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Abstract The nose together with the paranasal sinuses has an
approximate surface area of 100 to 200 cm2 in adults, which is
lined with pseudostratified columnar ciliated epithelium. It
serves several important physiological functions such as con-
ditioning and filtration of the inspired air and the provision of
end organ for the sense of smell. It is also a physical and
immunological barrier as it is the first site of interaction
between the host tissue and foreign invaders (viruses, bacteria,
and allergens). Our understanding of the complex cellular
events occurring in response to inhaled agents during the
development of common airway diseases has been significant-
ly enhanced by the current status of in vivo and in vitro nasal
experimental models. This will allow the development of
novel therapeutic strategies designed to improve the physio-
logical and immune defense functions of the nasal epithelium,
as well as novel therapies for other common nasal diseases.

Keywords Common nasal disease . Nasal epithelium . Host
defense . Human nasal epithelial stem/progenitor cells
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Introduction

The diseases of the upper airway, such as rhinitis (allergic and
infectious) and rhinosinusitis are the most common health
problems worldwide, affecting millions of people of all ages.
Although it has now been well defined that mucosal inflam-
mation is the principal condition in these diseases, the etiology
and pathogenic mechanisms underlying the development and
progress of these nasal diseases are still incompletely under-
stood. They can be influenced by multiple risk factors includ-
ing gene-gene and gene-environment interactions. For exam-
ple, chronic rhinosinusitis (CRS) with and without nasal
polyps (CRSwNP and CRSsNP) can be described as a dys-
functional host-environment interaction that occurs in the nose
and paranasal sinuses [1••].

The nasal cavity is lined with pseudostratified columnar
ciliated epithelium, which is also found in the lining of the
trachea and upper respiratory tract. In recent years, we have
seen several advances in our understanding of the host defense
mechanisms of the nasal epithelium. The combined function
of ciliated epithelial and secretory cells maintaining efficient
mucociliary clearance and a variety of other host defense
mechanisms can be considered a soldier in the fight against
airborne pathogens [2••]. In addition, a new concept on the
“immune barrier hypothesis” proposes that defects in the
coordinated mechanical barrier and/or the innate immune
response of the sinonasal epithelium manifest as CRS [3].
This concept has been confirmed based on respiratory epithe-
lial cells which are the primary targets of the common viruses
(influenza virus, respiratory syncytial virus [RSV], adenovi-
rus, rhinovirus, coronavirus, Coxsackie virus, and
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paramyxovirus), where various defense mechanisms have
evolved in the respiratory tract to prevent and control the
infection of viruses and other pathogens [4••].

This review focuses mainly on understanding the nose, in
particularly the role of nasal epithelium in common nasal
diseases and their impacts on future development of cell
therapy. Some interesting data are presented from more ad-
vanced studies which describe the role of epithelial cells
during innate and adaptive immune responses to respiratory
viral infections in the lung.

Function of the Nose

The nose is known to be important in ventilation as approxi-
mately 10 to 20,000 L of air move daily through the nasal
cavities to the lungs. Normal inspiratory nasal airflow for an
adult can range from 5 to 12 L/min for calm breathing and
increase to 40 L/min with physical exercise, but extreme
airflow rates may be as large as 150 L/min [5]. Due to the
interior structure and typical shape of the human nose, the
aerodynamics of airflow changes significantly from a relative-
ly laminar flow at the vestibule to a highly turbulent flow
anterior to the head of the inferior turbinate [6]. This is critical
to facilitating mucosal contact for heating/cooling, humidifi-
cation, and filtration of inspired air, which is necessary in
conjunction with the functions of the nervous system, vascu-
lature, secretory tissue, and mucociliary clearance of the nasal
mucosa.

The mucosal lining of the nasal cavity covers an area of
100–200 cm2, extends into the sinuses, and is coated by a
layer of mucus 10- to 15-μm thick, which is supplied by
goblet cells in the epithelium and submucosa seromucous
glands. This will produce 100–200 mL of mucus over 24 h
in a resting rate [7]. Epithelial cells, composed of basal cells,
goblet cells, and ciliated or non-ciliated columnar cells, are
attached to their neighbors by cell-cell junctions, including
tight junctions (TJs), adherens junctions (AJs), gap junctions,
and desmosomes, which are central components of the phys-
ical barrier [2••, 8]. Mucociliary clearance or sometimes re-
ferred to as the mucociliary apparatus is the process by which
cilia of the nasal epithelial cells transport the viscous mucus
blanket of the upper airway to the gastrointestinal tract. In the
healthy nose, over 80–90 % of small particles (e.g., 10 μm) in
the inhalant air are trapped on the surface of the nasal mucosa
[9] and are transported by the mucociliary apparatus to the
pharynx where they are either swallowed or coughed up. This
phenomenon supports the claim that the nasal epithelium is
exposed first, and to a greater extent than that of the bronchial
epithelium, to all environmental agents, including infectious
agents (e.g., viruses, bacteria, and fungi), allergens, and air
pollutants, thus protecting the lower airways [10•].

In addition to the physical barrier, nasal epithelial cells are
known to play an active role in both the innate and acquired
immune responses, which have been summarized in the Eu-
ropean Position paper on rhinosinusitis and nasal polyps 2012
(EPOS 2012) [1••] as (l) expressing membrane-bound and
cytoplasmic pattern recognition receptors (PRRs) that recog-
nize pathogen-associated molecular patterns (PAMPs), which
are conserved molecular patterns found in parasites, viruses,
yeasts, bacteria, and mycobacteria; (2) secreting a vast arsenal
of host defense molecules, such as antimicrobial molecules in
several classes of enzymes (lysozyme, chitinases, and perox-
idases), opsonins (complement and pentraxin-3),
permeabilizing proteins (A defensins, B defensins, and
cathelicidins such as LL-37), collectins (surfactant protein-
A, surfactant protein-D, and mannose-binding lectin), and
binding proteins (lactoferrin and mucins); (3) producing a
variety of inflammatory cytokines, such as IL-1, TNF-α,
IFNα/β, GM-CSF, eotaxins, RANTES, IP-10, IL-6, IL-8,
GRO-α, MDC, SCF, TARC, MCP-4, BAFF, osteopontin,
IL-25, IL-32, IL-33, and thymic stromal lymphopoietin
(TSLP), in response to stimulation of the antigens. Many of
these cytokines have chemokine properties that attract various
leukocytes including eosinophils, mast cells, neutrophils, den-
dritic cells, and lymphocytes. Some cytokines are also be-
lieved to play a key role in dendritic cell polarization, shaping
the nature of the T cell response to antigens; and (4) other
molecules and enzymes in response to antigenic stimuli.

Role of Nasal Epithelium in Common Upper Airway
Diseases

It has been reported that in lower airway diseases (e.g., asth-
ma, bronchiolitis obliterans, chronic obstructive pulmonary
disease, and cystic fibrosis), the pseudostratified airway sur-
face epithelium is severely damaged and must regenerate to
restore its defense functions [11]. The same results have also
been found in the sinonasal epithelial cells from CRSwNP,
such as up-regulation of MUC1, MUC4, and MUC8 [12, 13];
down-regulation of MUC5AC [12, 13] and TLR9 [14]; up-
expression of VPF/VEGF [15, 16] and LL-37 [17, 18]; in-
creased production of GM-CFS [19]; and staph invasion of
sinonasal epithelial cells [20]. It is interesting that during the
recovery or resolution phase of viral infections in the lower
airways, the immune system must help to orchestrate tissue
repair to restore normal lung architecture and function and
prevent permanent defects in respiratory function [4••].

Viral Infection

Infection of the respiratory tract by viruses is one of the most
common health problems seen, affecting millions of people
annually. Respiratory viruses include rhinoviruses,

490, Page 2 of 9 Curr Allergy Asthma Rep (2015) 15:490



coronaviruses, RSV, influenza viruses, parainfluenza viruses,
and adenoviruses [1••]. Among these, rhinoviruses, influenza
viruses, and RSV have been intensively investigated, and their
mode of epithelial injury is well understood [21–24]. It has
been reported in our previous review [25•] that respiratory
viruses infect epithelial cells via cell surface receptors (e.g.,
ICAM-1, TLR3, α-2,3-SA/α-2,6-SA, RIG-I, and MDA5),
up-regulate receptor expression of ICAM-1 via IL-1β and
nuclear factor (NF)-κB-dependent mechanisms, and enhance
release of inflammatory mediators (e.g., IL-6, IL-8, IL-1α, IP-
10, TNFα, RANTES, IRF7, TGF-β1, etc.) with subsequent
transcription, replication, virus assembly, and release. After
infection of adjacent epithelial cells, damage to tight junctions,
membrane disruption, and cell death occur.

The nature and severity of disease caused by a viral infec-
tion is dependent on both the direct harmful effects of the virus
itself and on the damage caused to host tissues as a conse-
quence of the host immune response to the virus. Some
immunopathologies may be unavoidable if the host is to
eradicate the viruses. The initial infection of a respiratory virus
is established in epithelial cells through PRRs by initiating a
cascade of signals that result in the production of cytokines
and chemokines. The release of these inflammatory mediators
into the surrounding environment alters the innate immune
system in the presence of infection and establishes a localized
antiviral state [26]. However, the pathogenic mechanisms of
virus-induced inflammation and pathogenesis of common
cold symptoms are still not fully understood. It has been
suggested that the severe lung inflammation associated with
respiratory infection by certain viruses poses a unique chal-
lenge to the immune system. Not only must the virus be
rapidly eliminated by the immune system, but tissue inflam-
mation must also be controlled to prevent acute respiratory
failure [2••, 4••, 26].

The role and mechanisms dominated by the epithelium
may have an important role in the host response to a viral
infection as it occurs in the initial stages of viral infections in
susceptible hosts. Respiratory epithelial cells are able to rec-
ognize viruses through PRRs, such as Toll-like receptors
(TLRs), which play a crucial role in the initiation of immune
responses in the respiratory epithelium and which lead to the
induction of type I IFNs [2••, 27]. Type I IFNs (known as
IFN-α and IFN-β) were among the first antiviral agents to be
characterized and are still seen as central to the early antiviral
response of virus-infected cells [2••, 4••]. Recently, a novel
class of antiviral cytokines was discovered and are classified
as type III IFNs, such as IFN-λ1/IL-29, IFN-λ2/IL-28A, and
IFN-λ3/IL-28B, which possess antiviral properties similar to
those of type I IFNs but appear to be expressed especially by
epithelial cells and consequently exert host protection primar-
ily at epithelial surfaces [2••, 28, 29]. It has been reported that
the pandemic influenza virus (pH1N1) in 2009 was found to
induce type I and type III IFNs and was extremely sensitive to

the antiviral actions of type I and type III IFNs [30].
Therefore, an understanding of the mechanisms by which
viruses interfere with epithelial innate and adaptive im-
mune responses might contribute to the design of new
therapeutic tools to treat or prevent respiratory disorders
caused by viral infections [2••].

Allergic Rhinitis

The development of allergic rhinitis (AR) is known to be due
to a complex interaction between environmental and genetic
factors. During the past few decades, there has been signifi-
cant progress in understanding the IgE-mediated immunolog-
ic mechanisms which play a key role by triggering the release
of mediators (e.g., histamine) which are responsible for aller-
gic symptoms. In addition, transendothelial migration of in-
flammatory cells and their activation within the reactive tissue
are characteristic features, which represent the result of a
complex network of interactions between various mediators,
cytokines, chemokines, and adhesion molecules. However,
our understanding of the disease origin and development of
truly curative therapies have proved to be challenging and
elusive goals [31].

An intact nasal epithelial barrier is known to be important
in protecting against environmental agents, including aller-
gens. Epithelium has emerged as an active and complex organ
with mechanical, biochemical, and immunological functions
[32]. It has been demonstrated by immune-electron microsco-
py that an in vivo birch pollen challenge in sensitized AR
patients could lead to a very rapid binding of the allergens to at
least 16 Bet v 1-binding proteins (e.g., ACTG, PLEC1,
STML2, KCNA5, CALM, and ANXA2) in nasal epithelium,
which then travel through the nasal epithelium via a lipid raft
and caveolar-dependent process before binding to mast cells
in the lamina propria [33]. However, the mechanism of how
allergens travel through the nasal epithelium remains un-
known. Other epithelial barrier markers, such as filaggrin
(FLG), a member of the epidermal differentiation complex
on chromosome 1q21, were reported to have polymorphisms
and loss of functional mutations which were associated with
atopic dermatitis and AR [34, 35].

Chronic Rhinosinusitis With and Without Nasal Polyps

CRS is characterized by chronic inflammation of the nose and
the paranasal sinus mucosa that persists for at least 12 weeks.
It can be divided into CRSwNP and CRSsNP [1••]. Both
CRSsNP and CRSwNP are multifactorial diseases and are
associated with a wide range of pathogenic risk factors, such
as ciliary impairment or malfunction, allergy, asthma, aspirin
sensitivity, immunocompromised state, genetic abnormalities,
pregnancy and endocrine state, local host factors, biofilm,
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environmental factors, iatrogenic factors, Helicobacter pylori
and laryngopharyngeal reflux, osteitis, etc. [1••].

In the past few decades, large numbers of research data
have been able to show infiltration and activation of various
inflammatory cells in the sinonasal mucosa and defects in the
host and adaptive immune defense functions, which play
important roles in the pathogenesis of CRS. Identification of
gene susceptibility to CRS as well as expression signatures
and molecular pathways in CRS pathogenesis have also con-
tributed significantly to a better understanding of the genetic
and molecular alterations underlying CRS development and
progression [10•, 36]. The major inflammatory manifestations
of CRS include (1) increased infiltration of eosinophils, neu-
trophils, lymphocytes, and macrophages; (2) abnormal regu-
lation of Th1, Th2, and regulatory T cell (Treg) gene expres-
sion; (3) defects in the epithelial barrier and in both innate and
adaptive host defense functions; (4) epithelial damage
followed by aberrant remodeling; (5) alterations of ei-
cosanoid pathways; and (6) fibrosis or edema [10•].
However, the pathogenic mechanisms causing the initial
process and sustaining the abnormal inflammation are
incompletely understood. Future studies are needed to
identify details in genetic interactions and the interacting
pathways underlying CRS and to investigate the inter-
actions with environmental factors that influence the
complex pathology of CRS. Only then are we likely
to have the understanding necessary for improved pre-
vention, diagnosis, and treatment of CRS and NPs.

In both CRSwNP and CRSsNP, the epithelium is known to
be structurally and functionally abnormal, which may be
crucial in the development and progression of CRS. However,
the underlying mechanisms leading to epithelial damage and
formation of abnormal cilia remain unclear. In patients with
CRSwNP, the epithelium appears to respond inappropriately
to injury, and this can lead to aberrant epithelial damage
including hyperplasia or squamous metaplasia [1••, 37•,
38•]. Furthermore, goblet cell hyperplasia with excessive mu-
cus production, abnormalities in cilia architecture, and func-
tion can be found in hyperplasia or squamous metaplasia of
the nasal epithelium [1••, 39, 40, 41••]. These pathological
findings are similar to that seen in asthma where the epitheli-
um damage and more mucus-producing cells than normal
make the airway epithelial barrier more permeable and more
sensitive to oxidants resulting in a deficient innate immune
response to respiratory viral infections compared with that
seen in normal individuals [42•]. It is important that the
potential for a susceptible epithelium and the underlying mes-
enchyme to create a microenvironment which enables a devi-
ation of the immune and inflammatory responses to external
stimuli thus being crucial in the development and progression
of asthma [42•].

In a number of our recent studies, we were able to
show (1) down-regulation of the AP-1 (c-Jun/c-Fos

heterodimers) transcription factor and its associated genes
(e.g., FOS, EGR1, AREG, HBEGF, IL6, and COX2) in
nasal biopsies from CRSwNP were at least partially res-
tituted after oral steroid treatment [43]; (2) overexpression
of p63 that is associated with the CRSwNP epithelial
remodeling that was suppressed following oral steroid
treatment [37•]; (3) a reduced protein expression level of
epithelial membrane protein 1 (EMP1), which is an inte-
gral membrane glycoprotein in nasal epithelium correlated
significantly with epithelial remodeling status in
CRSwNP [38•]; and (4) motile cilia impairment with
abnormal cilia architecture (untidy, overly dense, and
lengthened) that is positively associated with increased
levels of protein and mRNA and with ciliogenesis-
associated markers (CP110, Foxj1, and TAp73) in
CRSwNP [41••]. Our data suggest a new possibility that
abnormal mucociliary clearance associated with epithelial
hyperplasia in airway diseases is likely due to the impair-
ment of both cilia architecture and function, which could
be a likely cause of chronic mucosal inflammation or
infection (e.g., biofilm) observed in CRSwNP.

�Fig. 1 Implication of in vitro models of human nasal epithelial
stem/progenitor cells (hNESPCs) and differentiated epithelial cells
derived from hNESPCs in experimental studies. All pictures with
double staining are carried out by using immunofluorescence staining
technique. a Schematic summary of the histopathological and pathogenic
alterations in nasal polyps (NPs) from recent in vivo and in vitro studies
[37•, 41••, 51••, 52••]. Our in vivo studies showed that NPs are associated
with chronic mucosal inflammation (e.g., eosinophilia), hyperplasia of
basal cells (p63+ and KRT5+ cells) and goblet cells (MUC5AC+ cells),
impairment of cilia architecture (untidy, overly dense, and lengthened)
together with increased protein expression levels of ciliogenesis-
associated markers (CP110, Foxj1, and TAp73) in ciliated columnar
cells (βIV-tubulin+ cells) by using histo- and immuno-staining and
scanning electron microscopy (SEM). These pathological findings are
confirmed by the in vitro data with reduced growth and proliferation
activities (Ki67+) in hNESPCs (p63+ cells), increased mucus production
(MUC5AC+ cells), and abnormal cilia architecture (same as in vivo
findings) in differentiated epithelial cells derived from hNESPCs also
with increased protein expression levels of CP110, Foxj1, and TAp73.
Thus, these ciliogenesis-associated markers are confirmed to be
associated with the pathogenesis of epithelial hyperplasia and
impairment of cilia architecture in NPs, and their changes are likely
intrinsic. b The in vitro models for viral infections. Viral infection of
influenza H3N2 virus (Influenza A/Aichi/2/68 stain, MOI of 0.1) is
conducted in hNESPCs derived from biopsies of healthy nasal mucosa.
The cytopathic effects (e.g., cell detachment, round up, and crimp cell
membrane) and H3N2-infected hNESPCs (H3N2 nucleoprotein+) are
seen 24 h post infection (hpi). In the differentiated nasal
epithelial cells, H3N2 virus can impair the tight junctions by
showing an enlarged and irregular pattern of ZO-1 and infect
directly the ciliated cells (βIV-tubulin+) and goblet cells
(MUC5AC+) as shown by a double s ta ining of vi ra l
nucleoprotein at 24 hpi. For respiratory syncytial virus (RSV,
MOI of 3), the infection may start from the ciliated cells as
shown by a double staining with RSV-N protein (RSV-N) and
βIV-tubulin (kindly provided with permission from Professor R.
Sugrue)
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Nasal Epithelium and Epithelial Cells

Airway epithelium is central in respiratory disease, but it is
notoriously difficult to distinguish between cause and effect
with regard to the epithelium’s role in the context of diseases.

It has been shown that airway epithelial cells play a key role in
regulation of tissue homeostasis by the modulation of numer-
ous molecules, from antioxidants and lipid mediators to
growth factors, cytokines, and chemokines [44]. In addition,
the airway epithelium is also able to suppress mechanisms
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involved in inflammation to maintain homeostasis [44].
Therefore, it is important to gain insights into the mechanism
by which human nasal epithelial cells (hNECs) respond to
various pathogens or antigens, where such an event might take
place in nature. Moreover, in the complex interplay between
hNECs and environmental pathogens, host factors play an
important role in disease severity, progression, and response
to pharmacological treatments.

One way to study an intrinsic alteration or defect of
nasal epithelial cells in response to environmental risk
factors is to isolate and grow nasal epithelial cells from
healthy and diseased epithelium and to compare them
under conditions that are conducive for normal cell
growth and differentiation. Instead of using commercial-
ly available respiratory cell lines which have often un-
dergone long-term in vitro cultivation and therefore may
not represent the real biological features of hNECs,
primary hNEC culture has been used in many studies.
Briefly, the epithelial cells are enzymatically dissociated
from nasal biopsies and seeded on cell culture flasks.
After expanding the epithelial cells in mixed cell clus-
ters (including inflammatory cells, submucosal glands,
and fibroblasts) by using a monolayer culture method,
the harvested cells are then transferred into an air-liquid
interface (ALI) culture to form pseudostratified epitheli-
um. This model has been successfully used in some
studies such as a study that demonstrated intrinsic alter-
ations in innate immune gene expression in CRS epi-
thelial cells when grown in a 6-week culture in vitro
[45]. There was increased CP110 expression in
rhinosinal mucosa from patients with CRS which might
contribute to the poor ciliation observed in patients with
CRS [40]. Properly stimulated hNECs may impart
immuno-modulatory effects on the antigen-specific anti-
body response at least through the production of IL-6
and thymic stromal lymphopoietin (TSLP) [46]. It has
been demonstrated recently that reconstituted epithelia
from human NP epithelial cells cultured in ALI system
provide a 3D in vitro model that could be useful both
for studying the role of epithelium in CRSwNP while
developing new therapeutic strategies, including cell
therapy, for CRSwNP [47•].

There are some potential limitations for primary hNECs
studies in vitro, such as limited cell numbers and the lifespan
of nasal epithelial cells using primary cell culture, high het-
erogeneity in endogenous gene expression levels, and varied
pathogenesis among patients (donors). The choice of experi-
mental methodology is also important as this can greatly
influence the results and interpretation when comparing the
expression profiles of innate immune genes between hNECs
obtained from nasal brushes and from tissue biopsies [45]. It
was reported in an early study that hNECs from NPs became
squamous and lose their cilia within 2 to 6 weeks in

monolayer cultures, while cilia reappeared after changing to
suspension cultures [48]. Therefore, it is critical for in vitro
studies to establish a hNEC culture model with enough living
hNECs and to maintain them in an in vitro culture system for
days or weeks without changing their primary biological
characteristics.

Nasal Epithelial Progenitor and Stem Cell Research

During the past decade, there is a great interest in the biology
of adult stem cells because of their capacity to self-renew and
high plasticity. Different methods for in vitro culture of
progenitor/stem cells have been developed, including the use
of feeder layer cells, feeder layer cell-free conditions, extra-
cellular matrix (ECM) molecules, and in the presence of
diverse growth factors and cytokines. Thus, techniques in
isolation and in vitro culture of human nasal epithelial stem/
progenitor cells (hNESPCs) become feasible and will provide
us with an in-depth understanding of the complex mecha-
nisms of self-renewal, proliferation, differentiation, and epi-
thelial remodeling that occurs during development and ho-
meostasis with common infectious and inflammatory nasal
diseases [11, 49, 50].

Recently, we have been successful in isolating adult
hNESPCs from nasal biopsies of healthy subjects and patients
with CRSwNPs [41••, 49, 50, 51••, 52••]. Some key findings
from these studies are summarized in Fig. 1a. Briefly, single-
cell-derived colonies stain uniformly for basal cell markers
such as p63 and keratin 5 (Krt5), and about 80 % of the
colonies show potential for long-term self-renewal, because
they can be propagated successively for at least an estimated
20–50 additional doublings, while maintaining an immature
phenotype [51••]. Lineage potential has been assessed through
multiple differentiation assays, in which the pedigree lines
developed from single cells can differentiate into stratified
mucociliary airway epithelium composed of both ciliated
columnar cells and goblet cells. This in vitro culture system
provides (1) cells in large numbers (both progenitor and
differentiated hNECs), (2) cells which maintain their original
biological characteristics, and (3) the in vitro differentiated
epithelial cells are viable for more than 1 month in ALI
culture. It opens up many research possibilities to understand
the molecular mechanisms and pathways underlying both
healthy and diseased nasal epithelium and to identify more
targeted and cellular therapies for common nasal diseases.

It has been reported in asthma that epithelium abnormali-
ties might result from intrinsic (including epigenetic) alter-
ations in their transcriptional and regulatory programs, which
in turn affect proliferative and differentiation potential [44,
53]. Similarly, in our recent study [52••], hNESPCs were
isolated and cultured for four passages from NP biopsies and
control nasal mucosa. hNESPCs from controls were stained

490, Page 6 of 9 Curr Allergy Asthma Rep (2015) 15:490



positively with stem cell marker p63 and KRT5 and presented
a consistent high Ki67 expression level over four passages.
In contrast, hNESPCs from NPs showed a reduced growth
and proliferation rate at each passage by evaluating
colony-forming efficiency and doubling time and a lower
percentage of Ki67+ cells among p63+ cells in the colonies
in late passages. This was also confirmed by immuno-
staining in the NP specimens. These intrinsic differences
in growth and proliferation properties could be an impor-
tant pathological phenomenon in NPs [52••].

In another study, aberrant epithelial remodeling was
found by histo- and immuno-histochemical evaluation to
be associated with significant impairments of cilia archi-
tecture (untidy, overly dense, and lengthened) and reduced
ciliary beating frequency (CBF) in chronically inflamed
nasal mucosa of NPs. Further confirmation was performed
in vitro with differentiated epithelial cells derived from
hNESPCs in the same patients and healthy controls. The
results from both in vivo and in vitro measurements are
concordant and are associated with increased expression
of ciliogenesis-associated markers (e.g., CP110, Foxj1,
and TAp73) that confirm the cause of these pathological
changes that is likely intrinsic (Fig. 1a) [41••]. These
findings are of significant importance to our understand-
ing of the clinical nature of NPs with persistent inflam-
mation and their high recurrence even after maximal anti-
inflammatory treatment and surgery. Hopefully, these re-
sults will aid in the discovery and development of more
specific and directed treatments for NPs and for other
inflammatory and hyperplastic airway diseases.

With the pandemic of SARS (in 2003) and H1N1 (in
2009), global concerns for viral airway infections has risen.
In addition to continuous efforts in surveillance of naturally
occurring viruses in humans, experimental studies elucidating
susceptibilities to respiratory viruses and response to infection
by human nasal epithelium, which is the primary target site for
common cold and influenza viruses, are required. The nature
and severity of viral infection observed is dependent on both
the direct harmful effects of the virus itself and on the damage
caused to host tissues as a consequence of the host immune
response to the virus. Thus, hNESPCs and differentiated
epithelial cells derived from hNESPCs in an ALI culture
may offer possibilities in screening and quantitative assess-
ment of the virulence of common viruses, and the host defense
functions including viral fusion and uncoating, transport of
viral ribonucleoprotein (RNP) complexes from the nucleus,
replication, transcription and translation of the viral genome,
export of viral RNP complexes from the nucleus, viral assem-
bly and budding, and potential drug targets. This would pro-
vide us with a useful reference for public health risk assess-
ment, interventions, disease control, and prognosis for viral
upper respiratory infections. Figure 1b provides a schematic
diagram of our current study protocol and some preliminary

data elucidating viral infection in specific cell types at 24 h
post viral infection. By using this model, we are able to
confirm all reported and possible new specific markers (e.g.,
mediators, cytokines, chemokines, and receptors) from nasal
epithelium at the different time points after viral infection
(unpublished data) [2••, 4••, 25•, 26].

Conclusion

Nasal epithelium is a physical and immunological barrier as it
is the first site of interaction between the host tissue and
environmental risk factors. It is also known to play an impor-
tant role in the innate and acquired immune response of the
complex mechanisms which occur during development, ho-
meostasis, and with common infectious and inflammatory
nasal diseases. Following the recent advances in molecular
and cell biology, nasal epithelial stem/progenitor cells re-
search is now feasible with a significant implication for a
better understanding of molecular mechanisms and pathways
underlying both healthy and diseased nasal epithelium which
will thus aid the preclinical development of novel therapies for
common nasal diseases.
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