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Introduction
What is asthma? Woolcock and Barnes [1], in the intro-
duction to a 2000-page textbook on asthma, answered this
query with, “In spite of the immense amount of material
presented here, we do not know the answer.” All can agree
with them, nevertheless, when they point out at the end of
the paragraph that “…asthma is a syndrome characterized
by a set of symptoms.” The symptoms of asthma, as delin-
eated in the Global Initiative for Asthma Workshop Report,
include recurrent episodes of wheezing, breathlessness,
chest tightness, and cough [2]. To pose the question of
what role the nervous system plays in asthma is, therefore,
to ask how the nervous system contributes to recurrent epi-
sodes of wheezing, breathlessness, chest tightness, and
cough. We address this question after a basic overview of
airway innervation is presented.

Airway Innervation
The afferent innervation of the airways is carried pre-
dominately by pseudounipolar neurons with fibers that
travel in the vagus nerves [3]. The cell bodies of these
neurons are located in vagal sensory ganglia and give
rise to single, relatively short processes that branch into

two fibers, one of which projects to the airways while the
other projects to the brain stem, where it synapses with
secondary neurons located within the nucleus of the
solitary tract in the medulla. Some airway-specific neurons
within the vagal sensory ganglia have relatively small-
diameter cell bodies that give rise to unmyelinated C fibers,
while others with larger cell body diameters give rise to
faster conducting myelinated A fibers [4].

Classic studies of the afferent innervation of the
airways have led to subclassification of airway afferent A
fibers based on their response (pattern of action potential
discharge) to prolonged suprathreshold mechanical
stimuli [5]. When the lungs are inflated for a prolonged
period, some of the fibers, termed “slowly adapting
receptors” (SARs), respond constantly as long as the
pressure is maintained, whereas other fibers, termed
“rapidly adapting receptors” (RARs), respond with bursts
of action potentials only during the dynamic phase of
inspiration. SAR fibers are thought to terminate within the
airway smooth muscle layer and participate in respiratory
reflexes regulating breathing pattern [6]. In contrast, RAR
fibers often have been found to be stimulated by various
inhaled irritants, and because of this, they are often
referred to as “irritant receptors” [7].

The peripheral terminals of RARs and C fibers are
situated near and within the airway epithelium and are
thought to represent one of the first lines of defense of the
airways. When stimulated, RARs and C fibers transmit
action potentials to the brain stem, leading to defensive
reflexes, including cough, stimulation of mucus secretion,
and bronchoconstriction [8]. In addition, neuropeptide-
containing C fibers may participate in local axon reflexes
leading to end-organ responses, including vasodilatation,
plasma extravasation, and leukocyte adherence to the
microvascular endothelium, mucus secretion collectively
known as “neurogenic inflammation.” Most studies of
neurogenic inflammation have been carried out in rats
or guinea pigs. The hypothesis that neurogenic inflam-
mation can be elicited in the airways of humans has
not been tested.

Neuropeptide-containing C fibers, in addition to
participating in central and local axon reflexes, may
participate in peripheral reflexes. A peripheral reflex occurs
when activation of a C fiber peripheral terminal initiates
the release of transmitter via an axon reflex at synapses in
peripheral autonomic ganglia. In human, ferret, and
guinea pig airways, neuropeptide-containing C fibers are
found in close association with parasympathetic ganglia
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[9], and parasympathetic ganglion neurons contain
receptors for neurokinins that, when stimulated, lead to
excitatory electrical potentials [10]. Thus, an afferent nerve-
mediated autonomic respiratory reflex may occur indepen-
dently of the central nervous system. Functional and
electrophysiologic studies support the idea that peripheral
reflexes occur in both cholinergic and nonadrenergic,
noncholinergic (NANC) parasympathetic pathways in
the airways [9].

Postganglionic parasympathetic cholinergic and NANC
fibers innervate airway smooth muscle, where they provide
the dominant control of airway caliber. They also innervate
airway glands and microvasculature in the respiratory tract.
Preganglionic parasympathetic nerve fibers arise primarily
from cell bodies located in several discrete medullary nuclei
and project to the airways via the vagus nerves [11]. Within
the airways, they form cholinergic synapses with postgang-
lionic neurons in parasympathetic ganglia. Although airway
parasympathetic ganglia are predominately physically assoc-
iated with larger airways, the postganglionic fibers to which
they give rise innervate structure throughout the airway tree
[9]. At least a portion of the postganglionic neurons that
innervate the airways of mammalian species are cholinergic,
and virtually all mammals, including humans, have
cholinergic-mediated smooth muscle tone in their airways as
a consequence of baseline parasympathetic reflex activity [9].

Older textbooks often state that the sympathetic nervous
system provides relaxant innervation to airway smooth
muscle via adrenergic transmission and activation of β-
adrenoceptors, but this is not the case in human airways,
where relaxant innervation is provided by the NANC com-
ponent of the parasympathetic nervous system. Although
the transmitters released by these parasympathetic
nerves have yet to be completely delineated, transmission at
smooth muscle synapses appears to involve nitric oxide and
vasoactive intestinal peptide. As noncholinergic para-
sympathetic pathways, at least in guinea pigs, arise from
a neural pathway separate from that of the cholinergic
pathways, it may be that these two pathways can act inde-
pendently. Indeed, it was recently demonstrated that airway
reflex cholinergic activity could occur independently of
airway reflex noncholinergic parasympathetic activity in
guinea pigs [9].

Although sympathetic nerves are seldom found inner-
vating human bronchial smooth muscle, the airway
vasculature receives sympathetic input, likely arising
from the superior cervical stellate and rostral thoracic
sympathetic ganglia.

The Role of Nerves in Asthma Symptoms
Wheezing and breathlessness (dyspnea)
There is little doubt that bronchial smooth muscle con-
traction underlies the episodic wheezing, breathlessness,
and chest tightness that defines asthma. The dominant
control of airway smooth muscle tone, and thus airway cal-

iber, is derived from the parasympathetic branch of the
autonomic nervous system. As described above, this system
includes both cholinergic contractile and noncholinergic
relaxant pathways. The bronchi are tonically constricted at
rest [12]. This baseline smooth muscle tone is due in large
part, if not exclusively, to reflex cholinergic activity [13,14].
With each inspiration, mechanosensory afferent nerve
fibers in the airways are activated to send impulses to the
brain stem, where they initiate parasympathetic reflex
bronchial smooth muscle contraction. In a sense, then,
with each breath, we receive an endogenous “acetylcholine
challenge” that results in baseline tone.

A pathognomonic abnormality of asthmatic airways is
their exaggerated narrowing in response to bronchospastic
stimuli. This so-called airway hyperreactivity or hyper-
responsivenes is most often quantified by the concen-
tration of an inhaled stimulus required to increase the
resistance to airflow by 20%. The difference in this para-
meter between nonasthmatic and asthmatic airways often
is quite staggering. Nonasthmatic airways, for example,
typically do not respond to an inhaled solution of hista-
mine, even at concentrations greater than 16 mg/mL,
whereas less than 1 mg/mL is typically sufficient to
constrict asthmatic airways [15].

The mechanisms underlying airway hyperreactivity
are not known. Airway hyperreactivity appears to be
associated with airway inflammation, but cause-effect
relationships remain obscure. A recently published child-
hood asthma study revealed that long-term treatment
with inhaled corticosteroids decreased asthma-related
hospitalizations in children but had almost no effect on
their airway hyperreactivity [16•]. This is consistent with
the vast literature on this subject, which reveals that
corticosteroid treatment over a long period may dampen
hyperreactivity but seldom, if ever, reverses the pheno-
menon. Numerous studies support the concept that
abnormal neuronal reflex activity contributes to hyper-
reactive airways, but again, specific cause-effect relation-
ships are unknown. Most (arguably all) agonists used to
evaluate airway reactivity modulate airflow resistance in
part or in toto by stimulating parasympathetic cholinergic
reflexes. In addition to classic reflex stimuli, such as
irritant gases, histamine, nonisotonic aerosols, and cold
air, this also likely includes so-called direct-acting smooth
muscle agonists, such as methacholine [17]. It is, there-
fore, not surprising that, in nearly all cases, cholinergic
muscarinic receptor antagonists can substantially inhibit
or even abolish the hyperreactive response to inhaled
stimulants in asthmatic airways [9]. The fact that the
phenomenon of airway hyperresponsiveness (>100-fold
increases in agonist sensitivity) is not observed in studies
on bronchi isolated from deceased asthmatic airways
when studied in vitro is also consistent with the hypo-
thesis that the hyperreactivity results from exaggerated
reflex responses rather than exaggerated end-organ
(ie, smooth muscle) responsiveness.
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Perhaps the most heuristic studies on airway hyper-
reactivity are those that induce the phenomenon in non-
asthmatic subjects. In one such study, upper respiratory tract
viral infection was shown to lead to airway hyperreactivity to
histamine, and this hyperreactivity persisted well beyond the
infection (much like postviral cough syndromes) [18]. In
another group of studies, hyperreactivity was found in nor-
mal subjects who avoided taking deep inspirations or
“sighs” for 20 minutes. When nonasthmatic subjects
avoided deep inspiration, they responded to concentrations
of methacholine or histamine aerosol that, under normal
conditions, have no effect [19,20•]. The heightened
sensitivity to histamine induced by upper respiratory tract
infection or by deep breath avoidance is prevented by
pretreatment with an anticholinergic drug [18,21]. This
supports the hypothesis that the induced airway hyper-
reactivity was due to a “hyperreflexivity.”

The episodic bronchospasm associated with asthma
likely contributes to sensations of dyspnea, but it is
unlikely to be the only contributor to the sensation of
breathlessness. Increases in vagal afferent activity caused by
inflammation, independent of bronchospasm, may also
play a role. The neurophysiology of dyspnea has not yet
been elucidated. There are likely to be multiple neuronal
pathways underlying dyspnea, some of which do not
depend on intact vagal pathways [22]. Nevertheless, several
lines of evidence support the hypothesis that dyspnea may
be brought about by perturbations in vagal sensory nerve
activity. First, electrical stimulation of the vagus nerves,
using stimulation paradigms that do not cause broncho-
constriction or changes in heart rate, leads to dyspnea in
humans [23]. Second, inhalation of histamine, a mediator
known to lead to activation of airway sensory nerves,
causes dyspnea. Interestingly, histamine inhalation leads
to a more profound dyspnea than methacholine inhala-
tion, despite similar degrees of bronchoconstriction [24•].
The dyspnea associated with histamine is inhibited by
lidocaine [25]. Finally, prostaglandin E2, a mediator that
increases sensory nerve excitability, exacerbates the
dyspnea associated with exercise, despite being a bron-
chodilator [26]. Considered together, these findings
suggest that discharge of action potentials in airway
sensory nerves may lead to dyspnea and that this is not
necessarily dependent on bronchoconstriction.

Cough
Cough is a common, and sometimes the predominant,
symptom of asthma [27]. Cough-inducing sensations in
asthma may be elicited secondary to bronchospasm. They
may also be caused by the presence of mucus in the air-
ways. Mucus secretion, like bronchospasm, may be
increased as a consequence of altered autonomic reflex
activity. Often, an indefinable and persistent itch or
irritation in the airway often provokes a dry, unproductive
cough reflex in asthmatic subjects. Regardless of the
stimulus, all cough reflexes are initiated by activation of

primary afferent fibers in the larynx, trachea, and larger
bronchi. Studies in animals indicate that RAR-type fibers
are the principle fibers involved in initiation of cough,
although C fibers may also play an important role [28].

Nonasthmatic subjects may, under appropriate circum-
stances, experience cough, dyspnea, and chest tightness
when their airways are constricted. The problem in asthma,
therefore, is often one of an exaggeration of normal reflex
behavior. Analogies to this type of process may be found
in other systems. In the study of pain, it has long been
recognized that inflammation may lead to a state of hyper-
algesia such that the threshold for painful stimuli is
decreased [29]. Hyperalgesia thus has similarities to airway
hyperreactivity. Inflammation may also lead to painful sen-
sations in response to normally nonpainful stimuli, such
as gentle brushing of the skin or hair. The term given to this
inappropriate pain sensation is “allodynia” [30]. A similar
phenomenon occurs with respect to inappropriate itch
sensations, termed “alloknesis.” In some cases of asthma,
one might argue that when severe shortness of breath is
experienced despite only a mild compromise in lung func-
tion, there is an inappropriate hunger for air, ie, an “allod-
yspneic” sensation. Similarly, asthmatics may experience
irritating itch sensations in their airways leading to an urge
to cough, despite the lack of physical objects in the airway
provoking the irritation. This “allotussive” effect may be
analogous to alloknesis.

Neuromodulation by Airway Inflammation
Asthma is associated with a particular type of airway
inflammation that is often triggered by allergens and
typified by the presence of eosinophils and TH2-type
immune processes. It is likely that the inflammatory
process contributes to the aberrant neurophysiology of
asthma. In the past decade, a vast literature has accumu-
lated that describes the characteristics of this inflammation
in impressive detail. Regrettably, little progress has been
made on the key question of how the often rather mild
inflammation associated with asthma perverts the nervous
system such that the symptoms of asthma emerge.

Neuronal control of airway function is carried out by
means of reflex arcs. By modulating the activity at different
points along the reflex pathways, airway inflammation
may quantitatively and qualitatively affect airway neuro-
physiology. The reflex is initiated by stimulation of afferent
nerve fibers. This leads to the transmission of information
(action potentials) to the central nervous system (CNS),
where it is integrated and ultimately expressed as changes in
respiration pattern, alterations in autonomic preganglionic
neuronal activity, or, in some cases, conscious sensations
(eg, dyspnea, chest tightness, cough-inducing irritations).
The autonomic preganglionic nerve fibers synapse in
bronchial ganglia, and if the synaptic transmission is success-
ful, it leads to action potential discharge in the post-
ganglionic fibers and release of acetylcholine and other
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NANC transmitters at the junction of the airway smooth
muscle, vasculature, glands, and so on. That airway neuronal
reflex arcs are modulated by allergic inflammation may be
most obviously exemplified by studies on neural reflex
activity in the human upper airway [31,32]. Applying an irri-
tant such as bradykinin to the nasal mucosa of nonallergic
people or to seasonally allergic subjects out of their allergy
season results in little or no response. If the same dose of
bradykinin is applied to the nasal mucosa of symptomatic
subjects (eg, during the relevant allergen season or to
perennial allergic subjects), it causes excessive sneezing and
autonomic reflex–mediated secretions.

Various mechanisms by which inflammation affects the
neurophysiology of airway reflexes have been discussed in
some detail elsewhere [33]. Available evidence indicates that
allergic airway inflammation may affect neuronal reflex
activity at multiple sites in the reflex pathway (Fig. 1). Aller-
gic inflammation can affect the initiation of airway reflexes
by increasing the activity of the primary afferent nerve
fiber [34]. Mediators associated with inflammation, such as
bradykinin and various eicosanoids, can directly activate
C fibers in the airway wall [8]. In addition, the activity in
low-threshold mechanosensors may be increased by inflam-
matory mediators via increases in electrical excitability. This
is exemplified by a study on single RAR nerve endings in tra-
chea/bronchi isolated from actively sensitized guinea pigs
[35]. Adding the sensitizing antigen to the airway tissue did
not overtly lead to action potential discharge in the mecha-
nosensors, but it substantially reduced the amount of
mechanical force needed to activate the fibers. This likely is
explained by mediators acting on cell surface receptors
to alter the electrophysiologic properties of the nerve mem-
brane [36]. These data support in vivo studies with allergen
inhalation that show increases in action potential discharge
in mechanosensitive afferent fibers [37]. The low-threshold
mechanosensors in the airways (ie, SARs and RARs) respond
to the physical displacement of their nerve terminals. This
mechanical transduction process likely is influenced by the

manner in which the nerve terminals are integrated into the
airway tissue [38]. It is tempting to speculate, therefore, that
the submucosal remodeling associated with more chronic
airway inflammation may change stress-strain relationships
of the mechanical fibers during respiration, leading to either
exaggeration or dampening of afferent nerve discharge. This
speculation has yet to be addressed experimentally.

Little attention has been given to how airway inflam-
mation affects synaptic transmission between the primary
afferent nerve and second-order neurons in the brain stem
(NTS). One mechanism by which integration of afferent
information in the CNS can be altered is by changing the
neurochemistry of afferent fibers. The low-threshold
mechanosensors in the airway are thought to use excitatory
amino acids (EAAs) as their principal neurotransmitter
[39]. When EAAs, such as glutamate, are released onto
second-order neurons in the brain stem, they cause fast,
excitatory postsynaptic potentials. The efficacy by which
an EAA results in synaptic transmission in the CNS may
be increased by the presence of neurokinins [40]. This
enhancement of synaptic transmission in the CNS has
been termed “central sensitization.” Central sensitization
likely contributes to the augmentation of neuronal reflex
activity during C fiber activation. The concept of central
sensitization has been studied extensively in the somato-
sensory system, where it appears to be a major mechanism
underlying certain types of hyperalgesia and allodynia
[29]. By increasing the expression of the preprotachykinin
gene in airway sensory neurons, allergic inflammation can
increase the efficacy of synaptic transmission in the brain
stem, thereby modulating the CNS integration [41]. It is
typically thought that nociceptive C fibers are required
to be activated before neurokinins are released in the
brain stem. It is interesting to note, however, that during
allergen- or viral-induced airway inflammation, the
preprotachykinin gene may be unregulated not only in
nociceptive C fibers but also within the low-threshold
mechanosensors themselves [42]. This, in theory, could

Figure 1. Effect of allergic inflammation on 
reflex activity. Inflammation may increase 
reflex activity by affecting all points in the 
reflex arc. CNS—central nervous system; 
RAR—rapidly adapting receptors.
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lead to central sensitization during respiration, inde-
pendent of C fiber nerve stimulation. A similar hypothesis
has been derived from experimental data in the soma-
tosensory system, where inflammation of the rat paw leads
to neuropeptide expression in large Aβ brush fibers [43].

The neuromodulation associated with airway inflam-
mation is not limited to primary afferent nerve activity and
CNS integration. Airway inflammation also directly affects
autonomic neuronal activity. Allergen challenge in vitro
has been associated with increases in electrical excitability
of bronchial ganglion neurons [44]. This increase in elec-
trical excitability leads to an increase in synaptic efficacy
and, consequently, a decrease in the capacity of the ganglia
to filter preganglionic input. Thus, a larger percentage of
the preganglionic volley associated with each inspiration
may lead to action potentials in postganglionic nerve
fibers, resulting in a generalized increase in parasympa-
thetic tone. Airway inflammation also may lead to an
increase in the amount of acetylcholine released per action
potential from the postganglionic fibers at the level of the
neuro-effector cells [45].

In addition to acutely modulating airway neuro-
physiology, inflammation early in life may have a more
insidious effect on airway innervation. It is well established
that development of sensory systems often requires use-
dependent activity early in life [46]. During postnatal
sensory nerve development, there is a defined window of
time during which the nerves are susceptible to this experi-
ence-dependent plasticity. Before or after the defined
window of time, the same experience does not alter the
neuronal development. Thus, for example, if a young
animal is deprived of vision by eyelid closure (or various
other techniques), changes occur in the neural circuitry of
the visual cortex leading to severe and permanent loss of
visual acuity. This occurs only if the vision deprivation
occurs during a critical period of time. Even prolonged
vision deprivation after the critical period is without effect
on visual acuity. Since these pioneering studies, critical
periods have been defined in audio and somatosensory
systems and have been noted in virtually all species from
humans to songbirds to Drosophila [46].

Two recent reports support the concept that inflam-
mation-dependent sensory nerve plasticity during a critical
period may lead to persistent changes in somatosensory
and vagal-sensory neural circuits. Ruda et al. [47•]
inflamed one hind paw of rat pups using complete
Freund’s adjuvant. The pups exhibited stereotypic behavior
indicating pain in the paw. More importantly, there was a
substantial increase in the density of primary afferent
nerves in the ipsilateral dorsal horn of the spinal cord. This
change in the density of neuronal circuits persisted beyond
the resolution of the inflammation and lasted into adult-
hood. Behavioral studies revealed that adult rats that
experienced paw inflammation as neonates were signifi-
cantly more hyperalgesic in response to subsequent
inflammatory stimuli than were control rats. The authors

concluded that “peripheral inflammation experienced dur-
ing neonatal periods has long-standing consequences on
nociceptive neuronal circuitry.”

More directly relevant to visceral inflammatory disease
is the study by Al-Chaer et al. [48•] on gastrointestinal
hypersensitivity. It has long been known that inflam-
mation of the colons of laboratory animals leads to a
neuronal hypersensitivity and exaggerated and abnormal
reflex physiology of the gut. In this study, the colons of rats
were chemically or mechanically irritated 8 to 21 days
postnatally. As expected, this led to inflammation and
afferent nerve hyperexcitability and a state of heightened
visceral reflexia. These changes in sensory nerve hyper-
excitability persisted beyond the gut inflammation, lasting
for at least 3 months (the longest time point analyzed). By
contrast, if the colons of rats were inflamed after postnatal
day 21 (beyond the critical period) no persistent sensory
hyperreactivity developed. Thus, in both the somato-
sensory pain model and the visceral-sensory model of
hyperreflexia, inflammation during a critical period in
postnatal development caused abnormalities in the sen-
sory near-circuitry that persisted well beyond the initiating
stimulus or inflammation.

Activation of nerve growth factor (NGF) receptor Trk-A
has been implicated in several models of critical-period
sensory nerve plasticity [49]. It is worth noting that both
mRNA for NGF and immunoreactive NGF protein, as well
as other neurotrophins, are found in guinea pig and
human airways, located principally in the epithelium but
also in lymphocytes and resident mononuclear cells [50].
It may be relevant in this regard that NGF, when applied to
the airway wall, is effective at inducing neurokinin expres-
sion in airway afferent RAR fibers [51•]. In recent years,
there has been much discussion on the potential role
played by early life events on the development of the
immune system as it pertains to the immunology of allergy
and asthma. One might hypothesize that early life events
occuring during critical periods in sensory nerve develop-
ment may also contribute to asthma susceptibility affecting
the neural reflex circuitry.

Conclusions
Allergic rhinitis and asthma are the two most common
allergy-associated airway diseases. When the allergic rhi-
nitic subject inhales specific allergen, upper airway irrita-
tion occurs and is accompanied by sneezing, nasal
congestion, and excessive secretion. Asthmatic subjects
experience episodic and reversible bronchoconstriction,
mucus secretion, excessive cough, and shortness of breath
(ie, an attack of asthma). It should not go unnoticed that in
both pathologies, the nervous system is the pivot between
the immune activation by allergen and the symptoms of
airway disease. With respect to asthma, the coughing,
sneezing, and sensations of dyspnea are the direct results
of altered sensory neuronal activity. Increases in reversible
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bronchoconstriction, vascular congestion, and mucus
secretion are likely to be, at least in part, secondary to
increases in autonomic neuronal activity. In general terms,
experimental evidence indicates that allergic inflammation
can potentiate neuronal function at all key points along
the reflex arc, from the primary afferent nerve terminals, to
integration of signals in the CNS, to synaptic transmission
in autonomic ganglia, to transmitter release from post-
ganglionic nerve varicosities. As more is learned about the
specific molecular and biophysical mechanisms of this
neuromodulation, a better understanding of the patho-
physiology of asthma likely will emerge.
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