
[130]

Pectin-Induced Short-Chain Fatty Acids

Dietary fibers, including pectin, are fermented by commensal
gut bacteria, which produce metabolites including SCFAs,
particularly butyrate, propionate, acetate, and pentanoate
(valerate) [36, 74, 100e, 138, 144, 153, 154]. Fermentation
of every structurally distinct pectin induces specific profiles
of SCFAs in the gastrointestinal tract [100e, 103, 138, 144,
155, 156]. In addition, the generation of SCFAs is strongly
dependent on substrate availability, microbiota composition,
and intestinal transit time [157].

SCFAs can mediate anti-inflammatory effects by (I)
enhancing the frequency of immune regulatory T,, cells in
the intestine [158], (II) inhibiting Th2-mediated airway dis-
eases in mice [159], (III) stimulating epithelial cell growth,
(IV) suppressing APC activation, and (V) maintaining a low
pH in the intestine (which inhibits pathogen growth) [103,
157]. Vice versa, a dysfunctional microbiome with a reduced
capacity to produce SCFAs is prone to the development of
allergic diseases [160]. SCFAs likely modulate immune
responses by three different mechanisms: (I) directly acti-
vating G-coupled receptors, (II) inducing epigenetic modi-
fications by inhibiting histone deacethylases (HDAC), and
(IIT) serving as energy substrates for both immune and non-
immune cells (Fig. 4) [121, 161e].

The molecular mechanisms by which SCFAs are
involved in the “diet-gut microbiota-physiology axis” have
been explored recently. SCFAs bind “metabolite-sensing”
G-protein-coupled receptors such as GPR41 (affinities:
acetate = propionate > butyrate), GPR43 (butyrate = propion-
ate > acetate), GPR109A (butyrate), and olfactory receptor
(Olfr)-78 (propionate = acetate) (reviewed in [10]). These
receptors play fundamental roles in the promotion of gut
homeostasis and the regulation of inflammatory responses
(Fig. 4). For instance, GPRs and their metabolites influence
T, activation, epithelial integrity, gut homeostasis, DC biol-
ogy, and IgA antibody responses [6, 162]. Through the inhibi-
tion of HDAC expression or function, SCFAs also influence
gene transcription in many cells and tissues [163]. GPR41 and
GPR43 are expressed on epithelial cells, macrophages, and
DCs [6]. Here, GPR43 is engaged in suppression of bacterial
invasion into the tissue, prevention of inflammation, intes-
tinal carcinogenesis (reviewed in [164]), and allergy [165].
GPR109A is expressed primarily in adipocytes and immune
cells as DCs, neutrophils, macrophages, intestinal and colonic
epithelial cells [166—-169]. The GPR109A/butyrate axis is
reported to suppress the tumor development and progres-
sion and the LPS-induced NF-xB activation [170], as well as

FOS, but with a reduced butyrate generation
Sugar beet POS were completely fermented by

human and pig fecal microbiota
Paralleled by an increase in SCFA production

Summary

Pectin induced comparable SCFAs generation as

pionate

Concentration profile: acetate > butyrate > pro-
11 Acetate

SCFAs

11 Propionate
1 Butyrate

| Valerate

Microbiota

1 Bifidobacteria

1 Lactobacilli
Human and pig feces 1 Bacterioidetes

Bacterial source
Human feces

POS pectin oligosaccharides, SCFA short-chain fatty acids, DE degree of esterification

Table 2 (continued)
Sugar beet POS

Type of pectin
Orange POS

@ Springer
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genera) / Firmicutes)

Activation of GM
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HDAC activity J
(Butyrate & propionate) Energy
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Epigenetic
modification

Gut homeostasis &

regulation of
inflammation

Inhibition of Mast Induction of Inhibition of DC/
cell activation and Tregs and Bregs M¢ differentiation
inflammation
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«Fig. 4 Immune modulation by pectin-derived SCFAs. Pectin fermen-
tation by gut microbiota leads to the production of SCFAs. Different
genera can generate different SCFAs. For example, acetate can be
produced by many different genera; propionate is mainly produced
by Bacteroidetes and Firmicutes, while butyrate is mainly produced
by Clostridia species. SCFA bind “metabolite-sensing” G-protein-
coupled receptors such as GPR41, GPR43, GPR109A, and olfactory
receptor (Olfr)-78. These receptors promote the gut homeostasis and
the regulation of inflammatory responses. GPRs and their metabo-
lites influence T, activation, epithelial integrity, gut homeostasis,
DC biology, and IgA antibody responses. Through their inhibition of
HDAC expression or function, SCFAs also influence gene transcrip-
tion in many cells and tissues

an anti-inflammatory role by modulation factors like CCLS,
MCP-1, and TNF-a [171-174].

High levels of both butyrate and propionate in early life are
associated with protection against atopy [175ee]. Trompette
et al. reported that feeding mice with either a high pectin diet
or supplementation of propionate enhance levels of SCFAs
and protected against allergic lung inflammation [98ee]. These
protective effects were shown to be independent of either T,,
induction, activation status, or recruitment of dendritic cells to
draining lymph nodes [98ee]. In their model, propionate treat-
ment enhanced hematopoiesis of common DC precursors and
macrophage-DC precursors [98ee].

In line with these anti-inflammatory properties of pec-
tin, oral ingestion of pectin for 8§ weeks in a mouse model
of non-alcoholic fatty liver disease MAPK dependently
improved lipid metabolism and decreased both oxidative
stress and inflammation [176]. In this study, pectin feeding
dose-dependently increased levels of both acetic and propi-
onic acids and relative abundance of Bacteroides, Parabac-
teroides, Olsenella, and Bifidobacterium species in the gut
of pectin-fed mice [176].

In rats, Fukunaga et al. reported pectin supplementation
(2.5% pectin for 15 days) to result in significant increases
in the length, weight, and number of Ki-67-positive cells
in the ileum, cecum, and colon [177]. While in this model,
pectin supplementation did not affect the composition of
the cecal microbial flora, cecal SCFA content and plasma
glucagon-like peptide-2 in small intestine were significantly
increased [177].

Larsen et al. characterized the relationship between struc-
tural properties of pectin and their ability to modulate both
composition and activity of gut microbiome [100e]. In vitro
fermentation of nine structurally diverse pectins from citrus
fruits, sugar beet, and a pectin derivative rhamnogalacturo-
nan [ using a TIM-2 colon model under anaerobic conditions
was performed [100e]. Here, cumulative production of total
SCFAs as well as propionate was highest for fermentation
of high methoxyl pectin (including rhamnogalacturonan I),
while acetate levels were similar for all investigated pectins
[100e]. This increased production of SCFAs by RG-I was
independently confirmed in rats fed with RG-I-enriched diets

[155]. Interestingly, bacterial populations associated with
human health (e.g., F. prausnitzii, Coprococcus, Rumino-
coccus, Dorea, Blautia, Oscillospira, Sutterella, Bifidobac-
terium, Christensenellaceae, P. copri, and Bacteroides spp.)
were either increased or decreased depending on the used
pectin, suggesting that microbial communities in the gut can
be specifically modulated using different pectins [100e].

Finally, Bang and co-authors performed in vitro fermenta-
tion (1% pectin from citrus peel) experiments using the feces
of three Korean donors in order to investigate pectin-induced
changes in the gut microbiome and SCFA production [178].
Pectin fermentation commonly increased the frequencies of
pectin-degrading bacterial species belonging to the Clostrid-
ium cluster XIV (Lachnospira, Dorea, and Clostridium) and
Lachnospira paralleled by an increase in acetate (starting as
early as 6 h after start of incubation), as well as propionate
and butyrate (after 12 h of incubation) [178].

Summary

The role of dietary fiber pectin in the development of allergic
reactions is controversial. Several clinical reports indicate
the manifestation of allergic reactions after pectin consump-
tion, probably attributed to cross-reactivity between pectin
and allergens. Moreover, pectin was also described to pre-
vent the digestion of allergens in the stomach, facilitating
intact allergen molecules to reach the gut and to induce
allergic reactions.

However, others showed direct and indirect immune mod-
ulating effects of pectin. A broad set of evidence describing
application of pectin to induce a shift to beneficial micro-
biota and an increase in the levels of SCFAs, both of which
have been associated with reduced inflammatory and allergic
reactions in vitro and in vivo has been provided. As bacte-
rial populations associated with human health were either
increased or decreased by different pectins, it is likely that
bacterial communities in the gut can be specifically modu-
lated by pectin application. Pectin is able to directly inter-
act with immune cells such as DCs and macrophages by
electrostatic interactions with TLR2, thereby inhibiting the
pro-inflammatory TLR2-TLR1 pathway, while not affect-
ing the TLR2-TLR6 tolerogenic pathway. Also, it is able
to bind LPS affecting its binding to TLR4. Other cell types
such as T cells, B cells, and NK cells are also activated by
pectin, while iNOS and COX-2 expression are inhibited in
peritoneal macrophages by inhibition of the IKK activity,
MAPK phosphorylation, and NF-«xB activation, suggesting
an anti-inflammatory property.

Considering the data reviewed here, it is tempting to
speculate that dietary fiber including certain pectin can be
considered for prophylactic intervention targeting microbiota
in immune-related diseases, such as allergies. The immune
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modulating effect seems to be dependent on the structure
and source of the pectin. In particular, the direct immune
modulating mechanism by pectin and pectin-derived prod-
ucts generated by food processing and fermentation remain
to be investigated.

Abbreviations Ara: Arabinose; DE: Degree of esterification; FA: Food
allergy; FOS: Fructooligosaccharide; Gal: Galactose; GalA: Galactu-
ronic acid; GFA: Fructo- and acidic-oligosaccharide; GOS: Galactoo-
ligosaccharide; GPR: G-protein-coupled receptor; HDAC: Histone
deacetylase; HMP: High methoxy pectin; LMP: Low methoxy pectin;
MCP: Modified citrus pectin; OVA: Ovalbumin; pAOS: Pectin-derived
acidic oligosaccharides; POS: Pectic polysaccharides; Rha: Rhamnose;
SCFAs: Short-chain fatty acids
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