Skip to main content
Log in

Olfactory Dysfunction in Traumatic Brain Injury: the Role of Neurogenesis

  • Rhinosinusitis (J Mullol, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Olfactory functioning disturbances are common following traumatic brain injury (TBI) having a significant impact on quality of life. A spontaneous recovery of the olfactory function over time may occur in TBI patients. Although there is no standard treatment for patients with posttraumatic olfactory loss, olfactory training (OT) has shown some promise beneficial effects. However, the mechanisms underlying spontaneous recovery and olfactory improvement induced by OT are not completely known.

Recent Findings

The spontaneous recovery of the olfactory function and the improvement of olfactory function after OT have recently been associated with an increase in subventricular (SVZ) neurogenesis and an increase in olfactory bulb (OB) glomerular dopaminergic (DAergic) interneurons. In addition, after OT, an increase in electrophysiological responses at the olfactory epithelium (OE) level has been reported, indicating that recovery of olfactory function not only affects olfactory processing at the central level, but also at peripheral level. However, the role of OE stem cells in the spontaneous recovery and in the improvement of olfactory function after OT in TBI is still unknown.

Summary

In this review, we describe the physiology of the olfactory system, and the olfactory dysfunction after TBI. We highlight the possible role for the SVZ neurogenesis and DAergic OB interneurons in the recovery of the olfactory function. In addition, we point out the relevance of the OE neurogenesis process as a future target for the research in the pathophysiological mechanisms involved in the olfactory dysfunction in TBI. The potential of basal stem cells as a promising candidate for replacement therapies is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gardner RC, Langa KM, Yaffe K. Subjective and objective cognitive function among older adults with a history of traumatic brain injury: a population-based cohort study. PLoS Med. 2017;14:e1002246.

    PubMed  PubMed Central  Google Scholar 

  2. Weber KT, Guimaraes VA, Pontes Neto OM, Leite JP, Takayanagui OM, Santos-Pontelli TE. Predictors of quality of life after moderate to severe traumatic brain injury. Arq Neuropsiquiatr 2016: 74: 409-15. Berger T, Lee H, Thuret S. Neurogenesis right under your nose. Nat Neurosci. 2020;23:297–8.

    Google Scholar 

  3. Gautschi OP, Huser MC, Smoll NR, Maedler S, Bednarz S, von Hessling A, et al. Long-term neurological and neuropsychological outcome in patients with severe traumatic brain injury. Clin Neurol Neurosurg. 2013;115:2482–8.

    PubMed  Google Scholar 

  4. •• Langdon C, Lehrer E, Berenguer J, Laxe S, Alobid I, Quintó L, et al. Olfactory training in post-traumatic smell impairment: mild improvement in threshold performances: results from a randomized controlled trial. J Neurotrauma. 2018;35:2641–52 Clinical evidence of improvement of olfactory threshold after olfactory training in TBI patients.

    PubMed  Google Scholar 

  5. Langdon C, Alobid I, Quinto L, Valero A, Picado C, Marin C, et al. Self-perception of olfactory dysfunction is associated with history of traumatic brain injury: post-hoc analysis from the OLFACAT survey. Rhinology. 2019;57:460–8.

    CAS  PubMed  Google Scholar 

  6. Howell J, Costanzo RM, Reiter ER. Head trauma and olfactory function. World J Otorhinlaryngol Head Neck Surg. 2018;4:39–45.

    Google Scholar 

  7. Gudziol V, Hoenck I, Landis B, Poiesek D, Bayn M, Hummel T. The impact and prospect of traumatic brain injury on olfactory function: a cross-sectional and prospective study. Eur Arch Otorhinlaryngol. 2014;27:1533–40.

    Google Scholar 

  8. Frasnelli J, Laguë-Beauvais M, LeBlanc J, Alturki AY, Champoux MC, Couturier C, et al. Olfactory function in acute traumatic brain injury. Clin Neurol Neurosurg. 2016;140:68–72.

    CAS  PubMed  Google Scholar 

  9. Faul M, Coronado V. Epidemiology of traumatic brain injury. Handb Clin Neurol. 2015;127:3–13.

    PubMed  Google Scholar 

  10. •• Ciofalo A, De Vincentii M, Iannella G, Zambetti G, Giacomello P, Altissimi G, Greco A, Fuscini M, Pasquariello B, Magliulo G. Mild traumatic brain injury: evaluation of olfactory dysfunction and clinical-neurological characteristics. Brain Inj 2018: 32: 550–6. Clinical evaluation of olfactory dysfunction in TBI.

  11. •• Chen YH, Huang EY, Kuo TT, Miller J, Chiang YH, Hoffer BJ. Impact of traumatic brain injury on dopaminergic transmission. Cell Transplant 2017: 26: 1156–68. Evidence of the impairment of dopaminergic transmission in TBI.

  12. Dorsett CR, McGuire JL, Niedzielko TL, DePasquale EA, Meller J, Floyd CL, et al. Traumatic brain injury induces alterations in cortical glutamate uptake without a reduction in glutamate transporter-1 protein expression. J Neurotrauma. 2017a;34:220–34.

    PubMed  PubMed Central  Google Scholar 

  13. Dorsett CR, McGuire JL, DePasquale EA, Gardner AE, Floyd CL, McCullumsmith RE. Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma. 2017;34:263–72.

    PubMed  PubMed Central  Google Scholar 

  14. •• Marin C, Laxe S, Langdon C, Berenguer J, Lehrer E, Mariño-Sánchez F, et al. Olfactory function in an excitotoxic model for secondary neuronal degeneration: Role of dopaminergic interneurons. Neuroscience. 2017;364:28–44 Preclinical evidence of the lack of correlation between recovery of olfactory function and olfactory bulb volume in an experimental model of the secondary neuronal degeneration occurring in TBI.

    CAS  PubMed  Google Scholar 

  15. Krishna G, Beutchman JA, Bromberg CE, Currier TT. Approaches to monitor circuit disruption after traumatic brain injury: frontiers in preclinical research. Int J Mol Sci. 2020;21:E588.

    PubMed  Google Scholar 

  16. Han P, Winkler N, Hummel C, Haehner A, Gerber J, Hummel T. Alterations of brain gray matter density and olfactory bulb volume in patients with olfactory loss after traumatic brain injury. J Neurotrauma. 2018a;35:2632–40.

    PubMed  Google Scholar 

  17. Schofield PW, Moore TM, Gardner A. Traumatic brain injury and olfaction: a systematic review. Front Neurol. 2014;5:5.

    PubMed  PubMed Central  Google Scholar 

  18. Croy I, Nordin S, Hummel T. Olfactory disorders and quality of life-an updated review. Chem Senses. 2014;39:185–94.

    PubMed  Google Scholar 

  19. Ahmedy F, Mazian M, Danaee M, Abu Bakar MZ. Post-traumatic brain injury olfactory dysfunction: factors influencing quality of life. Eur Arch Otorhinlaryngol. 2020;277:1343–51.

    Google Scholar 

  20. Reden J, Mueller A, Mueller C, Konstantinidis I, Frasnelli J, Landis BN, et al. Recovery of olfactory function following closed head injury or infections of the upper respiratory tract. Arch Otolaryngol Head Neck Surg. 2006;132:265–9.

    PubMed  Google Scholar 

  21. Rombaux P, Moraux A, Bertrand B, Nicolas G, Duprez T, Hummel T. Retronasal and orthonasal olfactory function in relation to olfactory bulb volume in patients with posttraumatic loss of smell. Laryngoscope. 2006;116:901–5.

    PubMed  Google Scholar 

  22. Rombaux P, Huart C, Deggouj N, Duprez T, Hummel T. Prognostic value of olfactory bulb volume measurement for recovery in postinfectious and posttraumatic olfactory loss. Otolaryngol Head Neck Surg. 2012;147:1136–41.

    PubMed  Google Scholar 

  23. Radomski KL, Zhou Q, Yi KJ, Doughty ML. Cortical contusion injury disrupts olfactory bulb neurogenesis in adult mice. BMC Neurosci. 2013;14:142.

    PubMed  PubMed Central  Google Scholar 

  24. •• Lecuyer Giguère F, Frasnelli A, De Guise E, Frasnelli J. Olfactory, cognitive and affective dysfunction assessed 24 hours an one year after a mild traumatic brain injury (mTBI). Brain Inj 2019: 9: 1184–93. Evidence of the early start of olfactory dysfunction after injury in TBI.

  25. •• Pellegrino R, Han P, Reither N, Hummel T. Effectiveness of olfactory training on different severities of posttraumatic loss of smell. Laryngoscope 2019: 129: 1737–43. Evidence of the beneficial effect of olfactory training in TBI.

  26. Doty RL, Yoisem DM, Pham LT, Kreshak AA, Geckle R, Lee WW. Olfactory dysfunction in patients with head trauma. Arch Neurol. 1997;54:1131–40.

    CAS  PubMed  Google Scholar 

  27. Callahan CD, Hinkebein JH. Assessment of anosmia after traumatic brain injury: performance characteristics of the university of Pennsylvania Smell Identification test. J Head Trauma Rehabil. 2002;17:251–6.

    PubMed  Google Scholar 

  28. Welge-Lüssen A, Hilgenfeld A, Meusel T, Hummel T. Long-term follow-up of posttraumatic olfactory disorders. Rhinology. 2012;50:67–72.

    PubMed  Google Scholar 

  29. Marin C, Langdon C, Alobid I, Fuentes M, Bonastre M, Mullol J. Recovery of olfactory function after excitotoxic lesion of the olfactory bulbs is associated with increases in bulbar SIRT1 and SIRT4 expressions. Mol Neurobiol. 2019;56:5643–53.

    CAS  PubMed  Google Scholar 

  30. Ikeda K, Sakurada T, Takasaka T, Okitsu T, Yoshida S. Anosmia following head trauma: preliminary study of steroid treatment. Tohoku J Exp Med. 1995;177:343–51.

    CAS  PubMed  Google Scholar 

  31. Jiang RS, Twu CW, Liang KL. Medical treatment of traumatic anosmia. Otolaryngol Head Neck Surg. 2015;152:954–8.

    PubMed  Google Scholar 

  32. Aiba T, Sugiura M, Mori J, Matsumoto K, Tomiyama K, Okuda F, et al. Effect of zinc sulfate on sensorineural olfactory disorder. Acta Otolaryngol Suppl. 1998;538:202–4.

    CAS  PubMed  Google Scholar 

  33. Reden J, Lill K, Zahnert T, Haehner A, Hummel T. Olfactory function in patients with postinfectious and posttraumatic smell disorders before and after treatment with vitamin A: a double-blind, placebo-controlled, randomized clinical trial. Laryngoscope. 2012;122:1906–9.

    CAS  PubMed  Google Scholar 

  34. Hummel T, Rissom K, Reden J, Haehner A, Weidenbercher M, Hüttenbrink KB. Effects of olfactory training in patients with olfactory loss. Laryngoscope. 2009;119:496–9.

    PubMed  Google Scholar 

  35. •• Hummel T, Stupka G, Haehner A, Poletti SC. Olfactory training changes electrophysiological responses at the level of the olfactory epithelium. Rhinology 2018: 56: 330–5. Evidence of peripheral effects of olfactory training at the olfactory epithelium level.

  36. Konstantinidis I, Tsakiropoulou E, Bekiaridou P, Kazantzidou C, Constantinidis J. Use of olfactory training in post-traumatic and postinfectious olfactory dysfunction. Laryngoscope. 2013;123:E85–90.

    PubMed  Google Scholar 

  37. Liu A, Savya S, Urban NN. Early odorant exposure increases the number of mitral cells associated with a single glomerulus. J Neurosci. 2016;36:11646–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilson DA, Sullivan RM. Cortical processing of odor subjects. Neuron. 2011;72:506–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gottfried JA. Central mechanisms of odour object perception. Nat Rev Neurosci. 2010;11:628–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bendahmane M, Cameron M, Ennis M, Fletcher ML. Increased olfactory bulb acetylcholine bi-directionally modulates glomerular odor sensitivity. Sci Rep. 2016;6:25808.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang Z, Thiebaud N, Fadool DA. Differential serotonergic modulation across the main and accessory olfactory bulbs. J Phsyiol. 2017;595:3515–33.

    CAS  Google Scholar 

  42. Höglinger GU, Alvarez-Fischer D, Arias-Carrión I, Djufri M, Windolph A, Keber U, et al. A new dopaminergic nigro-olfactory projection. Acta Neuropathol. 2015;130:333–48.

    PubMed  Google Scholar 

  43. Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson’s disease. Nature Neurosci. 2004;7:726–35.

    PubMed  Google Scholar 

  44. •• Marin C, Laxe S, Langdon C, Alobid I, Berenguer J. Fuentes M, Bernabeu M, Mullol J. Olfactory training prevents olfactory dysfunction induced by bulbar excitotoxic lesions: role of neurogenesis and dopaminergic interneurons. Mol Neurobiol 2019: 56: 8063–75. Experimental evidence of the role of neurogenesis in the subventricular zone and the increase in bulbar dopaminergic interneurons in the recovery of olfactory function after training.

  45. Lledo PM, Valley M. Adult olfactory bulb neurogenesis. Cold Spring Harb Perspect Biol. 2016;8:a018945.

    PubMed  PubMed Central  Google Scholar 

  46. Hardy D, Saghatelyan A. Different forms of structural plasticity in the adult olfactory bulb. Neurogenesis. 2017;4:e1301850.

    PubMed  PubMed Central  Google Scholar 

  47. Lim DA, Alvarez-Buylla A. The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb Perspect Biol. 2016;8:a018820.

    PubMed  PubMed Central  Google Scholar 

  48. Bratt M, Skandsen T, Jummel T, Moen KG, Vik A, Nordgärd S, et al. Frequency and prognostic factors of olfactory dysfunction after traumatic brain injury. Brain Inj. 2018;32:1021–7.

    PubMed  Google Scholar 

  49. Mullol J, Alobid I, Mariño-Sánchez F, Quintó L, de Haro J, Bernal-Sprekelsen M, et al. Furthering the understanding of olfaction, prevalence of loss of smell and risk factors: a population-based survey (OLFACAT study). BMJ Open. 2012;2:e001256.

    PubMed  PubMed Central  Google Scholar 

  50. Han P, Winkler N, Hummel C, Häehner A, Gerber J, Hummel T. Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury. J Neurol. 2018b;265:2322–32.

    PubMed  Google Scholar 

  51. Haxel BR, Grant L, Mackay-Sim A. Olfactory dysfunction after head injury. J Head Trauma Rehabil. 2008;23:407–13.

    PubMed  Google Scholar 

  52. Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, et al. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg. 1991;117:519–28.

    CAS  PubMed  Google Scholar 

  53. Sigurdardottir D, Jestard T, Andelic N, Roe C, Schanke AK. Olfactory dysfunction, gambling task performance and intracranial lesions after traumatic brain injury. Neuropsychology. 2010;24:504–13.

    PubMed  Google Scholar 

  54. DeKrujik JR, Leffers O, Menheere PP, Meerhoff S, Rutten J, Twijnstra A. Olfactory function after mild traumatic brain injury. Brain Inj. 2003;17:73–8.

    Google Scholar 

  55. Miao X, Yang L, Gu H, Ren Y, Chen G, Liu J, et al. Evaluation of post-traumatic anosmia with MRI and chemosensory ERPs. Eur Arch Otorhinolaryngol. 2015;272:1945–53.

    PubMed  Google Scholar 

  56. Duncan HJ, Seiden AM. Long-term follow-up of olfactory loss secondary to head trauma and upper respiratory tract infection. Arch Otolaryngol Head Neck Surg. 1995;121:1183–7.

    CAS  PubMed  Google Scholar 

  57. Ogawa T, Rutka J. Olfactory dysfunction in head injury workers. Acta Otolaryngol Suppl. 1999;540:50–7.

    CAS  PubMed  Google Scholar 

  58. Gudziol V, Marschke T, Reden J, Hummel T. Impact of anterior skull base fracture on lateralized olfactory function. Rhinology. 2020;58:45–50.

    CAS  PubMed  Google Scholar 

  59. Sumner D. Post-traumatic anosmia. Brain. 1964;87:107–20.

    CAS  PubMed  Google Scholar 

  60. Swann IJ, Bauza-Rodriguez B, Currans R, Riley J, Shukla V. The significance of post-traumatic amnesia as a risk factor in the development of olfactory dysfunction following head injury Emerg Med J 2006: 23: 618–621.

  61. Yousem DM, Geckle RJ, Bilker WB, McKeown DA, Doty RL. Posttraumatic olfactory dysfunction: MR and clinical evaluation. AJNR Am J Neuroradiol. 1996;17:1171–9.

    CAS  PubMed  Google Scholar 

  62. Proskynitopoulos PJ, Stippler M, Kasper EM. Post-traumatic anosmia in patients with mild traumatic brain injury (mTBI): a systematic and illustrated review. Surg Neurol Int. 2016;7(Suppl 10):S263–75.

    PubMed  PubMed Central  Google Scholar 

  63. Lötsch J, Ultsch A, Eckhardt M, Huart C, Rombaux P, Hummel T. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma. Neuroimage Clin. 2016;11:99–105.

    PubMed  PubMed Central  Google Scholar 

  64. De Guise E, Alturki AY, Laguë-Beauvais M, LeBlanc J, Champoux MC, Couturier C, et al. Olfactory and executive dysfunctions following orbito-basal lesions in traumatic brain injury. Brain Inj. 2015;29:730–8.

    PubMed  Google Scholar 

  65. Lee VK, Nardone R, Wasco F, Panigrahy A, Zuccoli G. Delayed activation of the primary orbitofrontal cortex in post-traumatic anosmia. Brain Inj. 2016;30:1737–41.

    PubMed  Google Scholar 

  66. Haehner A, Rodewald A, Gerber JC, Hummel T. Correlation of olfactory function with changes in the volume of the human olfactory bulb. Arch Otholaryngol Head Neck Surg. 2008;134:621–4.

    Google Scholar 

  67. Portillo-Mazal P, Haehner A, Hummel T. Relation of the volume of the olfactory bulb to psychological measures of oltory function. Eur Arch Otorhinlaryngol. 2016;273:1–7.

    Google Scholar 

  68. Djikers MP. Quality of life after traumatic brain injury: a review of research approaches and findings. Arch Phys Med Rehabil. 2004;85(Suppl 2):S21–35.

    Google Scholar 

  69. Nguyen S, McKenzie D, McKay A, Wong D, Rajaratnam SMW, Spitz G, et al. Exploring predictors of treatment outcome in cognitive behavior therapy for sleep disturbance following acquired brain injury. Disabil Rehabil. 2018;40:1906–13.

    PubMed  Google Scholar 

  70. Drummond M, Douglas J, Olver J. A prospective analysis of olfactory impairment recovery after severe traumatic brain injury. J Head Trauma Rehabil. 2018;33:53–61.

    PubMed  Google Scholar 

  71. London B, Nabet B, Fisher AR, White B, Sammel MD, Doty RL. Predictors of prognosis in patients with olfactory disturbance. Ann Neurol. 2008;63:159–66.

    PubMed  Google Scholar 

  72. Jimenez DF, Sundrani S, Barone CM. Posttraumatic anosmia in craniofacial trauma. J Craniomaxillofac Trauma. 1997;3:8–15.

    CAS  PubMed  Google Scholar 

  73. Siopi E, Calabria S, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M. Minocycline restores olfactory bulb volume and olfactory behavior after traumatic brain injury in mice. J Neurotrauma. 2012;29:354–61.

    PubMed  Google Scholar 

  74. Reden J, Lill K, Zahnert T, Haehner A, Hummel T. Olfactory function in patients with postinfectious and posttraumatic smell disorders before and after treatment with vitamin A: a double-blind, placebo-controlled, randomized clinical trial. Laryngoscope. 2012;122:1906–9.

    CAS  PubMed  Google Scholar 

  75. Ikeda K, Sakurada T, Takasaka T, Okitsu T, Yoshida S. Anosmia following head trauma: preliminary study of steroid treatment. Tohoku J Exp Med. 1995;177:343–51.

    CAS  PubMed  Google Scholar 

  76. Heilman S, Huettenbrink KB, Hummel T. Local and systemic administration of corticosteroids in the treatment of olfactory loss. Am J Rhinol. 2004;18:29–33.

    Google Scholar 

  77. Pekala K, Chandra RK, Turner JH. Efficacy of olfactory training in patients with olfactory loss: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2016;6:299–307.

    PubMed  Google Scholar 

  78. Mariño-Sánchez FS, Alobid I, Centellas S, Alberca C, Guilemany JM, Canals JM, et al. Smell training increases cognitive smell skills of wine tasters compared to the general healthy population. The WINECAT study Rhinology. 2010;48:273–6.

    PubMed  Google Scholar 

  79. Wegener BA, Croy I, Haehner A, Hummel T. Olfactory training with older people. Int J Geriatr Psychiatry. 2018;33:212–20.

    Google Scholar 

  80. Dalton P, Doolittle N, Breslin PA. Gender-specific induction of enhanced sensitivity to odors. Nat Neurosci. 2002;5:199–200.

    CAS  PubMed  Google Scholar 

  81. •• Patel ZM. The evidence for olfactory training in treating patients with olfactory loss. Curr Opin Otolaryngol Head Neck Surg 2017: 25: 43–6. Evidence of the beneficial effects of olfactory training and the plasticity of the olfactory system.

  82. Damm M, Pikart LK, Reimann H, Burkert S, Göktas Ö, Haxel B, et al. Olfactory training is helpful in postinfectious olfactory loss: a randomized, controlled, multicenter study. Laryngoscope. 2014;124:826–31.

    PubMed  Google Scholar 

  83. •• Kim BY, Park JY, Kim EJ, Kim BG, Kim SW, Kim SW. The neuroplastic effect of olfactory training to the recovery of olfactory system in mouse model. Int Forum Allergy Rhinol 2019: 9: 715–23. Evidence of the beneficial effects of olfactory training and the plasticity of the olfactory system.

  84. Haehner A, Tosch C, Wolz M, Klingelhoefer L, Fauser M, Storch A, et al. Olfactory training in patients with Parkinson’s disease. PLoS One. 2013;8:e61680.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Knudsen K, Damholdt MF, Mouridsen K, Borghammer P. Olfactory function in Parkinson’s disease: effects of training. Acta Neurol Scand. 2015;132:395–400.

    CAS  PubMed  Google Scholar 

  86. Jiang RS, Twu CW, Liang KL. The effect of olfactory training on odor identification in patients with traumatic anosmia. Int Forum Allergy Rhinol. 2019;9:1244–51.

    PubMed  Google Scholar 

  87. Oleszkiewicz A, Hanf S, Whitcroft KL, Haehner A, Hummel T. Examination of olfactory training effectiveness in relation to its complexity and the cause of olfactory loss. Laryngoscope. 2018;128:1518–22.

    PubMed  Google Scholar 

  88. Konstantinidis I, Tsakiropulou E, Constantinidis J. Long-term effects of olfactory training in patients with post-infectious olfactory loss. Rhinology. 2016;54:170–5.

    CAS  PubMed  Google Scholar 

  89. Bonzano S, Bovetti S, Fasolo A, Peretto P, De Marchis S. Odour enrichment increases adult-born dopaminergic neurons in the mouse olfactory bulb. Eur J Neurosci. 2014;40:3450–7.

    PubMed  Google Scholar 

  90. Gudziol V, Buschhüter D, Abolmaali N, Gerber J, Rombaux P, Hummel T. Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis. A longitudinal study. Brain. 2009;132:3096–101.

    CAS  PubMed  Google Scholar 

  91. Hummel T, Haehner A, Hummel C, Croy I, Iannilli E. Lateralized differences in olfactory bulb volume relate to lateralized differences in olfactory function. Neuroscience. 2013;237:51–5.

    CAS  PubMed  Google Scholar 

  92. Haehner A, Rodewald A, Gerber JC, Hummel T. Correlation of olfactory function with changes in the volume of the human olfactory bulb. Arch Otolaryngol Head Neck Surg. 2008;134:621–4.

    PubMed  Google Scholar 

  93. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264:1145–8.

    CAS  PubMed  Google Scholar 

  94. Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7:179–93.

    CAS  PubMed  Google Scholar 

  95. Lledo PM, Valley M. Adult olfactory bulb neurogenesis. Cold Spring Harb Perspect Biol. 2016;8:a018945.

    PubMed  PubMed Central  Google Scholar 

  96. •• Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain. J Neurochem 2017: 141: 835–47. Evidence of the subventricular and bulbar neurogenesis.

  97. Gengatharan A, Bammann RR, Saghatelyan A. The role of astrocytes in the generation, migration, and integration of new neurons in the adult olfactory bulb. Front Neurosci. 2016;10:149.

    PubMed  PubMed Central  Google Scholar 

  98. Chang EH, Adorjan I, Mundim MV, Sun B, Dizon MK, Szele FG. Traumatic brain injury activation of the adult subventricular zone neurogenic niche. Front Neurosci. 2016;10:332.

    PubMed  PubMed Central  Google Scholar 

  99. •• Huart C, Rombaux P, Hummel T. Neural plasticity in developing and adult olfactory pathways-focus on the human olfactory bulb. J Bioenerg Biomembr 2019: 51: 77–87. Evidence of the subventricular and bulbar neurogenesis.

  100. Breton-Provencher V, Saghatelyan A. Newborn neurons in the adult olfactory bulb: unique properties for specific odor behavior. Behav Brain Res. 2012;227:480–9.

    PubMed  Google Scholar 

  101. •• Zhang W, Sun C, Shao Y, Zhou Z, Hou Y, Li A. Partial depletion of dopaminergic neurons in the susbtantia nigra impairs olfaction and alters neural activity in the olfactory bulb. Sci Rep 2019: 9: 254. Evidence of the role of dopaminergic system in the olfactory function.

  102. Moreno MM, Linster C, Escanilla O, Sacquet J, Didier A, Mandairon N. Olfactory perceptual learning requires adult neurogenesis. Proc Natl Acad Sci U S A. 2009;106:17980–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Valley MT, Mullen TR, Schultz LC, Sagdullaev BT, Firestein S. Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning. Front Neurosci. 2009;3:51.

    PubMed  PubMed Central  Google Scholar 

  104. Sakamoto M, Imayoshi I, Ohtsuka T, Yamaguchi M, Mori K, Kageyama R. Continuous neurogenesis in the adult forebrain is required for innate olfactory responses. Proc Natl Acad Sci U S A. 2011;108:8479–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rochefort C, Gheusi G, Vincent JD, Lledo PM. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci. 2002;22:2679–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Alonso M, Viollet C, Gabellec MM, Meas-Yedid V, Olivo-Marin JC, Lledo PM. Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci. 2006;26:10508–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mandairon N, Stack C, Kiselycznyk C, Linster C. Enrichment to odors improves olfactory discrimination in adult rats. Behav Neurosci. 2006;120:173–9.

    PubMed  Google Scholar 

  108. Lazarini F, Lledo PM. Is adult neurogenesis essential for olfaction? Trends Neurosci. 2011;34:20–30.

    CAS  PubMed  Google Scholar 

  109. Alonso M, Lepousez G, Sebastien W, Bardy C, Gabellec MM, Torquet N, et al. Activation of adult-born neurons facilitates learning and memory. Nat Neurosci. 2012;15:897–904.

    CAS  PubMed  Google Scholar 

  110. Kageyama R, Imayoshi I, Sakamoto M. The role of neurogenesis in olfaction-dependent behaviors. Behav Brain Res. 2012;227:459–63.

    PubMed  Google Scholar 

  111. Sun D. Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury. Exp Neurol. 2016;275:405–10.

    CAS  PubMed  Google Scholar 

  112. Villasana LE, Westbrook GL, Schnell E. Neurologic impairment following closed head injury predicts post-traumatic neurogenesis. Exp Neurol. 2014;261:156–62.

    CAS  PubMed  Google Scholar 

  113. Saha B, Peron S, Murray K, Jaber M, Gaillard A. Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res. 2013;11:965–77.

    PubMed  Google Scholar 

  114. Kernie SG, Parent JM. Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis. 2010;37:267–74.

    PubMed  Google Scholar 

  115. Sullivan GM, Mierzwa AJ, Kijpaisalratana N, Tang H, Wang Y, Song SK, et al. Oligodendrocyte lineage and subventricular zone response to traumatic axonal injury in the corpus callosum. J Neuropathol Exp Neurol. 2013;72:1106–25.

    PubMed  PubMed Central  Google Scholar 

  116. Mierzwa AJ, Sullivan GM, Beer LA, Ahn S, Armstrong RC. Comparison of cortical and white matter traumatic brain injury models reveals differential effects in the subventricular zone and divergent Sonic hedgehog signaling pathways in neuroblasts and oligodendrocyte progenitors. ASN Neuro. 2014;6:1759091313441782.

    Google Scholar 

  117. Jesko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res. 2017;42:876–90.

    CAS  PubMed  Google Scholar 

  118. Baker H, Farbman AI. Olfactory afferent regulation of the dopamine phenotype in the fetal rat olfactory system. Neuroscience. 1993;52:115–34.

    CAS  PubMed  Google Scholar 

  119. Nadi NS, Head R, Grillo M, Hempstead J, Granno-Reisfeld N, Margolis FL. Chemical deafferentation of the olfactory bulb: plasticity of the levels of tyrosine hydroxylase, dopamine and norepinephrine. Brain Res. 1981;213:365–77.

    CAS  PubMed  Google Scholar 

  120. Philpot BD, Men D, McCarty R, Brunjes PC. Activity-dependent regulation of dopamine content in the olfactory bulbs of naris-occluded rats. Neuroscience. 1998;85:969–77.

    CAS  PubMed  Google Scholar 

  121. Sawada M, Kaneko N, Inada H, Wake H, Kato Y, Yanagawa Y, et al. Sensory input regulates spatial and subtype-specific patterns of neuronal turnover in the adult olfactory bulb. J Neurosci. 2011;31:11587–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lazarini F, Gabellec M, Moigneu C, de Chaumont F, Olivo-Marin JC, Lledo PM. Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb. J Neurosci. 2014;34:14430–42.

    PubMed  PubMed Central  Google Scholar 

  123. Sui Y, Horne MK, Stanic D. Reduced proliferation in the adult mouse subventricular zone increases survival of olfactory bulb interneurons. PLoS One. 2012;7:e31549.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. •• Durante MA, Kurenbach S, Sargi ZB, Harbour JW, Choi R, Jurtenbach S, Goss GM, Matsunami H, Goldstein BJ. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat Neurosci 2020: 23: 323–6. Evidence of the role of neurogenesis in the olfactory epithelium.

  125. •• Li Q, Siri T, Bressan C, Koninck Y, Saghatelyan A. Developmental potential and plasticity of olfactory epithelium stem cells revealed by heterotopic grafting in the adult brain. Stem cell Reports 2020: 14: 692–702. Evidence of the role of neurogenesis in the olfactory epithelium.

  126. Berger T, Lee H, Thuret S. Neurogenesis right under your nose. Nat Neurosci. 2020;23:297–8.

    CAS  PubMed  Google Scholar 

  127. •• Choi R, Goldstein BJ. Olfactory epithelium: Cells, clinical disorders, and insights from an adult stem cell niche. Laryngoscope Investig Otolaryngol 2018: 3: 35–42. Evidence of the role of neurogenesis in the olfactory epithelium.

  128. •• Child KM, Herrick DB, Schwob JE, Holbrook EH, Jang W. The neuroregenerative capacity of olfactory stem cells is not limitless: implications for aging. H Neurosci 2018: 38: 6806–24. Evidence for the capacity of recovery of olfactory epithelium.

  129. Leung CT, Coulombe PA, Reed RR. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci. 2007;10:720–6.

    CAS  PubMed  Google Scholar 

  130. Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits. 2014;8:98.

    PubMed  PubMed Central  Google Scholar 

  131. Holbrook EH, Leopold DA, Schwob JE. Abnormalities of axon growth in human olfactory mucosa. Laryngoscope. 2005;115:2144–54.

    PubMed  Google Scholar 

  132. Schwob JE, Youngentob SL, Ring G, Iwema CL, Mezza RC. Reinnervation of the rat olfactory bulb after methyl bromide-induced lesion: timing and extent of reinnervation. J Comp Neurol. 1999;412:439–57.

    CAS  PubMed  Google Scholar 

  133. Carr VM, Ring G, Youngentob SL, Schwob JE, Farbman AI. Altered epithelial density and expansion of bulbar projections of a discrete HSP70 immunoreactive subpopulation of rat olfactory receptor neurons in reconstituting olfactory epithelium following exposure to methyl bromide. J Comp Neurol. 2004;469:475–93.

    CAS  Google Scholar 

  134. Schwob JE, Szumowski KE, Stasky AA. Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival. J Neurosci. 1992;12:3896–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Schnittke N, Herrick DB, Lin B, Peterson J, Coleman JH, Packard AI, et al. Transcription factor p63 controls the reserve status but not the stemness of horizontal basal cells in the olfactory epithelium. Proc Natl Acad Sci U S A. 2015;112:E5068–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. •• Kurtenbach S, Goss GM, Goncalves S, Choi R, Hare JM, Chaudhari N, Goldstein BJ. Cell-based therapy restores olfactory function in an inducible model of hyposmia. Stem Cell Reports 2019: 12: 1354–65. Evidence showing that olfactory stem cell treatment is able to rescue a rodent hyposmia model due to inducible ciliopathy.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Concepció Marin or Joaquim Mullol.

Ethics declarations

Conflict of Interest

Dr. Alobid reports personal fees from Roche, personal fees from Menarini, personal fees from GSK, personal fees from Novartis, and personal fees from MSD, outside the submitted work. Dr. Mullol reports personal fees and other from Sanofi-Genzyme & Regeneron, personal fees and other from Novartis, personal fees and other from Allakos, grants and personal fees from Mylan Pharma, grants and personal fees from Uriach Group, personal fees from Mitsubishi-Tanabe, personal fees from Menarini, personal fees from UCB, personal fees from AstraZeneca, personal fees from GSK, and personal fees from MSD, outside the submitted work. Dr. Marin and Dr. Langdon declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Rhinosinusitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, C., Langdon, C., Alobid, I. et al. Olfactory Dysfunction in Traumatic Brain Injury: the Role of Neurogenesis. Curr Allergy Asthma Rep 20, 55 (2020). https://doi.org/10.1007/s11882-020-00949-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-020-00949-x

Keywords

Navigation