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Introduction

...if we have a proposition which contains the idea of
necessity in its very conception, it is a judgement a
priori; ....an empirical (a posteriori) judgement never
exhibits strict and absolute, but only assumed and
comparative universally (by induction); therefore,
the most we can say is—so far as we have hitherto
observed—there is no exception to this or that rule.
If, on the other hand, a judgement carries with it
strict and absolute universality, that is, admits of no
possible exception, it is not derived from experience,
but is valid absolutely a priori. (Kant, 1781)

A traditional method for studying the pathogenesis of
upper respiratory diseases and their complications is the
assay of secretions and/or other recovered fluids for
chemicals that are expected to participate in the immune/
inflammatory process. For example, assays of nasal secre-
tions/washings [1–3], sinus fluids [4], and middle ear
effusions [5] for “classic” inflammatory mediators (eg,
histamine, bradykinin, arachidonic acid metabolites)
and, more recently, for intercellular signaling chemicals

(eg, cytokines, chemokines) [6–9] have been performed
by numerous laboratories, and the results related to
extant symptom/sign expression. In turn, temporal corre-
lations between signal (chemical) and response (symp-
tom/sign) were often interpreted in terms of causal
mediation and, therefore, as potential targets for pharma-
cologic modulation of the response. The most established
success of this method is with its application to seasonal
nasal allergy in which the identification of signal chemi-
cals “causally” related to symptom/sign expression (eg,
histamine) led to the development of efficacious “treat-
ments.” However, that method fared less well in applica-
tion to diseases with an underlying infectious etiology,
such as otitis media [5], sinusitis [10], and viral upper
respiratory illness [11•]. In this article, we discuss the
limitations of applying this method to studies of the
“common cold.” This review is organized to first define
the impact and nosology of the common cold, then to
present the critical evidences required for causal infer-
ence, and finally to review existing data with respect to
causal pathways for disease expression.

Impact of the “Common Cold”
The “common cold” is the most prevalent disease affecting
humans and is defined by the expression of symptoms/
signs (primarily nasal, nasopharyngeal) consistent with an
underlying virus infection (with rhinoviruses predominat-
ing and others such as Coxsackie, influenza, parainfluenza,
respiratory syncytial virus [RSV], adenovirus contributing).
Although they are typically considered to be self-limiting
and of short duration, these infections in the young,
elderly, and immunocompromised can have significant
complications, with high morbidity and excess mortality
[12,13]. Moreover, recent cost-analysis studies document a
large financial impact of the “common cold” on the micro-
economy and macroeconomy secondary to absenteeism
and poor work performance, as well as the large monetary
outlays for “treatments” with limited efficacy [14•–16•]. A
reading of these studies is unnecessary for most adults and
children who express their appreciation of the disease’s
impact in the oft-raised question: “Why can’t ‘modern’
medicine find a cure for the common cold?” To address
tha t  qu es t ion ,  one  m ust  f i r s t  de f ine  wha t  the
“common cold” is and then what a “cure” would represent.

Identification of a pharmacologically targeted mediator of 
the common cold is a desirable, but, to date, elusive goal of 
current research. The roles of various mediators, such as 
histamine, leukotrienes, bradykinin, and, more recently, 
chemokines and cytokines, in the pathophysiology and 
development of complications of the common cold are the 
subject of previous and current investigations. Establishing 
causality of a mediator in the common cold has been diffi-
cult for a number of reasons, including the limitations of 
our research tools and protocols and the complexity of the 
inflammatory and immune pathways that participate during 
the common cold. The available evidence for mediation of 
the common cold is the subject of this manuscript.
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Nosology
There is strong experimental evidence that nasal (nasopha-
ryngeal) infection with upper respiratory virus is incom-
pletely coupled to symptom/sign expression (Fig. 1). Not
all infected persons express symptoms/signs, and attenua-
tion of symptoms/signs by terminal signal blockade (eg,
antihistamines) does not affect viral clearance [17]. Other
evidence shows that symptom/sign expression is not
prerequisite for the development of complications in
infected persons [18,19]. Finally, with few nonexclusive
exceptions (for example, fever for influenza), the constella-
tion of symptoms/signs for the “common cold” is not well
differentiated from other causes of nasal/nasopharyngeal
inflammation (eg, allergy/streptococcal infection) [20] and
does not discriminate among the different causative
viruses [21]. From these observations, we can create a noso-
logic definition of the “common cold” as a symptom/sign
complex (SSC) indicative of generalized nasal inflamma-
tion with an exclusionary attribution by default to an
underlying viral infection (vSSC). Viral cultures and/or
other assays are rarely done for clinical “colds,” and assign-
ment is usually made based on history, seasonality, and/or
short duration of SSC presentation. More inclusively, we
can define the “common cold” as an upper respiratory
virus infection (vURI) with or without the defined vSSC.

The “common cold,” defined by presence of the vSSC,
is the entity referenced by the general population in their
urgency for a “cure,” because vURI in the absence of vSSC
is not self-assessable. However, there are strong theoretical

concerns that a vSSC “cure” in the absence of a vURI “cure”
could be detrimental to the population and to the individ-
ual. For example, given the lack of a one-to-one correspon-
dence between vSSC and vURI and/or complications, the
introduction of treatments that affect vSSC alone can be
expected to drive an increased prevalence of those compli-
cations as infectious signaling, and voluntary withdrawal
of the contagious individual from social contact would be
inhibited. Also, treatments that affect early signaling events
upstream to the bifurcation of the event sequences leading
to vSSC and to antiviral host defense could potentially be
deleterious by downregulating the host response to the
virus infection (Fig. 2) and, thereby, allowing dissemina-
tion of virus and/or synergistic bacterial pathogens to adja-
cent anatomical compartments (eg, lungs, sinuses, middle
ear). These concerns are not applicable to similar strategies
used to treat allergic reactions for which the host inflam-
matory response to an “innocuous” antigen is considered
to be the pathology.

Causality
Although the implications of the introductory quotation
from Kant have been criticized for his failure to discrimi-
nate between deductive and inductive inference, with the
latter founded on probability and refuted by violation,
appropriate caution is emphasized with respect to assign-
ing causality to event (ie, relatum) relationships. In keep-
ing with Kant’s analysis of causality (as refined by modern
scholars), the relata (chemicals, events) included in
descriptions of disease pathogenesis and symptom/sign
expression need first to be categorized with respect to

Figure 1. A Venn diagram representing our nosologic definition of a 
vURI. All vURIs are caused by virus infection, but not all vURIs are 
accompanied by complications or a vSSC. Complications and vSSCs 
are neither mutually exclusive nor inclusive, and a proportion of attrib-
uted vSSCs are misclassified nonviral SSCs (nvSSCs). See text for details. 
SSC—symptom/sign complex; URI—upper respiratory infection.

Figure 2. A simple representation of the causal pathways linking viral 
exposure to infection and viral eradication by activation of the general 
and specific host defense responses. Note that we assign a multiple set 
of paths to the development and expression of symptoms/signs and 
complications (SSCs). Because some of these paths also participate in 
host defense, caution is advised in seeking a vSSC “cure” in the 
absence of a vURI “cure.” Not shown are the various feedback paths 
for downregulation of responses after virus eradication. See text for 
details. EFF—effective; nEFF—not effective; vURI—viral infection.
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immanence (existence in space-time), individuation
(grainedness), and adicity (number), and the relationships
should be classified with respect to connection (causal vs
cotemporal), direction (cause-effect, effect-cause,
conjoined effects), and selection (appropriate choice of
relata). In analyzing pathways for disease pathogenesis, the
relata are most simply viewed as signals and responses,
where the response could be a “downstream” second
signal. Signal-response relationships have an implicit
direction, whereas the direction of signal-signal relation-
ships is defined by empirical data. In both cases, causality
is supported if the signals/responses are immanent and
proximate in space-time and temporally ordered, with
cause preceding effect. A discussion of these issues is rarely
found in the medical literature. A good primer for those
interested has been written by Schaffer [22].

To illustrate, we use the “simple” signal-response path-
way linking histamine nasal challenge to symptom/sign
expression [23]. In this case, the primary signal (histamine
dose) is immanent, fine-grained (titerable), and unitary,
but the classification of responses varies with the level of
analysis. There, nasal exposure provokes a dose-related SSC
that includes sinus pain, itchy eyes/nose/ears, nasal
congestion, rhinorrhea, and sneezing. As an event, the SSC
is immanent, has an adicity valence ≥ 5, and is fine-grained
(variable magnitude). In comparison, the first two compo-
nents of the SSC lack documented immanence (not mea-
surable by objective techniques), and all five components
have an expected adicity valence of 1 and are fine-grained.
By design, the relationship can be defined as causal with a
signal-response direction and unbiased selection of stimu-
lus. However, experimental results show that this simple
analysis is in error. There, histamine-receptor blockade
abolishes sneezing and reduces rhinorrhea but has no
effect on the nasal congestion provoked by histamine
exposure [24]. A reinterpretation of the description, given
these results, assigns a more coarse grainedness to nasal
congestion (a summed measure of responses over multiple
intermediate pathways) and a higher adicity valence to the
primary histamine response (a multiplicity of divergent
pathways leading to different responses).

A similar analytic approach can be applied to more
complex networks and pathways, but such analyses are
complicated by the additional problems of signal redun-
dancy (multiple signals causing identical responses), signal
conservation (identical signals used in different, unrelated
pathways), response mimicry (different events assigned to
the same response), biased selection (choice of a pseudo-
signal spatiotemporally co-represented with the true signal
or of a multivalent response and pseudo-signal that are
both caused by a true [non measured] signal), and null
signals (absence of a signal causing a response), among
others. Also, there are special problems associated with the
application of this analytic method to studies of disease
pathogenesis, such as: signal potency; metabolic rate and
detectability by assay; the spatial compartmentalization of

the signaling cascade; and accessibility of that compart-
ment to signal-response assay (eg, nasal biopsy for intra-
mucosal events), the possibility of signals that act upon
themselves (eg, feedback inhibition), and the grainedness
of the analytic level (eg, organ, tissue, cellular, intracellu-
lar), among others. In this summary, we cannot present a
critical analysis of the misapplication of casual inference in
past studies of the common cold, but introduce this mate-
rial so that investigators, reviewers, and readers correctly
interpret co-represented signals/responses. We suggest that,
barring empirical support for causality (eg, modulated
signal leading to altered response), signals that precede
and correlate with a response should be referred to as
“predictive markers” of that response.

Signal/Responses During the 
“Common Cold”
The “common cold” is a viral infection of the nasal/
nasopharygeal mucosa that, upon detection by the host,
invokes two interactive and temporally overlapping
defense systems, a generalized, innate immune response
and a virus-specific, adaptive immune response. Both
systems include inflammatory pathways that facilitate and
actively recruit antiviral proteins and effector cells to the
site of infection. The generalized, innate response occurs
early after virus exposure and includes a number of signal-
response pathways capable of detecting viral infection,
inactivating virus, and destroying infected host cells and
other pathways that activate or dampen the adaptive
immune response as required [25]. The adaptive immune
response is invoked later and includes multiple, redun-
dant, feedback-modulated pathways that limit the extent
of infection, bind free virons, kill infected host cells, detect
viral clearance, repair mucosal damage, and downregulate
inflammation [26]. Because the early, innate response is
relatively nonspecific, it is expected that many of the
invoked pathways are coincidental and without relevance
to viral clearance. Yet, these, as well as all other activated
pathways, potentially contribute to the vSSC. Pharmaco-
logic modulation of the signals for these non-relevant
pathways and for all innate response pathways after full
activation of the adaptive immune response can be
expected to reduce the vSSC magnitude without affecting
host defense. A similar argument cannot be made for phar-
macologic modulation of the signaling pathways of the
adaptive immune system, where network complexity
precludes simple causal analysis (see earlier). For example,
manipulations designed to decrease the vSSC may have
adverse consequences with respect to viral clearance
because of signal conservation, whereas others designed to
enhance antiviral activity may have an opposite effect by
feedback inhibition of the requisite pathways for viral
clearance and tissue repair.

Early attempts to identify possible signaling molecules
synthesized or released during a vURI focused on
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established mediators of the nasal allergic reaction and
included histamine, bradykinin, and the prostaglandins,
leukotrienes, and other arachidonic acid metabolites [1–
3,27,28]. The usual format for these studies was daily
monitoring for symptoms/signs and periodic assay of
recovered nasal lavage fluids for suspected “mediators” in
adults experimentally exposed to a “common cold” virus.
Largely, the results of those studies were disappointing,
with only bradykinin showing a consistently increased
concentration during active infection and a temporal corre-
lation with subjective and objective measures of secretion
production. In follow-up studies, bradykinin was shown to
be present during the symptomatic period of “natural”
colds [29] and to provoke nasal congestion, rhinorrhea,
sinus pain, and sore throat when applied to the nasal
mucosa [23,30]. These data were interpreted as eliminating
histamine and the various arachidonic acid metabolites as
possible signaling chemicals during a vURI, while estab-
lishing a causal relationship between bradykinin and the
specified symptoms. More recent studies reported
increased histamine metabolites in urine collected during
the symptomatic period of experimental influenza infec-
tion [31] and increases in leukotriene C4 in nasal lavage
fluids during experimental rhinovirus infection [32], but
these studies included a small number of subjects, and the
data were generally characterized within and between
subject variances.

Intervention studies designed to exploit this causal
analysis called these interpretations into question. Treat-
ments of experimental colds with specific bradykinin
receptor blockers [33] or other therapies that significantly
decreased nasal bradykinin levels [34] had no affect on
the vSSC or on the individual symptoms (ie, demon-
strated a causal disassociation between bradykinin level
and signs/symptoms). In contrast, whereas studies of
antihistamine, steroid, and nonsteroidal interventions
documented no significant effects on the vSSC, those
results showed significant effects on the specific symp-
toms/signs that were uniquely provoked by the target
chemical in nasal-challenge studies [17,23,35–38]. None
of these treatments was reported to significantly affect
nasal congestion, decrease the frequency of certain
otologic complications, or increase the magnitude or
duration of viral shedding (ie, showing a disassociation
between the pathways leading to host defense, selected
symptoms, and selected complications). Treatment of
colds with “first generation” antihistamines consistently
lessens sneezing, rhinorrhea, and secretion production,
but the results of studies using “second generation,”
nonsedating antihistamines are less conclusive. Recently,
Muether and Gwaltney [39•] presented an interesting
hypothesis to explain this difference. They propose that
the abi l i ty  of  f ir s t -generat ion ant ih istamines  to
suppress sneezing and reduce secretions lies in their abil-
ity to cross the blood-brain barrier and block histaminic
and muscarinic receptors in the medulla.

These observations emphasize some of the difficulties
of causal analysis when applied to complex networks, such
as signaling during a vURI. For example, the early stage of a
vURI is marked by a large influx of vascular secretions and
plasma proteins [27,28], which introduces the substrate
for bradykinin synthesis to a nasal mucosa rich in the
converting enzyme. This transudation serves to dilute any
locally synthesized/released chemicals (eg, histamine,
prostaglandin, leukotriene), whereas increasing local
bradykinin levels by substrate limited synthesis. In terms of
causal analysis, the purported signal (bradykinin) and the
response (secretion) are directionally inverted (secretions
cause bradykinin) or, at a coarser level of analysis, do not
have the property of individuation (bradykinin level =
secretion quantity). Also, the vSSC and other high adicity
response measures are not useful outcomes in intervention
studies designed to clarify signal-response pathways and
need to be replaced by more individuated responses. This
would require much larger sample sizes than most studies
have employed, thus entailing higher, and perhaps unrea-
sonable, costs to fund such a research program [40].

More recently, the focus of studies exploring mediation
of vURI disease expression has shifted to the proinflamma-
tory cytokines and chemokines, a family of host-derived
chemicals that orchestrate and coordinate the inflamma-
tory response to a variety of insults [41]. Although there is
a large literature documenting the elaboration of biologi-
cally active cytokines and other intercellular-signaling
chemicals, including interleukin (IL)-1β, tumor necrosis
factor (TNF)-α, IL-6, IL-8, and nitric oxide (NO) by epithe-
lial cells, leukocytes, and other cell populations after virus
infection or exposure to cytokine stimuli [42–44], these
studies do not easily relate to vSSC expression or the coor-
dinated responses of the host to infection, subjects that are
central to the theme of this review, and, consequently, are
not discussed. Also not reviewed here is a model system
wherein the nasal mucosa is challenged with a specified
cytokine [45]. Given that cytokines and chemokines are
intercellular-signaling molecules, such studies generate
information in a nonrepresentative environment (normal
vs inflamed mucosa), making contextual interpretation
difficult. Rather, we present a summary of the data for
intercellular-signaling chemicals in nasal-lavage fluids
recovered from subjects with vURIs caused by different
viruses and the supporting evidences that the levels of
some of these chemical signals serve as “predictive mark-
ers” of the vSSC magnitude. Because of the limited and
contradictory results for NO, we defer discussion of this
mediator to a later time [46].

In natural vURIs caused by RSV, parainfluenza virus,
rhinovirus, and influenza virus, Gern et al. [47] focused on
the production of the proinflammatory chemokine, IL-8.
For control children, they reported a positive correlation
between IL-8 nasal-lavage level and age and lesser lavage
levels when compared with those for children infected
with RSV, parainfluenza virus, and rhinovirus, but not
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influenza virus. A correlation between IL-8 level and vSSC
was only observed for rhinovirus infection. Other investi-
gators conducted a broader survey of cytokine production
during natural colds. For example, Noah et al. [48]
collected serial lavages from 95 children with a vURI (ie,
vSSCs) of unidentified etiology and reported increased IL-
1β, IL-6, IL-8, and TNF-α during the period of acute illness.
Roseler et al. [49] studied 20 patients with vSSC and five
controls and reported increased lavage concentrations of
IL-1β, IL-6, and IL-8 but not IL-4 (nonmeasurable in all
samples) in vSSC patients only. Kaiser et al. [50•] assayed
IL-6, TNF-α, interferon (IFN)-α, IFN-γ , and IL-10 in lavage
fluids and serum from patients with community acquired
influenza A infection. They reported significant elevations
in all measured cytokines during the period of illness. In
correlational analyses, a rapid decrease in viral titer was
related to the magnitude of the IFN-γ  level, and the magni-
tude of the vSSC (which included temperature as a sign
component) was directly related to IL-6 level. Taken
together, these observations document local nasal (and
perhaps systemic [50•]) production of proinflammatory,
anti-inflammatory, and regulatory cytokines during vSSC
expression in natural vURIs caused by different viruses.
However, this study format does not offer good control
over event timing in reference to viral infection nor can it
easily provide signal-response data for asymptomatic or
subclinical vURIs.

To remedy this, a number of investigative groups stud-
ied nasal cytokine production in adults experimentally
infected with a known virus. In studies focused on a
specific cytokine, RV infection was shown to provoke
increased nasal-lavage levels of IL-1α [42], IL-1β [51], IL-6
[43], IL-8 [44,52,53], granulocyte colony-stimulating
factor (G-CSF) [54], and IL-1ra [42]. Of these, IL-8 was
constitutively present and was reported to correlate with
vSSC in one study [52]. Also, G-CSF was reported to corre-
late with increased blood neutrophils, and both G-CSF and
IL-8 to correlate with nasal neutrophils [54]. A later study of
experimental rhinovirus infection that assayed nasal
lavages for a panel of cytokines, including IL-1β, IL-6, IL-8,
IL-10, and TNFα, reported increased levels of IL-1β and IL-6
in symptomatic, infected subjects but not in asymptomatic
subjects. No postexposure changes in IL-8, IL-10, and TNF-α
were documented in either the symptomatic or asympto-
matic group, but a phase relationship between vSSC magni-
tude and IL-1β and IL-6 levels was observed [55].

A similar experimental format was used to study the
local cytokine response to coronavirus, RSV, and influenza
virus infection. In a pilot study using coronavirus chal-
lenge, 10 of 20 exposed subjects developed a vSSC. IL-4,
IL-6, and G-CSF were not elevated in the nasal-lavage
fluids postexposure in either group, whereas IL-1β
increased in all subjects, and IFN-γ  increased in subjects
with a vSSC [56]. Also, in a preliminary study of experi-
mental RSV infection, three of 10 subjects inoculated with
RSV developed a vSSC and shed virus. In that subset,

nasal-lavage IL-8 levels showed a transient postinocula-
tion increase. During the period of viral shedding, lavage
levels of IL-8, released on activation, normal T-cell
expressed and secreted (RANTES), macrophage inflamma-
tory protein (MIP)-1α, and monocyte chemoattractant
protein (MCP)-1 all increased [57].

For experimental influenza virus infection, an early
study reported a postexposure increase in IL-6 but not IL-4
level in recovered nasal lavages [58]. The patterns of
change in nasal IL-6 and nasal, but not systemic, symp-
toms were appropriately phased for possible causality. In
follow-up studies, Cohen et al. [59] reported that the
greater vSSC during influenza infection for subjects with
high baseline psychological stress was also reflected in
higher postexposure IL-6 levels in the nasal lavage, and
Skoner et al. [60] reported that rimantadine treatment (2
days post-influenza exposure) significantly reduced viral
shedding, the provoked systemic symptoms, and nasal
lavage IL-8 level, but not the provoked nasal symptoms or
nasal lavage IL-6 levels. In an experimental study of
zanamivir prophylaxis, Fritz et al. [61] reported that treat-
ment prevented influenza infection and abolished the
postexposure rises in IL-6, IL-10, TNF-α, IFN-γ , MCP-1,
and MIP-1 lavage levels documented for placebo-treated
subjects. More inclusively, Hayden et al. studied the nasal
lavage and blood levels of IL-1β, IL-2, IL-6, IL-8, IFN-α,
TGF-β, and TNF-α in 19 volunteers during the course of an
experimental influenza infection [9]. They reported that
nasal IL-6 and IFN-α peaked early (day 2) and correlated
directly with viral titers, temperature, mucus production,
and symptom scores. TNF-α peaked later when viral titer
was dropping (day 4), and IL-8 peaked late (days 4–6) and
correlated only with lower respiratory symptoms. No infec-
tion-related changes in nasal lavage IL-1β, IL-2, or TGF-β
levels were observed.

The more complete data for influenza infection shows
a phased series of cytokine elaborations during infection
with an early period of nasal symptoms/signs corre-
sponding to IL-6 elaboration, resolution of viral shedding
corresponding to TNF-α elaboration, and resolution of
upper-respiratory illness (but with possible lower-airway
involvement) corresponding to IL-8 elaboration [9].
However, although that study related IL-6 to systemic
symptoms (eg, temperature), the rimantadine interven-
tion study ascribed IL-8 as a marker of those symptoms
(co-modulated) [60]. The results of all reviewed studies
support IL-6 as a predictive marker of nasal symptoms/
signs for influenza infection, but not for those symp-
toms/signs during coronovirus (IL-1β, IFN-γ ), RSV (IL-8),
and rhinovirus (IL-6 or IL-8) infections.

One difficulty in comparing the results of these studies
for the same virus or among viruses is the lack of a stan-
dard protocol that includes a specific panel of signals and
responses to be assayed in all experimental studies. The
benefits of adopting such a protocol is exemplified by the
previously unpublished data (Gentile et al. [58]) presented
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in Table 1 for subjects experimentally infected with
rhinovirus type 39 (n = 16), influenza A virus (n = 26), and
RSV (n = 13), and followed under identical conditions
using standardized assessment methods and assay proce-
dures. The use of standardized measures allows compari-
sons of response amplitudes and signal-response phasing
among viruses. For example, although the nasal symptom/
sign complex for rhinovirus and influenza occurs within 3
days after exposure, that for RSV is delayed by as much as 7
days. Importantly, this temporal pattern is also observed
for the four assayed cytokines. Also of interest is that for all
three viruses, the cytokine that tracks nasal symptoms most
closely is IL-1, as opposed to the other previously
suggested candidates—IL-6, which remains elevated after
nasal symptoms resolve, and IL-8, which peaks after nasal
symptoms and remains elevated for an extended time.
Such comparisons can also be used to validate or refute
hypotheses, as, for example, the suggested causal relation-
ship between IL-6 and fever/elevated temperature reported
by Hayden et al. [9] for influenza A infection. Clearly, nasal
IL-6 is not sole and sufficient as a marker of elevated tem-
perature/fever given the observation that IL-6 is produced
in similar magnitude during rhinovirus infection, where
elevated temperature/fever is not a component of the vSSC.

Other groups studied upper-airway cytokine expression
during “natural” vSSCs and/or vURIs with the specific goal
of identifying signals related to lower airway complica-
tions. Bonville et al. [62] detected increased MIP-1α and
RANTES, chemokines with potent effects on the recruit-
ment, and degranulation of eosinophils and basophils in
nasopharyngeal secretions from pediatric patients with

vURI caused by RSV, adenovirus, influenza, and parainflu-
enza virus infection. Sheeran et al. [63] reported that
RANTES, MIP-1α, IL-6, IL-8, and IL-10 nasal-lavage levels
were significantly greater in 24 hospitalized children with
RSV infection compared with non-ill, control children.
These levels correlated with RSV titer, and RANTES level
was greater for nonintubated when compared with intu-
bated patients. Hornsleth et al. [64] reported that a higher
TNF-α:IL-6 ratio for nasal lavages recovered from infants
with RSV infection was related to greater illness severity,
and in a later, more comprehensive analysis reported that
the TNF-R1/RANTES ratio was a more consistent indicator
of illness [65]. In a comparison study of RSV and influenza
virus infection in children with and without asthma, nasal
aspirate levels of IL-11 were significantly greater in asth-
matic children with RSV when compared with nonasth-
matic children with RSV, and nasal IL-6 levels were greater
in RSV-infected children when compared with influenza-
infected children. No between-virus or between-asthmatic
state differences were observed for nasal IL-8 and IFN-γ
levels [66]. Also, IFN-γ  was reported to be present in nasal-
lavage fluids from 30/39 (76.9%) infants with RSV infec-
tion, but the purported upstream signals for IFN-γ  synthe-
sis, IL-12, and IL-18 were detectable in only 6/40 (15%)
and 11/38 (28.9%), respectively. Nasal IL-18, but not IFN-
γ  nor IL-12, was found in significantly greater concentra-
tions in subjects with nonhypoxic forms of bronchiolitis
than in those with vSCC alone [67]. Unfortunately, a
synthesis of these observations with respect to linking a
cytokine, cytokine ratio, or other signals as a predictive
marker to lower-airway involvement during a vURI is not

Table 1. Selected responses to nasal challenge of adults with influenza, RSV, and rhinovirus

Day

Response Malady 0 1 2 3 4 5 6 7 8

Nasal symptoms  Influenza 0.7 1.2 2.9 2.5 2 1.1 0.7 0.2 ND
 RSV 0.2 0.4 0.9 1.3 2 2.2 2.7 3.1 2.6
 Rhinovirus 0 2 3.8 3.8 1.9 1.3 ND ND ND

Secretion wt (g)  Influenza 0.8 1.3 4.3 6.8 2.4 1 0.5 0.3 ND
 RSV 0.4 0.6 1.2 0.9 0.8 1.5 2.5 4.3 1.7
 Rhinovirus 0.6 1.9 6.4 8.7 5.9 6.2 ND ND ND

IL-1 (log difference)*  Influenza 0 0.02 0.02 0.23 0.15 0.11 0.01 -0.12 ND
 RSV 0 0.14 0.08 0 0.05 0.16 0.6 0.69 0.38
 Rhinovirus 0 -0.08 0.77 0.6 0.48 0.36 0.28 ND ND

IL-6 (log difference)  Influenza 0 0.13 0.66 0.77 0.79 0.84 0.54 0.22 ND
 RSV 0 0.09 0.16 0.14 0.2 0.55 0.12 0.17 0.45
 Rhinovirus 0 0 0.97 0.97 0.58 0.63 0.46 ND ND

IL-8 (log difference)  Influenza 0 0.15 0.01 0.22 0.32 0.38 0.3 0.13 ND
 RSV 0 0.14 0.17 0.08 -0.05 0.26 0.62 0.57 0.53
 Rhinovirus 0 -0.12 0.36 0.46 0.45 0.38 0.55 ND ND

IL-10 (log difference)  Influenza 0 -0.03 0.26 0.33 0.25 0.5 0.56 0.15 ND
 RSV 0 -0.04 0.01 0.02 -0.06 0.05 0.13 0.52 0.41
 Rhinovirus 0 0 0.64 0.57 0.09 0.06 0.04 ND ND

* Note that the lavage values of cytokines are adjusted by subtracting the log baseline (day 0) from the log values at each day and consequently have 
no units, but represent fold increase.
IL—interleukin; ND—not done; RSV—respiratory syncytial virus.
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possible given the seemingly arbitrary choice of assayed
chemicals for each study, the inherent differences among
studies in design, methods of assessment and illness
definition, and the presentation bias for enrolled individu-
als attributable to the use of a hospital setting.

Conclusions
A description of the signaling pathways leading to the host
antiviral response and accompanying vSSC during a vURI
has the laudable goals of reducing illness burden, compli-
cations, and viral spread and remains an important focus
of continuing research. Although studies of signaling
chemicals in natural vURIs can provide guidance in this
quest as well as confirmatory evidence for observations
made in experimental models (both in vitro and in vivo),
their restriction to illnesses with a documented vSSC and
the temporal uncertainty of sampling with respect to
timing of virus infection make interpretation of these
“biased” data difficult, at best. In contrast, assay of secre-
tions and compartmental effector cells (eg, mucosal
biopsy, scraping) for chemical signals (and/or their precur-
sors) during the course of an experimental virus infection
in combination with signal-specific blockade and/or paral-
lel in vitro characterization of cellular responses offers a
unique opportunity to study these pathways and their
interactions. An independent but complementary strategy
now in its infancy is to include genotyping for cytokine
polymorphisms on all subjects enrolled in experimental
studies, with the goal of relating these results to cytokine
level, illness expression, and host defense. Preliminary
studies using this assay showed consistency with respect to
genotype effects on natural and experimental RSV infec-
tion [68•,69•].

To date, the power of these methodologies has not been
exploited because of the small number of subjects included in
any one study [40], the presentation of data for individual sig-
nals from the same study in different publications [42–44], the
non-uniform selection of assessed signals and responses across
studies [9,60,70,71], and the misapplication of causal analysis
in data interpretation. To overcome these limitations, we rec-
ommend that the protocols used by different investigators are
standardized to the extent possible (including a standard panel
of signals and individuated responses); that archival lavage flu-
ids and DNA samples from all study volunteers are stored
indefinitely should later research identify unsuspected
signaling chemicals; and that, after independent publication of
the study results by an investigative team, contributing investi-
gators submit de-identified data (and appropriate protocols) to
a shared data repository for later pathway analyses. Given the
expected need for large sample sizes for characterizing the sig-
nal-response pathways, implementation of these recommenda-
tions would satisfy this requirement as well as allow the
generation of specific hypothesis, the rational estimation of
sample size for hypothesis testing, and the elimination of bias
associated with favored publication of positive results.
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